Численная модель тепломассообмена и сепарации дисперсной фазы в высокоскоростных дисперсно-кольцевых потоках газа и жидкости

© А.Г. Лаптев, Е.А. Лаптева

03

Казанский государственный энергетический университет, 420066 Казань, Россия e-mail: tvt_kgeu@mail.ru

Поступило в Редакцию 9 февраля 2022 г. В окончательной редакции 6 апреля 2022 г. Принято к публикации 14 апреля 2022 г.

> Для решения научно-технических задач рассмотрены физические процессы и записаны системы уравнений численной и приближенной математической модели совмещенного тепломассообмена при контактном охлаждении газов и нагрева воды, а также турбулентного переноса частиц в восходящем дисперснокольцевом потоке газа и жидкости. Численная модель базируется на системе уравнений в частных производных в двумерной форме с граничными условиями четвертого рода. Приближенная модель построена с применением системы алгебраических уравнений ячеечной модели структуры потока для газовой и жидкой фаз, где основными параметрами являются число ячеек полного перемешивания, коэффициенты тепло- и массоотдачи и турбулентного переноса частиц. Показан пример решения системы уравнений ячеечной модели с вычислением профилей температур газа и жидкости, концентрации влаги и частиц, а также эффективности процесса тепломассообмена, эффективности сепарации тонкодисперсной фазы из газа пленкой жидкости при прямотоке. Даны сравнительные характеристики пленочных аппаратов. Отмечено внедрение научно-технических разработок при очистке природного газа в местах добычи.

> Ключевые слова: тепломассообмен, охлаждение газов, сепарация частиц, прямоток фаз, системы уравнений переноса.

DOI: 10.21883/JTF.2022.09.52922.29-22

Введение

Математическое моделирование явлений переноса в двухфазных средах имеет как теоретическое значение в научных исследованиях, так и прикладное в различных отраслях промышленности. Одними из первых исследователей высокоскоростных течений пленок жидкости совместно с газовым или паровым потоком были академики АН СССР Н.Н. Семенов, С.С. Кутателадзе, Н.М. Жаворонков, Р.И. Нигматулин и многие их ученики. Научный и практический интерес к техническим устройствам газожидкостного контакта обусловлен поиском путей интенсификации явлений переноса в двухфазных средах в различных аппаратах и технических устройствах [1–4].

Охлаждение и очистка от дисперсной фазы дымовых и технологических газов являются важной проблемой для предприятий нефтегазохимического комплекса и тепловых станций (ТЭС). Охлаждение газов чаще организуется при непосредственном контакте с жидкостью, чаще холодной водой. Применяются распыливающие, пленочные и насадочные скрубберы при противотоке фаз, а также вихревые различного типа взаимодействия. С точки зрения движущей силы теплопередачи наиболее предпочтительными являются скрубберы с противоточным взаимодействием фаз. Очистка газов от различного вида дисперсной фазы (твердые и жидкие аэрозольные частицы и капли) на ТЭС происходит в электрофильтрах, ударно-инерционных уловителях, а также в аппаратах мокрой очистки.

При охлаждении и очистке относительно небольших объемов газов (до 50-60 t/h и расходов воды до 200 t/h) и при отсутствии существенных ограничений по гидравлическому сопротивлению скруббера можно использовать режим интенсивного взаимодействия газа и жидкости в осесимметричном или закрученном дисперснокольцевом потоке в цилиндрических каналах в режиме прямотока при скорости газа 10-45 m/s [5-9]. За счет высокоскоростного потока достигаются небольшие массогабаритные характеристики скруббера по сравнению, например, с насадочным. При одинаковом диаметре скруббера производительность каналов с высокоскоростными дисперсно-кольцевыми потоками больше традиционных насадочных скрубберов в 6-8 раз. В высокоскоростном потоке обеспечивается не только охлаждение газов, но и значительная эффективность (до 99.99%) очистки газов от дисперсной фазы. Дисперсной фазой могут быть как твердые частицы, так и мелкие капли, которые образуют аэрозольные системы [8-10]. Контактные трубки могут выполняться с шероховатой поверхностью и с ленточными завихрителями, что повышает эффективность явлений переноса [11-14].

Схема движения газа и жидкости в контактном канале показана на рис. 1 [14].

Известные математические модели таких процессов предполагают многочисленные экспериментальные ис-

Рис. 1. Пленочные аппараты с восходящим движением жидкости: *а* — схема движения фаз на выходе из труб; *b* — схема движения фаз на входе в трубы; *I* — трубы, *2* — трубные решетки, *3* — брызгоотбойники, *4* — распределительные патрубки, *5* — щели для подачи воды.

следования как тепломассообмена, так и сепарации дисперсной фазы совместно с изучением гидродинамических закономерностей движения и взаимодействия газовой и жидкой фаз [15–18]. Поэтому представляется целесообразным разработка математической модели с минимальным количеством экспериментальной информации, основной из которой является гидравлическое сопротивление устройств газожидкостного контакта. Это значительно сокращает сроки и затраты разработки новых технических устройств тепломассообмена и сепарации дисперсной фазы.

Рассмотрен процесс восходящего движения газа и пленки жидкости в контактной трубке небольшого внутреннего диаметра ($d = 0.015 - 0.021 \,\mathrm{m}$) и высотой до 1.0 m. Таких трубок в зависимости от расходов фаз в аппарате может быть несколько десятков и даже сотен. Например, при диаметре кожуха аппарата $D_{\text{casing}} = 1.2 \,\mathrm{m}$ число трубок с внутренним диаметром 0.021 т — 1084 шт. Восходящий режим начинается при скорости газа в трубке $w_{\rm g} > (8{-}10)\,{
m m/s}$ (при нормальных условиях) и называется режимом сильного взаимодействия фаз [6,7]. Этот процесс происходит, когда касательное напряжение трения au_{g-l} [Pa], на поверхности раздела газ-жидкость значительно больше $\tau_w(\tau_{\rm gl} \gg \tau_w)$ гравитационного течения $\tau_w = \rho_1 g \delta_f$ [Pa], т.е. без воздействия газа, где δ_f — средняя толщина пленки, [m]; ρ_1 плотность жидкости, [kg/m³].

Решается задача исследования явлений переноса при контактном охлаждении газов и нагреве жидкостей (чаще воды), а также очистке газа от тонкодисперсной фазы. Газовой фазой может быть дымовой или технологический газ. Такие задачи актуальны, когда требуются технические решения по компактной конструкции аппарата и когда нет существенных ограничений по перепаду давления. Для исследований сопряженного тепло- и массообмена и сепарации дисперсной фазы в дисперсно-кольцевом потоке в контактной трубке могут использоваться как численные, так и приближенные методы. Целью настоящей работы является применение данных методов для моделирования явлений переноса теплоты и массы и определение тепломассообменной эффективности процесса при различных конструктивных и режимных параметрах дисперсно- кольцевого потока, а также моделирование сепарации дисперсной фазы пленкой жидкости в задачах разработки аппаратов газоочистки на промышленных предприятиях.

1. Численная модель

Теоретической основой численных методов являются системы дифференциальных уравнений явлений переноса с частными производными, которые решаются с заданием граничных условий различного рода [12].

Рассмотрено стационарное турбулентное движение восходящего газо-жидкостного потока, когда жидкая фаза распределяется преимущественно в виде пленки по стенке канала, а в газ с дисперсной фазой (частицами) движется осесимметрично в центре (рис. 2).

Через межфазную поверхность пленки происходит обмен импульсом, массой и энергией (теплотой). Массу в данном случае составляет влага, которая в небольших

Рис. 2. Схема потоков газа и жидкости при восходящем прямотоке и условного деления трубки на ячейки.

концентрациях практически всегда присутствует в газовой фазе, и дисперсная фаза. Происходит конденсационное охлаждение газа, что в ряде случаев может обеспечить охлаждение ниже точки росы. Жидкая фаза обеспечивает рекуперацию теплоты газовой фазы. Теплообмен через стенки контактной трубки с окружающей средой незначителен. В газовой фазе находятся мелкие твердые частицы и капли жидкости, которые могут срываться с гребней волн пленки. Однако их влияние из-за малой концентрации на тепло- и массообмен незначительно. Учитывая, что длина трубки H значительно больше ее диаметра ($H \gg d$), дифференциальные уравнения переноса теплоты, массы влаги и дисперсных частиц запишутся в двумерной форме в следующем виде: – перенос теплоты в газовой фазе

 $\partial I_{g} = \partial q_{g}$

$$w_{g}(y)\rho_{g}\frac{\partial I_{g}}{\partial x} = \frac{\partial q_{g}}{\partial y}, \quad I_{g} = f(T_{g}, C_{g}),$$
 (1)

- перенос массы влаги

$$w_{g}(y) \frac{\partial C_{g}}{\partial x} = \frac{\partial j_{g}}{\partial y},$$
 (2)

- перенос теплоты в пленке

$$\rho_1 c_{p1} u_1(y) \frac{\partial T_1}{\partial x} = \frac{\partial q_1}{\partial y},\tag{3}$$

- перенос дисперсной фазы в газовой фазе

$$w_{g}(y) \frac{\partial C_{\text{particle}}}{\partial x} = \frac{\partial j_{\text{particle}}}{\partial y}.$$
 (4)

Поток теплоты в газовой фазе за счет конвекции и конденсации влаги

$$q_{\rm g} = (\lambda_{\rm g} + \lambda_{\rm Tg})\frac{\partial T_{\rm g}}{\partial y} + I_{\rm vap}(D_{\rm g} + D_{\rm Tg})\frac{\partial C_{\rm g}}{\partial y}; I_{\rm vap} = c_{\rm p1}T_1 + r.$$
(5)

В выражении (5) первый правый член — теплота, передаваемая за счет соприкосновения фаз молекулярным и турбулентным механизмами, а второй — теплота, передаваемая конденсацией влаги, где I_{vap} удельная энтальпия пара, [J/kg], при температуре жидкости T_1 , [°C].

Поток массы влаги в газовой фазе

$$j_{g} = (D_{g} + D_{Tg}) \frac{\partial C_{g}}{\partial y}.$$
 (6)

Поток теплоты в жидкой фазе

$$q_1 = (\lambda_1 + \lambda_{\rm T1}) \,\frac{\partial T_1}{\partial y}.\tag{7}$$

Поток частиц в газовой фазе [10]

$$j_{\text{particle}} = (D_{\text{particle}} + D_{\text{T} \text{ particle}}) \frac{\partial C_{\text{particle}}}{\partial y} - u_t C_{\text{particle}}(y).$$
(8)

Журнал технической физики, 2022, том 92, вып. 9

В выражениях (1)-(8): x, y — продольная и поперечная координаты, $[m]; w_g(y), u_1(y)$ — скорости газа и жидкости как функции поперечной координаты, [m/s]; I_s — энтальпия газа, [J/kg]; T_g , T_1 — температуры газа и жидкости, [°C]; C_g — концентрация влаги, [kg/m³]; C_{particle} — концентрация частиц, [kg/m³]; c_{pl} — удельная теплоемкость жидкости, $[J/(kgK)]; \lambda_1, \lambda_{T1}$ — коэффициенты молекулярной и турбулентной теплопроводности в газовой фазе, $[W/(m \cdot K)]; \lambda_g, \lambda_{Tg}$ — коэффициенты молекулярной и турбулентной теплопроводности в жидкой фазе (в пленке), [W/(m·K)]; $D_{\rm g}$, $D_{\rm rg}$ — коэффициенты молекулярной и турбулентной диффузии влаги в газовой фазе, [m²/s]; r — удельная теплота парообразования, [J/kg]; ut — коэффициент скорости турбулентного переноса частиц, [m/s]; D_{particle}, D_{т particle} — коэффициенты броуновской и турбулентной диффузии частиц, [m²/s]; $ho_{\rm g}$ — плотность газа, [kg/m³].

В правой части выражения (8) член $u_t C_{\text{particle}}(y)$ учитывает турбулентно-инерционный механизм переноса частиц [10].

К системе уравнений (1)–(3) устанавливаются следующие граничные условия:

при *x* = 0 (вход):

 $I_{\rm g}=I_{\rm g\,init},\ T_1=T_{\rm l\,init},\ G_{\rm g}=C_{\rm g\,init},\ C_{\rm particle}C_{\rm particle\,init};$ при y=0 (на стенке):

 $\partial T_1/\partial y = 0;$

при y = R (на оси симметрии):

 $\partial I_{g}/\partial y = \partial C/\partial y = \partial C_{\text{particle}}/\partial y = 0,$

при $y - R - \delta_f$ (на межфазной поверхности):

$$q_{\rm g} - q_{\rm 1}; \ T_{\rm g} = T_{\rm 1}; \ D_{\rm g} \partial c / \partial y = \beta_{\rm g} (C - C^*),$$

 $j_{\rm particle} = u_t C_{\rm particle},$

где R — радиус трубки, [m]; $\beta_{\rm g}$ — коэффициент массоотдачи в газовой фазе, [m/s]; индексы: init — начальное значение; * — равновесное значение. В уравнении (1) энтальпия

$$I_{\rm g} = (c_{\rm pg} + c_{\rm pvap}\bar{C}_{\rm g})T_{\rm g} + r\bar{C}_{\rm g},$$

где $c_{\rm pg}, c_{\rm pvap}$ — удельные теплоемкости сухого газа и пара, [J/kgK]; в данном выражении для энтальпии $I_{\rm g}$ размерность влагосодержания $\bar{C}_{\rm d}$ kg/kg.

Профили скорости $w_g(y)$ и $u_1(y)$ после участка гидродинамической стабилизации обычно задаются логарифмическими или степенными. Коэффициенты турбулентного обмена в газовой фазе и, особенно, в турбулентной пленке имеют сложный характер зависимости от поперечной координаты и гидродинамических характеристик движения газовой и жидкой фаз. Поэтому решение системы уравнений (1)-(3) с представленными граничными условиями имеет определенные трудности и чаще применяется для научно-исследовательских целей. В практических расчетах при модернизации или проектировании тепло- и массообменных промышленных аппаратов применяются приближенные математические модели и методы.

2. Приближенная модель

При приближенном моделировании примем ячеечную модель с условным делением контактной трубки по высоте на ячейки полного перемешивания одинакового размера. Число ячеек зависит от структуры потоков жидкости и газа. Запишем уравнение теплового баланса ячеечной модели в виде

$$Q_{i} = Lc_{p1}(T_{i,1} - T_{i-1,1}) + Q_{i,evap} = KF_{i}(T_{1,g} - T_{i,1})$$
$$+ I_{vap}\beta_{g}F_{i}(C_{i,g} - C_{i,g}^{*}), \ i = 1, 2, \dots, n,$$
(9)

где Q_i — поток теплоты в ячейке, [W]; $Q_{i,evap}$ поток теплоты с испарившейся жидкостью, [W]; K коэффициент теплопередачи, $[W/(m^2 \cdot K)]$, который равен коэффициенту теплоотдачи α_g в газовой фазе, $K = \alpha_{|textyg}$ так как основное сопротивление теплопередачи сосредоточено в газовой фазе; F_i — площадь межфазной поверхности, $[m^2]$; $(F_i = \pi (d - 2\delta_f)H/n, H$ высота трубок, [m]); n — число ячеек; I_{vap} — энтальпия пара, [J/kg]; $C_{i,g}^*$ — влагосодержание насыщенного газа, $[kg/m^3]$.

Правую часть в выражении (9) можно записать, используя аналогию Льюиса, и тогда получим [15] $Q_i = F_i \beta_x (I_{i,g} - I^*_{i,g})$. Для ячейки поток теплоты (9) получит форму

$$Q_{i} = Lc_{p1}(T_{i,1} - T_{i-1,1}) + Q_{i,evap}$$

= $F_{i}\beta_{x}(I_{i,g} - I_{i,g}^{*}), \ i = 1, 2, ..., n,$ (10)

где β_x — коэффициент массоотдачи, отнесенный к разности влагосодержаний, k[g/(m²·s)] [19]; $I_{i,g}^*$ — энтальпия на границе раздела фаз при $T_{i,1}$, [°C].

Выражение (10) решается совместно с уравнением теплового баланса

$$Q_{i} = Lc_{p1}(T_{i,1} - T_{i-1,1}) + Q_{i,evap}$$

= $G(I_{i-1,g} - I_{i,g}), i = 1, 2, ..., n,$ (11)

где L, G — массовые расходы жидкости и газа, [kg/s] (принимаются постоянными по высоте трубки); c_{p1}, c_{pg} — удельные теплоемкости жидкости и газа, [J/(kg·K)]. Значение $Q_{i,evap}$ составляет не более 1–2% от Q_i и поэтому потоком $Q_{i,evap}$ можно пренебречь.

Уравнение для потока массы влаги, [kg/s] в ячейке

$$M_{i,g} = \frac{G(C_{i-1,g} - C_{i,g})}{\rho_g} = \beta_g F_i(C_{i,g} - C_{i,g}^*),$$

$$i = 1, 2, \dots, n.$$
(12)

Поток массы [kg/s] осаждающихся частиц на поверхность пленки жидкости в ячейке

$$M_{i,\text{particle}} = \frac{G(C_{i-1,\text{particle}} - C_{i,\text{particle}})}{\rho_{g}}$$
$$= u_{t}F_{i}C_{i,\text{particle}}, \ i = 1, 2, \dots, n.$$
(13)

Коэффициенты теплоотдачи $\alpha_{\rm g}$, массоотдачи $\beta_{\rm g}$, β_x и турбулентного переноса частиц u_t принимаются средними по поверхности контакта фаз и вычисляются по выражениям математической модели, где основной информацией об объекте моделирования является гидравлическое сопротивление контактных устройств [13,20]. При значительном изменении теплофизических свойств газа и жидкости по высоте контактной трубки расчет $\beta_{\rm g}$, β_x и u_t может выполняться по ячейкам.

Число Шервуда при сильном взаимодействии газа с пленкой жидкости вычисляется по выражению [20]:

$$Sh_{g} = \frac{Re_{g}Sc_{g}^{0.33}\sqrt{\xi/8}}{13.73 + 2.5\ln(8.33 \cdot 10^{-3}Re_{g}\sqrt{\xi/8})},$$
 (14)

где ${\operatorname{Sh}}_{\mathrm{g}} = \beta_{\mathrm{g}}(d - 2\delta_{\mathrm{f}})/D_{\mathrm{g}}$ — число Шервуда; ${\operatorname{Re}}_{\mathrm{g}} = w_{\mathrm{g}}(d - 2\delta_{\mathrm{f}})/v_{\mathrm{g}}$ — число Рейнольдса; ${\operatorname{Sc}}_{\mathrm{g}} = v_{\mathrm{g}}/D_{\mathrm{g}}$ — число Шмидта; w_{g} — средняя скорость газа в трубке, [m/s]; ξ — коэффициент гидравлического сопротивления газожидкостной среды. Коэффициент массоотдачи $\beta_{x} = \rho_{\mathrm{g}}\beta_{\mathrm{g}}$, [kg/m²·s].

Безразмерная скорость турбулентного переноса и осаждения частиц $u_t^+ = u_t/u_*$ находится по выражению, обобщающему большое число экспериментальных данных в трубках при скорости газа $w_g = 5-50$ m/s для аэрозольных частиц [10] ($\tau^+ < 26.6$),

$$u_t^+ = 7.25 \cdot 10^{-4} \left(\frac{\tau^+}{1 + \omega_E \tau_r}\right)^2, \tag{15}$$

где $\tau^+ = \tau_r u_*^2 / v_g$ — безразмерное время релаксации; $\tau_r = d_{\text{particle}}^2 \rho_{\text{particle}} / (18 \rho_g v_g)$ — время релаксации частицы, [s]; d_{particle} — диаметр частицы, [m]; $\omega_E = u_* / (0.05d)$ — частота энергоемких пульсаций, [s⁻¹]; $u_* = W_g \sqrt{\xi/8}$ — динамическая скорость в пограничном слое в газовой фазе на поверхности раздела, [m/s].

При $\tau^+ > 26.6$ получено [10] $U_t^+ = 0.2$.

Таким образом, записаны четыре уравнения (10)-(13) с четырьмя неизвестными величинами $T_{i,1}$, $I_{i,g}$, $C_{i,g}$, $C_{i,particle}$, где кинетические характеристики явлений переноса вычисляются по выражениям (14), (15).

Для удобства решения данной системы уравнений из выражения (10) запишем

$$T_{i,1} = T_{i-1,1} + \frac{F_i \beta_x}{Lc_{p1}} (I_{i,g} - I_{i,g}^*), \ i = 1, 2, \dots, n.$$
(16)

Из выражения (11)

$$I_{i,g} = I_{i-1,g} - \frac{Lc_{p1}(T_{i,1} - T_{i-1,1})}{G}, \ i = 1, 2, \dots, n.$$
(17)

Из выражения (12)

$$C_{i,g} = \frac{C_{i-1,g} + \rho_g \beta_g F_I C_{i,g}^*}{I + \rho_g \beta_{gh} F_i / G}, \ i = 1, 2, \dots, n.$$
(18)

Журнал технической физики, 2022, том 92, вып. 9

Из выражения (13)

$$C_{i,\text{particle}} = \frac{C_{i-1,\text{particle}}}{1 + \rho_g u_t F_i/G}, \ i = 1, 2, \dots, n,$$
(19)

где при i = 1 вход газа и жидкости в нижней части контактного устройства: $T_{o1} = T_{init 1}$; $I_{og} = I_{init g}$; $C_{og} = C_{init g}$; $C_{o particle} = C_{init particle}$. $I_{init g} = (c_{init,pg} + c_{inin,pvap}\bar{C}_{init g})T_{init g}$ $+ r\bar{C}_{init g}$; $(\bar{C}_{init g} \sim kg/kg)$.

При i = n выход газа и воды в верхней части контактного устройства, где величины принимают конечные значения.

Число ячеек *n*п вычисляется при известном числе Пекле (Боденштейна) структуры потоков, при Pe = 2-10, n = (Pe + 1.25)/2.5, при Pe > 10, $n \approx Pe/2$. Число Пекле рассчитывается по полуэмпирическим выражениям [13,14]. Причем число ячеек по газовой и жидкой фазам не совпадает и выбирается меньшее значение. Учитывая, что основное сопротивление явлениям переноса сосредоточено в газовой фазе, можно использовать выражение Тейлора в виде $Pe = 0.43H/[(d - 2\delta_f)\sqrt{\xi}]$.

Таким образом, профили температуры жидкости $T_{i,1}$ энтальпии газа $T_{i,g}$ и влагосодержания $C_{i,g}$ по ячейкам находятся из решения системы уравнений (16)–(18), где определены все кинетические характеристики и число ячеек. Из решения (19) вычисляется профиль концентрации частиц. При i = n имеем значения $T_{\text{final 1}}$, $I_{\text{final g}}$, $C_{\text{final particle}}$ это дает возможность записать эффективность явлений переноса как отношение достигнутых значений к максимально возможным.

Тепловая эффективность охлаждения газа

$$E_g = \frac{I_{\text{init g}} - I_{\text{final g}}}{I_{\text{init g}} - I_{\text{final g}}^*}.$$
 (20)

Тепловая эффективность нагрева воды

$$E_1 = \frac{T_{\text{final } 1} - T_{\text{init } 1}}{T_{\text{init } g} - T_{\text{init } 1}}.$$
(21)

Эффективности конденсации влаги

$$E_c = \frac{C_{\text{initg}} - C_{\text{finalg}}}{C_{\text{initg}} - C_{\text{finalg}}^*}.$$
 (22)

Эффективность сепарации частиц

$$\eta = \frac{C_{\text{init particle}} - C_{\text{final particle}}}{C_{\text{init particle}}}.$$
 (23)

Из уравнения теплового баланса

$$Lc_{p1}(T_{\text{final }1} - T_{\text{init }1}) = G(I_{\text{init }g} - I_{\text{final }g}), \qquad (24)$$

а также выражений для тепловой эффективности (20) и (21) следует отношение

$$\frac{E_{\rm g}}{E_{\rm 1}} = \frac{Lc_{\rm p1}(T_{\rm final\,1} - T_{\rm init\,1})}{G(I_{\rm init\,g} - I^*_{\rm final\,g})}.$$
(25)

Таким образом, в зависимости от условий решаемой задачи охлаждения газа и нагрева жидкости, задавая одну из требуемых эффективностей (например, E_g (20)), можно определить эффективность нагрева жидкой фазы.

3. Результаты решения

На рис. З даны результаты расчетов по выражению (19) профиля концентрации в воздухе частиц уранина диаметром $d_{\text{particle}} = 9\,\mu\text{m}$ по вертикальной координате сухого канала диаметром $d = 15.75 \,\mathrm{mm}$ и длиной $H = 4.5 \,\mathrm{m}$ при скорости воздуха $w_{\mathrm{g}} = 18.1 \,\mathrm{m/s}$ и сравнение с экспериментальными данными [21] (ось ординат логарифмическая). Экспериментальное значение $C_{\text{final}} = 1.0\%$ от входной ($\eta = 0.99$), а расчетное 1.3% $(\eta = 0.987)$. Динамическая скорость в сухом канале с осевшими на поверхность частицами (абсолютно поглощаемые стенки [10]) вычислялась по выражению $u_* = w_g \sqrt{\xi_{\text{roug h}}/8}$, где $\xi_{\text{roug h}}$ — коэффициент гидравлического сопротивления шероховатого канала за счет осевшей на поверхность дисперсной фазы. Удовлетворительное согласование расчетного и экспериментального профилей $C_{\text{particle}}(x)/C_{\text{particle init}}$ подтверждает адекватность математической модели. Расхождение по конечной концентрации не более 1%.

Для восходящего дисперсно-кольцевого потока выполнены расчеты при скорости газа $w_{\rm g} = 20$ m/s, удельном расходе воды 2.75 m³/(m²·h); $T_{\rm init\,g} = 90^{\circ}$ С; $T_{\rm init\,1} = 20^{\circ}$ С; $C_{\rm init} = 0.176$ kg/kg; $I_{\rm init\,g} = 156 \cdot 10^3$ J/kg. Внутренний диаметр трубки d = 0.0168 m, длина трубки H = 0.5 m. Перепад давления $\Delta P = 3750$ Pa, коэффициент сопротивления $\xi = 0.525$.

В результате решения системы уравнений (16)-(18) получена тепловая эффективность в газовой фазе $E_g = 0.82$. Также для аналогичных условий выполнен расчет профиля концентрации (19) тонкодисперсных частиц с диаметром 3 и 1 μ m и плотностью

Рис. 3. Поле концентраций аэрозольных частиц уранина: ромбы — опыты Schmel G.A. [21], расчет по уравнению (19). Диаметр частиц 9 µm, скорость газа 18 m/s, диаметр трубки 0.01575 m. Прямоугольники — экспериментальные данные [21].

Гидравлические, массообменные и сепарационные характеристики при восходящем осевом движении дисперсно-кольцевого потока в трубке длиной H = 0.2 m, внутренним диаметром d = 0.0168 m для системы воздух-вода ($T_g \approx T_1 = 20^{\circ}$ C) при различных скоростях газа и плотности орошения

N⁰	w _g , m/s	ΔP , Pa	q, m ³ /(m·h)	ŝ	E_c	η	
						$1\mu{ m m}$	3 <i>µ</i> m
1	14.7	600	0.493	0.389	0.450	0.035	0.308
2	25.5	1030	0.493	0.222	0.372	0.076	0.748
3	32.8	1550	0.493	0.202	0.349	0.156	0.74
4	38.6	1950	0.493	0.183	0.331	0.222	0.725
5	45.7	2550	0.493	0.171	0.318	0.339	0.716
6	14.7	900	1.137	0.583	0.472	0.226	0.844
7	25.3	1550	1.137	0.339	0.40	0.428	0.797
8	32.5	2150	1.137	0.285	0.370	0.61	0.772
9	38.2	2750	1.137	0.263	0.355	0.752	0.762
10	45.7	3750	1.137	0.251	0.341	0.765	0.765
11	14.6	1350	2.398	0.887	0.498	0.468	0.546
12	25.1	2450	2.398	0.544	0.427	0.771	0.836
13	32.1	3550	2.398	0.482	0.424	0.82	0.82
14	37.6	4350	2.398	0.431	0.386	0.81	0.81
15	44.6	5400	2.398	0.380	0.367	0.81	0.81

 $\rho_{\text{particle}} = 2 \cdot 10^3 \text{ kg/m}^3$. Для частиц диаметром 3 μ m получено $\eta = 0.997$, для частиц диаметром 1 μ m $\eta = 0.0.756$. Таким образом, для заданных условий частицы диаметром 3 μ m и более улавливаются практически полностью, а при $d_{\text{particle}} < 3 \mu$ m эффективность значительно снижается. Результаты расчета массообменной эффективности E_c (22) (увлажнение воздуха водой) и сепарации частиц диаметром 1 и 3 μ m с плотностью $\rho_{\text{particle}} = 2000 \text{ kg/m}^3$ в трубке длиной H = 0.2 m и диаметром d = 0.0168 m с экспериментальным значением перепада давления ΔP для системы воздух–вода даны в таблице. Для очень мелких частиц повысить эффективность процессов можно, используя каналы с дискретно-шероховатыми стенками или с закруткой потоков.

В канале с шероховатой стенкой эффективность повышается на 15–20%, а с ленточными завихрителями на 25–30% относительных, т.е. достигаются значения $\eta = 0.85-0.95$ для частиц 1 μ m при длине канала H = 0.2 m.

Из расчетов следует, что при $\tau^+ < 16.6$ с увеличением скорости газа и постоянном удельном расходе воды сепарационная эффективность повышается. При $\tau^+ > 16.6$, когда u_t перестает зависеть от диаметра частиц ($u_t = 0.2u_*$), сепарационная эффективность принимает постоянное значение (см. таблицу, строки № 9, 10, 13–15).

На рис. 4 даны результаты расчетов сепарационной эффективности для частиц диаметром 1 и 3 μ m ($\rho_{\text{particle}} = 2000 \text{ kg/m}^3$) при скорости газа $w_s = 32.8 \text{ m/s}$ и плотности орошения $q = 0.493 \text{ m}^3/(\text{m}\cdot\text{h})$ (см. таблицу, строка № 3) в зависимости от длины канала. При H = 1.0 m частицы диаметром 1 μ m улавливаются

Рис. 4. Зависимость эффективности сепарации частиц (23) от длины канала. Скорость газа w = 32.8 m/s; плотность орошения $q = 0.493 \text{ m}^3/(\text{m} \cdot \text{h})$, диаметр трубки d = 0.0268 m. 1 - частицы диаметром $d_{\text{particle}} = 10^{-6}$, m, $2 - d_{\text{particle}} = 3 \cdot 10^{-6}$, m.

на 90%, а диаметром 3 μ m — 99.1%. При повышении удельного расхода воды $q > 1.0 \text{ (m}^3/\text{m}\cdot\text{h})$ эффективность значительно повышается. Например, при $w_G = 32.1 \text{ m/s}$, $q = 2.398 \text{ m}^3/(\text{m}\cdot\text{h})$ (строка № 13 в таблице) эффективность 99.9% сепарации частиц диаметром $1-3 \mu$ m достигается при длине канала H = 0.8 m.

Тепломассообменная эффективность охлаждения газа также повышается при увеличении длины канала. Однако в отличие от сепарационной эффективности η при увеличении скорости газа и при постоянной плотности орошения эффективность переноса влаги E_c снижается (см. таблицу) (аналогичная зависимость установлена и для E_g). При повышении скорости газа в три раза эффективности E_c и E_g снижаются на 30%.

Снижение тепло- и массообменной эффективности при увеличении расхода газа (и соответственно скорости газа) объясняется уравнением массоотдачи (и теплоотдачи) в виде $M = G(C_{ginit} - C_{gfinal}) = \beta_g F \Delta C$, отсюда $F = G(C_{ginit} - C_{gfinal})/\beta_g \Delta C$, где ΔC — средняя движущая сила массообмена, [kg/m³]. При увеличении расхода газа числитель повышается в первой степени, а знаменатель в степени 0.75 и требуемая поверхность F увеличивается, что характеризует снижение эффективности.

При сепарации аэрозолей запишем поток массы

$$M_{\text{particle}} = G(C_{\text{particle init}} - C_{\text{particle final}}) = u_t F \Delta C_{\text{particle}}$$

и поверхность

$$F = G(C_{\text{particle init}} - C_{\text{particle final}}) u_t \Delta C_{\text{particle}}$$

Для мелких частиц u_t (15) имеет зависимость $u_t \sim u_*^3$, тогда $u_t \sim w_g^4$. С повышением скорости газа требуемая площадь поверхности сепарации F снижается, и, следовательно, эффективность повышается. Это связано с турбулентно-инерционным механизмом переноса частиц [10]. Для крупных частиц ($\tau^+ > 16.6$) зависимость $u_t \sim w_{\Gamma}$ практически линейная, что и следует из результатов, представленных в таблице.

Рис. 5. Зависимость тепловой эффективности охлаждения дымового газа ($T_{ginit} = 150^{\circ}$ C) водой ($T_{linit} = 20^{\circ}$ C) от средней скорости газа в канале диаметром d = 0.0168 m. I — противоток фаз при слабом взаимодействии (H = 1.0 m), 2 — восходящий прямоток фаз (H = 1.0 m); 3 — восходящий прямоток (H = 0.5 m). I-3 — плотность орошения q = 0.493 m³/(m · h).

На рис. 5 представлены зависимости тепловой эффективности (20) охлаждения дымового газа водой при противотоке, а также в восходящем прямотоке фаз. При скорости газа от 2.5 до 5.5 m/s происходит противоток пленки жидкости и газа, а при скорости более 10 m/s восходящий прямоток. Из расчетов следует, что при противотоке тепловая эффективность находится в интервале $E_g = 0.68-0.75$, а при восходящем прямотоке $E_g = 0.86-0.95$ при длине канала H = 1.0 m и одинаковой плотности орошения (q = 0.493 (m³/m·h)).

При этом необходимо учитывать, что при восходящем прямотоке обеспечивается не только повышение $E_{\rm g}$ на 25–27%, но и производительность канала по дымовому газу в 6–12 раз.

Таким образом, представленная численная математическая модель позволяет анализировать явления переноса, вычислять тепловую и сепарационную эффективности при заданном температурном режиме на входе и расходах фаз и в результате выбирать конструктивные характеристики аппарата с восходящим движением пленки жидкости и газа в контактных трубках.

Заключение

При исследовании явлений переноса импульса, массы и энергии в двухфазных средах применяются эмпирические, полуэмпирические, аналитические и численные методы. Все эти методы в той или иной степени многие годы используются при разработке новых конструкций различных технических устройств и технологических процессов. Каждый из перечисленных методов имеет свои преимущества и недостатки. В случае отсутствия аналитических решений представляется целесообразным применение численных моделей с кинетическими характеристиками, связанными с гидравлическими сопротивлениями контактных устройств. Известно, что исследование гидравлического сопротивления значительно менее трудоемко и затратно.

В работе получена замкнутая математическая модель явлений переноса, где коэффициенты массоотдачи и турбулентного переноса тонкодисперсной фазы находятся с применением коэффициента гидравлического сопротивления газожидкостного потока в контактной трубке, что значительно сокращает трудоемкость и время экспериментальных исследований при разработке контактных устройств подобного типа. В результате численного решения алгебраической системы уравнений сопряженного тепло- и массообмена и сепарации тонкодисперсной фазы вычисляются физические поля и эффективность проводимых процессов. Это дает возможность выбрать рациональные режимные и конструкционные характеристики контактных устройств при заданных условиях на входе. Одним из недостатков, рассмотренных в работе контактных устройств с газожидкостным потоком при скорости газа более 10 m/s, является повышенное значение перепада давления и соответственно мощности на подачу газа. Поэтому такие технические устройства целесообразнее применять в линиях с повышенным давлением, где нет существенных ограничений по гидравлическому сопротивлению.

Приведенная упрощенная математическая модель (разд. 2) применяется в расчетах при выборе научнотехнических решений газосепараторов природного газа в местах добычи [9,22]. Внедрение газосепараторов на предприятиях ООО "Газпром добыча Ямбург" показывает высокую эффективность очистки природного газа от различного вида дисперсной фазы.

Представленную математическую модель можно использовать в интервале скоростей газа в трубке $w_{\rm g} = 10-45$ m/s и плотности орошения от 0.4-3.0 m³/(m·h) в режиме стационарного движения фаз.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 18-79-10136 https://rscf.ru/project/18-79-10136/.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] В.М. Кисеев, О.В. Сажин. ЖТФ, **92**(1), 22 (2022). DOI: 10.21883/JTF.2022.01.51847.221-21
- [2] Н.Н. Симаков. ЖТФ, 90 (4), 540 (2020).
 DOI: 10.21883/JTF.2020.04.49077.2566 [N.N. Simakov. Tech.
 Phys., 65 (4), (2020). DOI: 10.1134/S1063784220040209]
- [3] V.I. Zhukov, A.N. Pavlenko. AIP Advan., 11 (1), (2021). DOI: 10.1063/5.0023668

- [4] Т.Р. Аманбаев. ЖТФ, 91 (3), 395 (2021).
 DOI: 10.21883/JTF.2021.03.50515.146-20 [T.R. Amanbaev. Tech. Phys., 66 (3) (2021).
 DOI: 10.1134/S1063784221030026]
- [5] Р.И. Нигматулин. Динамика многофазных сред (Наука, М., 1987)
- [6] Н.А. Войнов, Н.А. Николаев. Пленочные трубчатые газо-жидкостные реакторы (Отечество, Казань, 2008)
- [7] Н.А. Николаев. Динамика пленочного течения жидкости и массоперенос в условиях сильного взаимодействия с газом (паром) при однонаправленном восходящем или нисходящем движении (Отечество, Казань, 2011)
- [8] M.G. Bagomedov, A.S. Pushnov Chem. Pet. Engin., 55 (5-6), (2019).
- [9] А.А. Агеев, Д.А. Яхонтов, Т.Ф. Кадыров, Е.А. Лаптева, М.М. Фарахов. Вестник технол. ун-та, 24 (11), (2021).
- [10] Е.П. Медников. Турбулентный перенос и осаждение аэрозолей (Наука М., 1980)
- [11] Н.А. Николаев. Эффективность процессов ректификации и абсорбции в многоступенчатых аппаратах с прямоточно-вихревыми контактными устройствами (Отечество, Казань, 2011)
- [12] Л.П. Холпанов, В.Я. Шкадов. Гидродинамика и тепломассообмен с поверхностью раздела (Наука, М., 1990)
- [13] А.Г. Лаптев, М.М. Башаров., Е.А. Лаптева, Т.М. Фарахов. Модели и эффективность процессов межфазного переноса (Центр инновационных технологий, Казань, 2020), 565 с.
- [14] Ю.А. Комиссаров, Л.С. Гордеев, Д.П. Вент. Процессы и аппараты химической технологии: учебное пособие для вузов (Химия, М., 2011)
- [15] K.M. Jeong, H. Kessen. Bilirgen Intern. J. Heat and Mass Transfer., (53), 2361–2368 (2010).
- [16] X. Shi, Xiaojun Shi, Defu Che, Brian Agnew, Jianmin Gao. Intern. J. Heat and Mass Transfer., (54), 606–615 (2011).
- [17] V.V. Bespalov, L.A. Belyaev, L.S. Kuchman. MATEC Web Conf., (91), 01003 (2017).
- [18] V.I. Bespalov, D.V. Melnikov. EPJ Web Conf., (110), 01007 (2016).
- [19] В.С. Понаморенко, Ю.И. Арефьев. Градирни промышленных и энергетических предприятий (Энергоатомиздат, М., 1998), 376 с.
- [20] A.G. Laptev, E.A. Lapteva. J. Engin. Thermoph., 25 (4), (2016). DOI: 10.1134/S181023281604010X
- [21] G.A. Sehmel. Aerosol Deposition from Turbulent Airstreams in Vertical Conduits (Pacif. orthwest Lab., BNWL-578, Richland, Washington, 1968)
- [22] А.А. Агеев, Д.А. Яхонтов, Т.Ф. Кадыров, М.М. Фарахов, М.И. Фарахов. Газовая промышленность, (1), 82–87 (2020).