00

Спектроскопия высокого разрешения сильно резонирующих полос *v*₄, *v*₆, *v*₇, *v*₈ и *v*₁₀ дейтерированного этилена C₂H₃D

© Е.С. Бехтерева¹, А.С. Белова¹, П.А. Глушков¹, О.В. Громова¹, К. Зидо²

¹ Национальный исследовательский Томский политехнический университет,

634050 Томск, Россия

² Институт физической и теоретической химии Брауншвейгского технического университета,

D - 38106 Брауншвейг, Германия

e-mail: bextereva@tpu.ru

Поступила в редакцию 28.02.2022 г. В окончательной редакции 20.04.2022 г. Принята к публикации 21.04.2022 г.

Вращательная структура сильно взаимодействующих полос v_4 , v_6 , v_7 , v_8 и v_{10} исследована путем анализа спектра высокого разрешения дейтерированного этилена C_2H_3D , зарегистрированного на фурьеспектрометре Bruker IFS 125 HR. 27950 переходов с максимальными значениями квантовых чисел $J^{max} = 40$ и $K_a^{max} = 20$ отнесены к исследуемым полосам. Определение параметров эффективного гамильтониана, включающего в себя как взаимодействие исследуемых полос друг с другом, так и их взаимодействие с полосой v_3 , было выполнено на основе 4028 уровней энергии верхних состояний. Полученные параметры воспроизводят экспериментальные данные с погрешностью $d_{rms} = 1.7 \cdot 10^{-4}$ сm⁻¹ для этих 4028 уровней и с погрешностью $d_{rms} = 2.1 \cdot 10^{-4}$ сm⁻¹ для более чем 24000 положений линий.

Ключевые слова: этилен, спектроскопия высокого разрешения, сильно резонирующие полосы, фурьеспектроскопия.

1. Введение

Множество органических молекул являются предметом интереса для различных областей науки, от биологии до астрофизики. Одной из таких молекул является молекула этилена, которая играет важную роль как в жизни растений, выступая в роли гормона, так и в метаболизме животных. Этилен представляет огромный интерес для проблем химии атмосферы Земли [1], так как он является одним из парниковых газов. Присутствие этилена отмечается в атмосферах других планет солнечной системы [2-5], как и в объектах за пределами солнечной системы [6]. В органической химии этилен можно рассматривать как прототип для понимания более сложных органических молекул: для описания соответствующих спектров поглощения и функции потенциальной поверхности (ФПП). Последняя определяет внутреннюю динамику молекулы, описывая взаимодействие ядер атомов в различных конфигурациях. Имея полную информацию о параметрах ФПП, можно найти точные величины собственных значений гамильтониана молекулы ввиду вклада потенциальной энергии V в полную энергию молекулы (H = T + V). Однако определение параметров ФПП возможно только при использовании наряду с высокоточной информацией о материнской молекуле соответствующей информации о различных ее изотопологах, таких как cis-C₂H₂D₂, *trans*-C₂H₂D₂, C₂HD₃, C₂H₃D.

Как следствие вышесказанного, спектроскопические исследования различных изотопических модификаций этилена ведутся в течение многих лет в различных

лабораториях мира. Не имея здесь возможности привести полный список таких работ, мы приводим лишь некоторые работы, выполненные в последние годы в Томском политехническом университете [7–17]. Данная работа посвящена исследованию спектра дейтерированного этилена C_2H_3D в диапазоне 600–1300 сm⁻¹, где локализованы сильно резонирующие полосы v_4 , v_6 , v_7 , v_8 и v_{10} .

Общая информация о молекуле C₂H₃D

Симметрия молекулы C₂H₃D (типа асимметричного волчка) изоморфна точечной группе C_s, а параметр асимметрии $\kappa \simeq -0.894$ (рассчитывается как (2B - A - C)/(A - C), где A, B и C — вращательные параметры, определяемые через главные моменты инерции молекулы в декартовой системе координат с началом в центре масс). Схематичное изображение молекулы представлено на рис. 1. Следует отметить, что оси координатной системы совпадают с главными осями инерции. Для рассматриваемого несимметрично замещенного изотополога ось z не является как осью симметрии, так и главной осью. Более подробная информация о симметрии молекулы представлена в табл. 1. В столбцах 2, 3 приведены характеры неприводимых представлений группы симметрии Сs. Столбцы 4 и 5 содержат информацию о симметрии безразмерных колебательных координат q_{λ} , компонент операторов углового момента J_{α} и компонент матрицы направ-

Рис. 1. Схематичное изображение молекулы C₂H₃D в *I*^{*r*}-представлении.

ляющих косинусов $k_{Z\alpha}$. Последний столбец содержит компоненты углового момента и направляющие косинусы, соответствующие I^r -представлению асимметричного волчка [18–22]. используемому в данной работе.

Одно из полезных заключений об асимметричном волчке, которое можно сделать исходя из табл. 1, указывает на следующие разрешенные типы переходов в полосах поглощения изучаемой молекулы:

1. Гибридные полосы, в которых возможны переходы *a*- и *b*-типов. Полосы, образованные переходами на возбужденные состояния симметрии *A*^{''}. Правила отбора для таких полос: $\Delta J = 0, \pm 1$; ΔK_a — любое; ΔK_c нечетное.

2. Полосы *с*-типа образованы переходами из основного состояния на возбужденное симметрии A' с правилами отбора: $\Delta J = 0, \pm 1; \Delta K_a$ — нечетное; ΔK_c — четное.

Интерес при исследовании спектра поглощения молекулы C₂H₃D представляют также сильные резонансы между верхними состояниями гибридных A'' полос и полос A', в результате которых в последних будут появляться переходы так называемого d-типа. Правила отбора для этого типа переходов следующие: $\Delta J = 0, \pm 1$; ΔK_a и ΔK_c четные.

Говоря об определении правил отбора для полосы перед анализом спектра, следует отметить, что ее тип, a, b или c, определяется ненулевыми матричными элементами направляющих косинусов k_{Zz} , k_{Zx} и k_{Zy} соответственно. Определить ненулевые значения можно по их результирующей симметрии $\Gamma(k_{Z\alpha}) = A'' \otimes \gamma^{\nu_1} \otimes \gamma^{\nu_2}$. Для этого используются симметрии нижнего возможного колебательного состояния γ^{ν_1} (в нашем случае это основное колебательное состояние, для которого $\gamma^{\nu_1} = A'$) и верхнего колебательного состояния, т.е. рассматриваемой фундаментальной полосы. Прямое произведение (обозначено как \otimes) неприводимых представлений точечной группы симметрии C_s хорошо описано, например, в [23]. Таким образом, можно продемонстрировать, что переходы из основного состояния на состояния симметрии A', а вместе с ними и соответствующие полосы, приведут к результирующей симметрии $\Gamma(k_{Z\alpha}) = A'$, что, согласно табл. 1, соответствует ненулевым матричным элементам k_{Zy} . Это позволяет заключить о *c*-типе таких полос и соответствующих правилах отбора. Полосы симметрии A'' оказываются гибридными, с переходами *a*- и *b*-типов.

3. Модель эффективного гамильтониана

Для описания взаимодействующих колебательновращательных состояний, как и для описания любой квантовой системы, необходимо знание о гамильтониане этой системы. Подробное исследование и описание эффективного гамильтониана для изолированного колебательного состояния было выполнено в [24]. В общем случае при наличии резонансных взаимодействий эффективный гамильтониан имеет вид [25–28]:

$$H^{\text{vib-rot}} = \sum_{v,\tilde{v}} |v\rangle \langle \tilde{v} | H^{v\tilde{v}},$$
 (1)

где суммирование идет по всем взаимодействующим колебательным состояниям. Диагональные вклады в (1) можно выразить в виде гамильтониана Уотсона:

$$\begin{aligned} H^{vv} &= E^{v} + [A^{v} - \frac{1}{2}(B^{v} + C^{v})]J_{z}^{2} \\ &+ \frac{1}{2}(B^{v} + C^{v})J^{2} + \frac{1}{2}(B^{v} - C^{v})J_{xy}^{2} \\ &- \Delta_{K}^{v}J_{z}^{4} - \Delta_{JK}^{v}J_{z}^{2}J^{2} - \Delta_{J}^{v}J^{4} - \delta_{K}^{v}[J_{z}^{2}, J_{xy}^{2}]_{+} - 2\delta_{J}^{v}J^{2}J_{xy}^{2} \\ &+ H_{K}^{v}J_{z}^{6} + H_{KJ}^{v}J_{z}^{4}J^{2} + H_{JK}^{v}J_{z}^{2}J^{4} + H_{J}^{v}J^{6} + [J_{xy}^{2}, h_{K}^{v}J_{z}^{4} \\ &+ h_{JK}^{v}J^{2}J_{z}^{2} + h_{J}^{v}J^{4}]_{+} + L_{K}^{v}J_{z}^{8} + L_{KKJ}^{v}J_{z}^{6}J^{2} + L_{JK}^{v}J_{z}^{4}J^{4} \\ &+ L_{KJJ}^{v}J_{z}^{2}J^{6} + L_{J}^{v}J^{8} + [J_{xy}^{2}, l_{K}^{v}J_{z}^{6} \\ &+ l_{KJ}^{v}J^{2}J_{z}^{4} + l_{JK}^{v}J_{z}^{4}J_{z}^{2} + l_{J}^{v}J^{6}]_{+} + \dots, \end{aligned}$$

где $J_{xy}^2 = J_x^2 - J_y^2$; $[\dots, \dots]_+$ — антикоммутаторы; A^v , B^v и C^v — эффективные вращательные постоянные колебательного состояния (v), а остальное — коэффициенты центробежного искажения различных порядков. Недиагональные вклады, хорошо описаные в работе [29], будут разными в зависимости от симметрии взаимодействующих состояний. Для состояний одной симметрии

$$H^{vv} = H_F^{vv} + H_{Cy}^{vv} \quad (v \neq \tilde{v}), \tag{3}$$

Представление	Ε	$\sigma(xy)$	Колебательные координаты	Вращательные параметры	Вращательные параметры (I^r)
1	2	3	4	5	6
A'	1	1	$q_1, q_2, q_3, q_5, q_6, q_9, q_{10}, q_{11}, q_{12}$	J_z, k_{Zz}	J_y , k_{Zy}
$A^{\prime\prime}$	1	-1	$q_9, q_{10}, q_{11}, q_{12}$ q_4, q_7, q_8	J_x, k_{Zx} J_y, k_{Zz}	$J_x, k_{Zx} \ J_z, k_{Zz}$

Таблица 1. Типы симметрии и характеры неприводимых представлений группы симметрии C_s (в приложении к молекуле C₂H₃D)

где

$$H_{F}^{v\tilde{v}} = {}^{v\tilde{v}}F_{0} + {}^{v\tilde{v}}F_{K}J^{2} + {}^{v\tilde{v}}F_{J}J^{2} + {}^{v\tilde{v}}F_{KK}J_{z}^{2} + {}^{v\tilde{v}}F_{KJ}J_{z}^{2}J^{2} + {}^{v\tilde{v}}F_{JJ}J^{4} + \dots + {}^{v\tilde{v}}F_{xy}\left(J_{x}^{2} - J_{y}^{2}\right) + {}^{v\tilde{v}}F_{Kxy}\left[J_{z}^{2},\left(J_{x}^{2} - J_{y}^{2}\right)\right]_{+} + {}^{v\tilde{v}}F_{Jxy}J^{2}\left(J_{x}^{2} - J_{y}^{2}\right) + \dots$$
(4)

И

$$H_{Cy}^{v\tilde{v}} = iJ_{y}H_{(1y)}^{v\tilde{v}} + iH_{(1y)}^{v\tilde{v}}J_{y} + [J_{x}, J_{z}]_{+}H_{(2y)}^{v\tilde{v}} + H_{(2y)}^{v\tilde{v}}[J_{x}, J_{z}]_{+} + \dots$$
(5)

Для взаимодействующих состояний разной симметрии выражение для недиагональных вкладов имеет вид

$$H^{v\tilde{v}} = H^{v\tilde{v}}_{Cz} + H^{v\tilde{v}}_{Cx} \quad (v \neq \tilde{v}), \tag{6}$$

где

$$H_{Cz}^{v\tilde{v}} = iJ_z H_{(1y)}^{v\tilde{v}} + [J_x, J_y]_+ H_{(2z)}^{v\tilde{v}} + H_{(2z)}^{v\tilde{v}} [J_x, J_y]_+ + \dots$$
(7)

И

$$H_{Cx}^{v\tilde{v}} = iJ_{x}H_{(1x)}^{v\tilde{v}} + iH_{(1x)}^{v\tilde{v}}J_{x} + [J_{y}, J_{z}]_{+}H_{(2x)}^{v\tilde{v}} + H_{(2x)}^{v\tilde{v}}[J_{y}, J_{z}]_{+} + \dots$$
(8)

Стоит также отметить, что в выражениях (7) и (8)

$$H_{(i\alpha)}^{v\tilde{v}} = \frac{1}{2}{}^{v\tilde{v}}C^{(i\alpha)} + {}^{v\tilde{v}}C_{K}^{(i\alpha)}J_{z}^{2} + \frac{1}{2}{}^{v\tilde{v}}C_{J}^{(i\alpha)}J^{2} + {}^{v\tilde{v}}C_{KK}^{(i\alpha)}J_{z}^{2} + {}^{v\tilde{v}}C_{KJ}^{(i\alpha)}J_{z}^{2}J^{2} + \frac{1}{2}{}^{v\tilde{v}}C_{JJ}^{(i\alpha)}J^{4} + {}^{v\tilde{v}}C_{KKK}^{(i\alpha)}J_{z}^{6} + {}^{v\tilde{v}}C_{KKJ}^{(i\alpha)}J_{z}^{4}J^{2} + {}^{v\tilde{v}}C_{KJJ}^{(i\alpha)}J_{z}^{2}J^{4} + \frac{1}{2}{}^{v\tilde{v}}C_{JJJ}^{(i\alpha)}J^{6} + \dots \quad (\alpha = x, y, z).$$
(9)

4. Оценка параметров кориолисовых взаимодействий

Ввиду сложности описания экспериментальных переходов в рассматриваемых колебательных состояниях возникает необходимость учитывать множество сильных

Таблица 2. Параметры кориолисовых взаимодействий $\xi^{\alpha}_{\lambda\mu}$ молекулы C₂H₃D, рассчитанные на основе данных [30] о квадратичной части внутримолекулярной потенциальной функции

α	λ	μ	Значение, cm^{-1}	α	λ	μ	Значение, cm^{-1}
	1		2		1		2
y	3	10	0.1855	x	10	8	2.1020
у	3	6	0.4512	z	10	8	-0.2945
х	3	7	0.6043	x	10	4	1.0975
z	3	7	1.7488	z	10	4	1.5605
х	3	8	-0.0983	x	6	7	-0.2227
z	3	8	-1.5643	z	6	7	1.7403
х	3	4	0.4269	x	6	8	0.1209
z	3	4	1.9100	z	6	8	-2.9855
х	10	7	-0.9359	x	6	4	-0.6790
z	10	7	2.6224	z	6	4	-1.1293
у	10	6	-0.0343				

взаимодействий между колебательно-вращательными состояниями различных колебательных состояний. Это приводит к использованию такого большого количества параметров взаимодействия, входящих в гамильтониан (1)-(9), что определение параметров численными методами становится затруднительным. Облегчить задачу возможно, если часть варьируемых параметров фиксировать, для чего необходима информация об этих параметрах. Кандидатами на роль таких фиксируемых параметров стали главные параметры кориолисовых взаимодействий, потому что теоретическая оценка их значений возможна благодаря знанию квадратичных силовых коэффициентов внутримолекулярной потенциальной функции молекулы этилена, полученных в [30]. Рассчитанные на этой основе параметры кориолисовых взаимодействий приведены в столбце 2 табл. 2.

5. Анализ экспериментальных данных

На рис. 2 изображены экспериментальные спектры, анализ которых проводился в рамках данной работы. Спектры зарегистрированы в Техническом университете Брауншвейга (Германия) на спектрометре Brucker IFS 125 HR. Все спектры были сняты с оптической

Рис. 2. Обзорный спектр молекулы C_2H_3D . Вверху спектры I и II в диапазоне 590–1150 сm⁻¹, внизу спектр III в диапазоне 1080–1350 сm⁻¹.

длиной пути 4 m. Обзорные спектры I и II (диапазон 590–1150 cm⁻¹), приведенные в верхней части рисунка, были зарегистрированы при температуре 21.9°С и давлениях 4, 30 Ра соответственно. Инструментальное разрешение составило 0.0015 cm⁻¹. Спектр III (диапазон 1080–1350 cm⁻¹) в нижней части рисунка снят при 22.1°С и давлении 230 Ра с разрешением 0.0021 cm⁻¹. На спектре I отчетливо видны *Q*-, *P*и *R*-ветви полос v_7 и v_8 — наиболее интенсивных, последняя из которых полностью накрывает полосу v_4 . Также на рисунке отмечена *P*-ветвь полосы v_{10} и полоса v_3 .

Для анализа спектра применялся метод комбинационных разностей основного колебательного состояния: вращательные энергии основного колебательного состояния были рассчитаны на основании данных из работы [31]. Таблица 3 содержит статистическую информацию по результатам анализа спектра поглощения исследуемой молекулы. В частности, общее число переходов, отнесенных как к гибридным полосам v_6 , v_{10} , так и к полосам v_4 , v_7 , v_8 , составило 27950. Также для полос v_4 , v_7 , v_8 было найдено множество переходов *d*-типа, о которых упоминалось в разд. 2.

6. Параметры основного состояния

При использовани параметров основного состояния из [31] экспериментальные значения комбинационных разностей начинали отклоняться от таковых, определенных на основании работы [31], и различие между ними в несколько раз превосходило экспериментальную погрешность. Причем такое отклонение наблюдалось для уровней энергии с квантовыми числами $J \ge 26$ и $K_a \ge 8$, что не являются пределом для исследования экспериментального спектра в данной работе. Как следствие, появилась необходимость улучшения параметров основного состояния.

Для определения параметров основного состояния молекулы необходима информация о комбинационных разностях основного колебательного состояния, полученная на основании положений линий, известных из эксперимента. В рамках данного исследования экспериментальный спектр позволил привлечь к определению параметров основного состояния более 3000 комбинационных разностей с максимальными квантовыми числами $J_{\rm max} = 40$ и $K_a^{\rm max} = 16$. Таблица 4 содержит результаты определения параметров основного состояния в столбце 3. Из сравнения с параметрами работы [31]

	1	1		1	1		1	1
Полоса	Центр, ст $^{-1}$	J^{\max}	K_a^{\max}	$N_{\pi}{}^{a)}$	$N_{\scriptscriptstyle \rm B}{}^{b)}$	$m_1{}^{c)}$	$m_2^{c)}$	$m_3^{c)}$
1	2	3	4	5	6	7	8	9
$ u_{10}(A'),$ данная работа	732.1426	31	20	4650	671	71.2	17.9	10.9
$\nu_{10}(A'), [32]$	732.1443	28	14					
$\nu_7(A'')$, данная работа	806.4722	46	18	8500	1220	62.3	30.1	7.6
$\nu_7(A''), [32]$	806.4725	35	14					
$\nu_8(A'')$, данная работа	943.5032	50	26	6530	952	82.4	12.9	4.7
$\nu_8(A''), [32]$	943.5033	35	14					
$\nu_4(A'')$, данная работа	1000.0395	33	11	5450	781	68.3	9.8	21.9
$\nu_4(A''), [32]$	1000.0399	35	14					
$ u_6(A'),$ данная работа	1125.2769	42	21	2800	404	62.4	23.0	14.6
$\nu_6(A')$, [32]	1125.2769	30	13					
$\nu_6(A'), [33]$	1125.2769	27	20	947				
Всего, данная работа				27930	4028			
Всего, [32]				18000				
$d_{\rm rms}{}^{d)}$, данная работа	$1.7\cdot 10^{-4}$							

Таблица 3. Статистическая информация по результатам анализа спектра молекулы C2H3D

Примечание. ^{*а*)} N_п — число переходов.

^{b)} N_в — число полученных энергий верхних состояний.

^{c)} $m_i = n_i/N_{\rm B} \cdot 100$ % (*i* = 1, 2, 3); n_1, n_2 и n_3 — число энергий верхних уровней, для которых разность $\delta = E^{\rm exp} - E^{\rm calc}$ удовлетворяет условиям $\delta \le 2 \cdot 10^{-4} \,{\rm cm}^{-1}, 2 \cdot 10^{-4} \,{\rm cm}^{-1} < \delta \le 4 \cdot 10^{-4} \,{\rm cm}^{-1}, \delta > 4 \cdot 10^{-4} \,{\rm cm}^{-1}.$

Таблица 4. Спектроскопические параметры основного колебательного состояния молекулы $C_2H_5D~(B~cm^{-1})$

Параметр	[31]	Данная работа
1	2	3
Α	4.038999	4.00588802(69)
В	0.9202228	0.916325131(93)
С	0.7425594	0.74377235(19)
$\Delta_K \cdot 10^4$	0.8061	0.704840(38)
$\Delta_{JK} \cdot 10^4$	0.04692	0.060440(22)
$\Delta_J \cdot 10^4$	0.013524	0.0129547(33)
$\delta_K \cdot 10^4$	0.0910	0.081080(88)
$\delta_J \cdot 10^4$	0.003131	0.00284258(76)
$H_K \cdot 10^8$	0.673	0.5332(40)
$H_{KJ} \cdot 10^8$	-0.035	-0.0760(54)
$H_{JK} \cdot 10^8$	0.0034	0.0168(15)
$H_J \cdot 10^8$	0.00021	0.000320(25)
$h_K \cdot 10^8$		0.293(40)
$h_{JK} \cdot 10^8$		0.0118(10)
$h_J \cdot 10^8$		0.0001354(83)
$d_{ m rms}\cdot 10^4$	20.11	1.036

(столбец 2 табл. 4) можно видеть вполне удовлетворительную корреляцию параметров. При этом новые параметры воспроизводят эксперимент с погрешностью $d_{\rm rms} \cdot 10^4 = 1.036 \,{\rm cm}^{-1}$, что превышает точность воспроизведения параметрами работы [31] в 20 раз. Полученный набор параметров основного состояния был использован далее в работе, а также для повторного анализа спектров.

Определение параметров эффективного гамильтониана и обсуждение результатов

Как уже было сказано, 27950 экспериментальных линий спектра молекулы C_2H_3D были отнесены к исследуемым колебательным состояниям ($v_4=1$), ($v_6=1$), ($v_7=1$), ($v_8=1$) и ($v_{10}=1$) и они использовались для определения вращательных энергий верхних колебательных состояний. Всего определено 4028 таких энергий. Эти энергии использовались для определения параметров эффективного гамильтониана методом наименыших квадратов.

На приведенном ранее (рис. 2) экспериментальном спектре можно увидеть, что в исследуемом диапазоне полосы представляют практически непрерывную структуру. Близко расположена полоса *v*₃ (центр примерно $1290 \,\mathrm{cm}^{-1}$), далее правее располагаются также полосы v_{12} и $2v_{10}$ (центры примерно 1400 и 1460 сm⁻¹ соответственно). С увеличением волнового числа плотность других полос только возрастает. Таким образом, задача описания структуры исследуемых пяти полос и их взаимодействия с соседними может превратиться в бесконечную ввиду необходимости учитывать каждое последующее состояние, которое взаимодействует с каждым последующим и так далее. Как это обычно бывает, для решения такой задачи приходится выбирать физически обоснованное упрощение, другими словами, необходимо выбрать конечное количество состояний, взаимодействующих с исследуемой пятеркой. Анализ колебательновращательной структуры состояний $(v_4=1), (v_6=1),$ $(v_7=1), (v_8=1)$ и $(v_{10}=1)$ показал, что будет достаточ-

Параметр	$(000)^{b}$	$(v_{10}=1)^c$	$(v_{10}=1)^d$	$(v_7=1)^c$	$(v_7=1)^d$	$(v_8=1)^c$	$(v_8=1)^d$
1	2	3	4	5	6	7	8
Ε		732.142300(64)	732.1443	806.471982(31)	806.4725	943.503080(32)	943.5033
Α	4.00588802	3.9887196(63)	4.044842	4.0453017(37)	3.967143	3.9659525(30)	4.007676
В	0.916325131	0.9158925(16)	0.903365	0.9138023(11)	0.924494	0.9111203(24)	0.911344
С	0.743772350	0.7423493(45)	0.743922	0.7449286(16)	0.744876	0.7445513(26)	0.744876
$\Delta_K \cdot 10^5$	7.0484	6.878519(79)	3.106	6.878519	10.026	6.878519	6.522
$\Delta_{JK} \cdot 10^5$	0.6044	0.60888(62)	0.820	0.60888	0.816	0.60888	0.365
$\Delta_J \cdot 10^5$	0.129547	0.12978(67)	-0.0311	0.12978	0.2355	0.12978	0.1285
$\delta_K \cdot 10^5$	0.8108	0.8108	-0.366	0.8108	0.243	0.8108	0.327
$\delta_J \cdot 10^5$	0.0284258	0.0284258	-0.1632	0.0284258	0.0731	0.0284258	0.0263
$H_K \cdot 10^9$	-5.332	-5.332		-5.332		-5.332	
$H_{KJ} \cdot 10^9$	-0.760	-0.760		-0.760		-0.760	
$H_{JK} \cdot 10^9$	0.168	0.168		0.168		0.168	
$H_J \cdot 10^9$	0.0032	0.0032		0.0032		0.0032	
$h_K \cdot 10^9$	2.930	2.930		2.930		2.930	
$h_{KJ} \cdot 10^9$	0.118	0.118		0.118		0.118	
$h_J \cdot 10^9$	0.001354	0.001354		0.001354		0.001354	

Таблица 5. Спектроскопические параметры состояний ($v_4 = 1$), ($v_6 = 1$), ($v_7 = 1$), ($v_8 = 1$) и ($v_{10} = 1$) молекулы С₂H₃D (в cm^{-1})

Таблица 5 (продолжение)

Параметр	$(v_4=1)^c$	$(v_4=1)^d$	$(v_6=1)^c$	$(v_6=1)^d$	$(v_6=1)^e$	$(v_3=1)^c$
1	9	10	11	12	13	14
Ε	1000.039364(30)	1000.0399	1125.276888(31)	1125.2769	1125.27674	1288.788159(90)
Α	3.9579014(60)	3.944431	4.0346021(32)	4.002324	4.103782	4.0105827(49)
В	0.9138423(82)	0.908689	0.9180181(27)	0.922087	0.921948	0.9178315(77)
С	0.7445802(53)	0.744614	0.7426154(30)	0.740833	0.741003	0.7419887(86)
$\Delta_K \cdot 10^5$	6.878519	5.258	6.878519	8.256	14.93	6.878519
$\Delta_{JK} \cdot 10^5$	0.60888	0.570	0.60888	1.084	0.429	0.60888
$\Delta_J \cdot 10^5$	0.12978	0.1069	0.12978	0.1461	0.1551	0.12978
$\delta_K \cdot 10^5$	0.8108	0.866	0.8108	1.000	1.819	0.8108
$\delta_J \cdot 10^5$	0.0284258	0.0145	0.0284258	0.0371	0.0355	0.0284258
$H_K \cdot 10^9$	-5.332		-5.332		253.	-5.332
$H_{KJ} \cdot 10^9$	-0.760		-0.760		2.7	-0.760
$H_{JK} \cdot 10^9$	0.168		0.168		-2.7	0.168
$H_J \cdot 10^9$	0.0032		0.0032		0.32	0.0032
$h_K \cdot 10^9$	2.930		2.930			2.930
$h_{KJ} \cdot 10^9$	0.118		0.118			0.118
$h_J \cdot 10^9$	0.001354		0.001354			0.001354
$L_K \cdot 10^{11}$					-71.0	
$L_{KKJ} \cdot 10^{11}$					-49.3	
$L_{JK} \cdot 10^{11}$					16.2	
$L_{JJK} \cdot 10^{11}$					-1.93	
$L_J \cdot 10^{11}$					0.077	
$d_{ m rms} \cdot 10^4$	1.7					

Примечание. ^а В скобках — доверительные интервалы 1*о*. Параметры без доверительных интервалов были фиксированы на значениях параметров основного состояния из столбца 2. ^b Воспроизведены из табл. 4. ^c Определены в данной работе.

^{*d*} Воспроизведены из [32]. ^{*e*} Воспроизведены из [33].

Параметр	Значение	Параметр	Значение	Параметр	Значение	Параметр	Значение
$^{1,2}C^{1y} \equiv (2C\xi^y)^{1,2}$	0.1855						
$^{1,3}F_{Kxy} \cdot 10^4$	-0.130(13)	$^{1,3}F_{KKxy} \cdot 10^{6}$	-0.237(19)	$^{1,3}F_{KKKxy}\cdot 10^8$	0.1083(72)		
$^{1,3}C^{1y} \equiv (2C\xi^y)^{1,3}$	0.4512	$^{1,3}C_{KK}^{1y} \cdot 10^5$	-0.750(26)	$^{1,3}C^{1y}_{KJ} \cdot 10^{6}$	-0.439(20)	$^{1,3}C^{1y}_{KKK} \cdot 10^7$	0.2606(62)
$^{1,3}C^{1y}_{KKJ} \cdot 10^9$	0.572(96)	$^{1,3}C^{2y} \cdot 10^2$	0.311(40)	$^{1,3}C_{K}^{2y}\cdot 10^{4}$	-0.203(21)	$^{1,3}C_{KK}^{2y} \cdot 10^{6}$	0.403(17)
$^{1,3}C_{KKK}^{2y} \cdot 10^9$	-0.913(33)						
$^{2,3}F_{KJ} \cdot 10^4$	-0.253(31)	$^{1,3}F_{JJxy} \cdot 10^{9}$	0.1485(18)				
$^{2,3}C^{1y} \equiv (2C\xi^y)^{2,3}$	-0.34	$C_{K}^{2,3}C_{K}^{2y}\cdot 10^{2}$	0.2009(77)				
$^{2,3}C_{KK}^{2y} \cdot 10^5$	0.748(57)	$^{2,3}C_{KKK}^{2y} \cdot 10^7$	-0.3141(97)				
$^{2,3}C_{KKI}^{2y} \cdot 10^8$	0.138(14)	$^{2,3}C_{KKK}^{2y} \cdot 10^7$	-0.3141(97)				
$^{1,3}C^2 \cdot 10^3$	0.8410(77)	$^{1,3}C_J^2 \cdot 10^5$	0.2999(83)	$^{1,3}C_{KJ}^2 \cdot 10^8$	0.101(10)	$^{1,3}C_{JJ}^2 \cdot 10^9$	-0.487(31)
$^{1,3}C_{KJJ}^2 \cdot 10^{11}$	-0.1118(73)						
$^{2,3}F_J \cdot 10^2$	0.1948(88)	$^{2,3}F_{xy} \cdot 10^2$	0.3148(44)	$^{2,3}F_{Kxy} \cdot 10^5$	-0.2213(84)	$^{2,3}F_{Jxy} \cdot 10^5$	-0.1121(71)
$^{2,3}F_{KJxy}\cdot 10^8$	0.401(20)	$^{2,3}F_{JJxy} \cdot 10^{9}$	0.338(23)	$^{2,3}F_{KKJxy} \cdot 10^{11}$	-0.823(27)	$^{2,3}F_{KJJxy} \cdot 10^{12}$	-0.964(52)
${}^{1,4}C^1 \equiv (2A\xi^z)^{1,4}$	-1.6	$^{1,4}C_{K}^{1}\cdot 10^{3}$	0.19252(72)	$^{1,4}C^1_J \cdot 10^4$	-0.892(19)	$^{1,4}C^1_{KKK} \cdot 10^{10}$	-0.831(72)
$^{1,4}C^1_{KKJ} \cdot 10^{10}$	0.917(68)	$^{1,4}C^2 \cdot 10^3$	0.7636(95)	$^{1,4}C_{K}^{2}\cdot 10^{5}$	-0.1365(85)		
$^{2,4}C^1_{KK} \cdot 10^6$	0.7249(87)	$^{2,4}C_{JJ}^{1}\cdot 10^{7}$	0.1863(54)	$^{2,4}C^1_{KKJ} \cdot 10^9$	-0.464(22)	$^{2,4}C^1_{KJJ} \cdot 10^{10}$	0.639(49)
$^{2,4}C^2 \cdot 10^2$	1.2517(59)	$^{2,4}C_{KJ}^2 \cdot 10^8$	-0.534(32)	$^{2,4}C_{KJJ}^2 \cdot 10^{11}$	0.227(18)	$^{2,4}C_{JJJ}^2 \cdot 10^{12}$	0.782(44)
$^{3,4}C_{K}^{1}\cdot 10^{4}$	0.379(31)	$^{3,4}C_{J}^{1}\cdot 10^{4}$	-0.1850(84)	$^{3,4}C^{1}_{KK} \cdot 10^{6}$	-0.1145(86)	$^{3,4}C^{1}_{KJ} \cdot 10^{7}$	-0.346(29)
$^{3,4}C^1_{JJ} \cdot 10^8$	-0.125(25)	$^{3,4}C^{1}_{KKK} \cdot 10^{9}$	-0.334(26)	$^{3,4}C^2 \cdot 10^3$	-0.276(22)	$^{3,4}C_{KKK}^2 \cdot 10^{11}$	-0.353(20)
$^{3,4}C^2_{KJJ} \cdot 10^{12}$	0.755(43)						
$^{1,5}C^1 \equiv (2C\xi^y)^{1,5}$	-0.2						
$^{2,5}C^1 \equiv (2A\xi^z)^{2,5}$	2.4	$^{2,5}C_{J}^{1}\cdot 10^{3}$	-0.11402(99)	$^{2,5}C^{1}_{KK} \cdot 10^{7}$	-0.2016(94)	$^{2,5}C^{1}_{KJ} \cdot 10^{7}$	0.2151(94)
$^{2,5}C_{JJ}^{1} \cdot 10^{7}$	0.1095(70)	$^{2,5}C^{1}_{JJJ} \cdot 10^{11}$	-0.947(52)	$^{2,5}C^2 \cdot 10^2$	0.7069(81)	$^{2,5}C_{K}^{2}\cdot 10^{5}$	0.5279(85)
$^{2,5}C_J^2 \cdot 10^6$	0.6654(84)	$^{2,5}C_{KK}^2 \cdot 10^7$	-0.196(11)	$^{2,5}C_{KJ}^2 \cdot 10^8$	-0.765(18)	$^{2,5}C_{KKK}^2 \cdot 10^{10}$	0.244(49)
$^{2,5}C^2_{KKJ} \cdot 10^{10}$	0.349(13)	$^{2,5}C_{KJJ}^2 \cdot 10^{11}$	0.1008(37)				
${}^{3,5}C^1 \equiv (2A\xi^z)^{3,5}$	1.4			45.1 6		4.5.1	
$^{4,5}C^1 \equiv (2B\xi^x)^{4,5}$	-1.4	$^{4,5}C_{K}^{1} \cdot 10^{3}$	0.2105(35)	$^{4,5}C^{1}_{KK} \cdot 10^{6}$	0.1656(81)	$^{4,5}C^{1}_{KJ} \cdot 10^{8}$	-0.1526(44)
$^{4,5}C_{JJ}^{1} \cdot 10^{7}$	0.367(38)	$^{4,5}C^{1}_{KKK} \cdot 10^{9}$	0.312(18)	$^{4,5}C^{1}_{KKJ} \cdot 10^{9}$	0.305(17)	$^{4,5}C^2 \cdot 10^1$	-0.3925(15)
$^{4,5}C_J^2 \cdot 10^5$	0.8650(89)	$^{4,5}C_{KJ}^2 \cdot 10^7$	-0.1161(27)	$^{4,5}C_{JJ}^2 \cdot 10^9$	0.316(94)	$^{4,5}C_{KKK}^2 \cdot 10^{10}$	0.1493(62)
$^{4,3}C_{JJJ}^2 \cdot 10^{12}$	0.647(54)	16 15		16 1		16 17	
$^{1,0}C^{1} \equiv (2C\xi^{y})^{1,0}$	-0.4	$^{1,0}C_J^1 \cdot 10^3$	-0.592(31)	$^{1,0}C_{KK}^{1} \cdot 10^{7}$	-0.780(67)	$^{1,0}C_{KJ}^{1} \cdot 10^{7}$	-0.942(27)
$^{1,0}C_{JJ}^{1} \cdot 10^{\circ}$	0.309(14)	$^{1,0}C^2 \cdot 10^2$	-0.3089(51)	$^{1,0}C_K^2 \cdot 10^5$	-0.2170(89)	$^{1,0}C_J^2 \cdot 10^5$	0.2931(80)
$^{2,0}C^{1} \equiv (2A\zeta^{2})^{2,0}$	1.6	$^{2,0}C_{KJ}^{1} \cdot 10^{7}$	0.258(12)	$^{2,0}C_{JJ}^{1} \cdot 10^{7}$	-0.786(26)	$^{2,0}C_{J}^{2}\cdot 10^{6}$	-0.933(59)
$^{2,0}C_{KJ}^{2} \cdot 10^{7}$	0.1458(36)	$^{2,0}C_{KKJ}^{2} \cdot 10^{10}$	-0.159(10)	36-21 108		36 - 2 - 1 - 3	0.406(4.0)
$^{3,6}C^{1} \equiv (2A\zeta^{2})^{3,6}$	-2.7	$C_{K}^{1} \cdot 10^{-3}$	0.158232(99)	$^{3,0}C_{JJ}^{1} \cdot 10^{0}$	-0.517(36)	$^{5,0}C^{2} \cdot 10^{5}$	0.496(10)
$C_{\tilde{j}} \cdot 10^{\circ}$	0.583(25)	$C_{KJJ} \cdot 10^{12}$	-0.343(22)	$^{5,0}C_{JJJ}^{2} \cdot 10^{12}$	-0.10/8(48)		
$5.6 E = 10^2$	0.6	5,6 5 105	0.2472(02)	5.6 E 10 ³	0.905(9.4)	5,6 5 106	0.051/71)
$F_J \cdot 10$	0.5426(95)	$F_{KJ} \cdot 10^{\circ}$	0.24/3(93)	$F_{xy} \cdot 10^{\circ}$	0.895(84)	$F_{Jxy} \cdot 10^{\circ}$	-0.951(71)

Таблица 6. Параметры резонансного взаимодействия между колебательными состояниями $(v_4=1)$, $(v_6=1)$, $(v_7=1)$, $(v_8=1)$ и $(v_{10}=1)$ молекулы C₂H₃D (в сm⁻¹)

ным выбрать дополнительно только полосу v_3 из всего каскада полос в диапазоне больших квантовых чисел. В качестве обоснования можно привести, во-первых, тот факт, что расстояние между последней исследуемой полосой v_6 и полосой v_3 (примерно 165 сm⁻¹) примерно в два раза меньше расстояния между v_6 и следующей полосой в диапазоне. Во-вторых, воспроизведение экспериментальных данных с помощью анализа, учитывающего только одно дополнительное состояние ($v_3=1$), получилось вполне удовлетворительным.

Таким образом, в данной работе был использован эффективный гамильтониан, учитывающий пять исследуемых состояний и дополнительно состояние (v₃). При

этом колебательно-вращательные энергии последнего были вовлечены только такие, для которых J = 0, 1 и 2. В дальнейшем предполагается провести анализ более коротковолнового диапазона, где роль такого дополнительного, "темного" состояния на себя возьмет уже (v_6) . Помимо взаимодействия исследуемых состояний с дополнителным состоянием (v_3) , необходимо было учесть взаимодействие пяти состояний $(v_4=1), (v_6=1),$ $(v_7=1), (v_8=1)$ и $(v_{10}=1)$ друг с другом, что делает необходимым использование большого числа резонансных параметров. В свою очередь, корреляция между большим числом таких параметров с параметрами центробежного искажения приводит к некорректному опре-

1149

Полоса	v_{10})		ν_7			ν_8	ν_8			ν_4			ν_6		
J K _a K _c	Ε	Δ	δ	Ε	Δ	δ	Ε	Δ	δ	Ε	Δ	δ	Ε	Δ	δ	
1	2	3	4	2	3	4	2	3	4	2	3	4	2	3	4	
0 0 0				806.47216	-	18				1000.03951	-	14	1125.27692	-	3	
1 0 1				808.14163	4	12	945.15908	1	3	1001.69771	5	8	1126.93980	-	- 1	
1 1 1				811.33938	2	10	948.17848	2	2	1004.72813	7	3	1130.12136	-	- 6	
1 1 0				811.51753	3	12	948.34517	4	4	1004.89784	4	4	1130.30231	2	1	
2 0 2				811.47341	4	12	948.46426	1	0	1005.00728	6	7	1130.25819	3	5	
2 1 2				814.50012	1	12	951.32372	3	4	1007.87492	4	5	1133.26636	4	1	
2 1 1				815.03446	3	12	951.82369	4	0	1008.38403	4	5	1133.80900	3	4	
2 2 1				824.62339	3	3	960.88203	3	2	1017.47470	3	3	1143.35207	5	0	
2 2 0				824.63061	3	4	960.88873	3	1	1017.48164	7	4	1143.35944	10	-12	
3 0 3				816.45301	3	12	953.40533	2	4	1009.95428	5	2	1135.21695	2	4	
3 1 3				819.23671	5	7	956.03731	9	- 5	1012.59077	4	6	1137.97917	3	8	
3 1 2				820.30513	2	11	957.03717	2	1	1013.60880	5	4	1139.06416	3	7	
3 2 2				829.63080	4	4	965.84971	2	1	1022.44921	4	2	1148.34060	1	0	
3 2 1				829.66679	2	6	965.88319	3	2	1022.48377	4	4	1148.37795	3	1	
3 3 1	769.41886	12	- 2	846.04838	5	- 4	981.36807	2	- 1	1038.02651	2	- 1	1164.69685	17	-16	
3 3 0	769.41886	12	13	846.04856	3	- 4	981.36822	2	- 2	1038.02667	3	1	1164.69685	17	3	
4 0 4				823.05921	1	11	959.96249	5	5	1016.51848	4	3	1141.79422	2	7	
4 1 4				825.54420	4	9	962.31475	4	4	1018.87076	5	6	1144.25441	2	5	
4 1 3				827.32360	3	8	963.98006	3	0	1020.56650	5	1	1146.06157	1	3	
4 2 3				836.30168	3	4	972.46794	3	2	1029.07634	4	2	1154.98594	5	5	
4 2 2				836.40900	2	4	972.56785	3	1	1029.17953	3	3	1155.09751	2	- 6	
4 3 2	775.99825	11	- 3	852.73688	2	- 4	988.00425	2	0	1044.67205	4	1	1171.36208	-	2	
4 3 1	775.99940	13	11	852.73813	2	- 5	988.00542	3	- 1	1044.67333	4	- 2	1171.36357	-	-11	
4 4 1	797.33382	12	3	875.67530	11	-10	1009.71317	10	- 1	1066.45739	11	0	1194.22943	4	- 7	
4 4 0	797.33382	12	3	875.67530	11	-10	1009.71317	10	- 2	1066.45739	11	0	1194.22943	4	- 7	
5 0 5				831.26512	3	7	968.11077	2	5	1024.67409	4	5	1149.96216	1	4	
5 1 5				833.41613	2	7	970.14982	3	6	1026.70879	4	6	1152.08557	-	8	
5 1 4				836.08158	4	- 6	972.64468	4	0	1029.24918	5	1	1154.79275	1	2	
5 2 4				844.63119	1	3	980.73214	3	3	1037.35138	4	5	1163.28323	3	3	
5 2 3				844.87913	3	4	980.96299	3	1	1037.58983	3	1	1163.54063	4	2	
5 3 3	784.22720	18	9	861.10303	1	- 5	996.30441	3	- 1	1052.98415	4	- 1	1179.69942	3	- 3	
5 3 2	784.23122	8	6	861.10811	2	- 3	996.30913	3	0	1052.98911	5	- 2	1179.70482	3	- 3	
5 4 2	805.55873	5	11	884.03146	21	- 6	1018.00657	5	- 1	1074.76232	4	- 4	1202.55917	2	- 4	
5 4 1	805.55873	5	8	884.03146	21	- 9	1018.00657	5	- 4	1074.76232	4	0	1202.55917	2	0	
5 5 1	833.01067	11	7	913.48064	6	-15	1045.92059	5	- 4	1102.76525	5	3	1231.94143	3	- 6	
5 5 0	833.01067	11	8	913.48064	6	-15	1045.92059	5	- 4	1102.76525	5	3	1231.94143	3	- 6	
6 0 6				841.04053	1	6	977.82198	3	7	1034.39203	5	0	1159.68968	1	4	
6 1 6				842.84432	2	4	979.53573	4	10	1036.09774	8	10	1161.46502	1	4	
6 1 5				846.56799	2	6	983.02077	5	4	1039.64625	5	2	1165.24604	6	2	
6 2 5				854.61333	2	1	990.63657	4	1	1047.26848	4	2	1173.22590	2	3	
6 2 4				855.10105	2	1	991.09090	2	2	1047.73750	2	0	1173.73199	2	1	
6 3 4	794.10742	16	1	871.14961	4	- 4	1006.27105	3	2	1062.96526	3	2	1189.71115	13	0	
6 3 3	794.11961	9	7	871.16476	3	- 3	1006.28513	2	0	1062.98011	3	- 4	1189.72743	2	-12	
6 4 3	815.43241	8	7	894.06429	4	- 6	1027.96320	4	- 1	1084.73295	3	- 4	1212.56001	18	- 9	
6 4 2	815.43252	7	5	894.06443	4	- 9	1027.96335	3	- 2	1084.73310	2	- 2	1212.56001	18	10	
6 5 2	842.88175	29	38	923.50227	3	- 11	1055.87067	3	- 6	1112.72887	9	0	1241.93481	3	- 4	
6 5 1	842.88175	29	-48	923.50227	3	- 11	1055.87067	3	- 6	1112.72887	9	0	1241.93481	3	- 4	
6 6 1	876.46072	7	4	959.43296	3	- 15	1089.99059	4	-10	1146.94344	4	0	1277.81780	5	- 4	
6 6 0	876.46072	7	4	959.43296	3	- 15	1089.99059	4	-10	1146.94344	4	0	1277.81780	5	- 4	

Таблица 7. Колебательно-вращательные уровни энергий состояний $(v_4=1)$, $(v_6=1)$, $(v_7=1)$, $(v_8=1)$ и $(v_{10}=1)$ молекулы C₂H₃D (в cm¹)

Примечание. Δ — значение экспериментальной погрешности в единицах 10^{-5} сm⁻¹ (Δ отсутствует в случаях, когда верхние уровни энергии были определены из одного перехода), δ — разность $E^{\exp} - E^{calc}$ также в единицах 10^{-5} сm⁻¹.

Таблица 7 (продолжение)

Полоса	v_{10}			<i>v</i> ₇			ν_8			<i>v</i> ₄	ν_4			ν_6		
J K _a K _c	Е	Δ	δ	Е	Δ	δ	Е	Δ	δ	Е	Δ	δ	Е	Δ	δ	
1	2	3	4	2	3	4	2	3	4	2	3	4	2	3	4	
$\begin{array}{cccc} 7 & 0 & 7 \\ 7 & 1 & 7 \end{array}$				852.35509 853.82327	2 3	4 5	989.06773 990.46493	3 3	9 9	1045.64341 1047.02990	5 5	2 8	1170.94578 1172.38451	4 6	10 14	
7 1 6				858.76850	2	3	995.09499	6	5	1051.74390	3	0	1177.40677	5	- 1	
7 2 0				867.00743	2	1	1002.17430	2	2 1	1050.62005	4		1185 60460	1	2	
7 3 5	805 64118	8	5	882 87900	5	- 4	1017 90619	2	0	1074 61761	7	2	1201 40003	10	- 1	
7 3 4	805.67139	10	7	882.91667	2	- 3	1017.94128	3	2	1074.65445	4	- 2	1201.10005	3	6	
744	826 95706	11	3	905,77670	3	- 6	1039,58548	5	- 1	1096.37184	3	- 4	1224.23477	31	-34	
7 4 3	826.95755	9	3	905.77727	4	-10	1039.58604	3	- 3	1096.37243	3	- 1	1224.23477	31	34	
7 5 3	854.40036	15	11	935.20044	10	- 9	1067.48298	3	1	1124.35712	20	3	1253.59800	2	- 7	
7 5 2	854.40036	15	-17	935.20044	10	- 9	1067.48298	3	0	1124.35712	20	4	1253.59800	2	- 6	
7 6 2	887.97789	8	1	971.11795	3	-10	1101.59714	6	- 4	1158.56529	3	- 1	1289.47440	3	- 4	
7 6 1	887.97789	8	1	971.11795	3	-10	1101.59714	6	- 4	1158.56529	3	- 1	1289.47440	3	- 4	
771	927.69390	5	3	1013.49711	2	-11	1141.92322	7	- 7	1198.98404	5	5	1331.84063	2	0	
7 7 0	927.69390	5	3	1013.49711	2	-11	1141.92322	7	- 7	1198.98404	5	5	1331.84063	2	0	
8 0 8				865.18216	1	2	1001.82291	3	7	1058.40262	7	- 3	1183.70323	5	- 2	
8 1 8				866.34252	2	0	1002.92986	4	- 1	1059.49746	3	8	1184.83570	2	12	
8 1 7				872.66516	2	0	1008.85061	3	11	1065.52488	3	- 1	1191.25592	2	1	
8 2 7				879.50571	3	8	1015.33804	4	- 2	1071.99972	4	5	1198.01640	2	9	
8 2 6	010 02074	6	0	880.88580	2	- 9	1016.62519	3	1	10/3.32694	4		1199.44612	2	2	
8 3 0	818.82974	0	9	896.29290	2	- 4	1031.21134	2	0	1087.94200	2		1214./0/0/	1	2 1	
8 7 5	840 13507	07	0	010 17102	2	6	1051.28791	2 5	0	1088.02294	3	- 2	1214.03479	5 10	- 1	
8 4 4	840 13660	4	- 1	91917378	$\frac{2}{2}$	- 4	1052.87010	5	- 1	1109.68359	3	- 5	1237.58572	14	- 7	
854	867 56865	28	0	948 57778	10	- 7	1080 75910	15	- 3	1137 65160	19	-12	1266 93304	2	- 9	
8 5 3	867.56909	31	- 3	948.57778	10	- 9	1080.75910	15	- 1	1137.65160	19	-10	1266.93304	2	- 6	
8 6 3	901.14236	8	2	984.46481	2	- 7	1114.86495	3	- 7	1171.85083	4	- 1	1302.79994	2	- 2	
8 6 2	901.14236	8	2	984.46481	2	- 7	1114.86495	3	- 7	1171.85083	4	- 1	1302.79994	2	- 2	
8 7 2	940.85559	6	0	1026.84312	2	- 6	1155.18553	3	- 8	1212.26346	2	2	1345.15984	1	0	
8 7 1	940.85559	6	0	1026.84312	2	- 6	1155.18553	3	- 8	1212.26346	2	2	1345.15984	1	0	
8 8 1	986.73512	3	- 1	1075.63545	2	- 1	1201.71789	4	-11	1258.87742	2	3	1393.98926	2	3	
8 8 0	986.73512	3	- 1	1075.63545	2	- 1	1201.71789	4	-11	1258.87742	2	3	1393.98926	2	3	
909				879.50164	1	0	1016.06852	4	9	1072.65054	7	- 8	1197.94224	2	1	
9 1 9				880.39488	2	3	1016.92290	4	0	1073.49268	2	7	1198.81023	3	11	
9 1 8				888.23596	2	- 2	1024.26721	6	12	1080.96788	3	- 1	1206.77056	7	- 4	
928				894.39839	3	- 2	1030.11847	4	- 2	1086.79668	3	4	1212.84578	4	14	
927	822 67255	7	7	896.4/363	4	0	1032.05/39	4	3	1088./9439	3	- 1	1214.99552	2	2	
937	833.07333	10	/ 8	911.59194	2	- 5	1040.16095	$\frac{2}{2}$	- 1	1102.94000	4	1	1229.81300	5 1	- 5	
9 3 0	853.80431	2	0	911.55445	23	- 2	1067.83816	23	2	1103.09933	3	- 1	1229.98027	47	- 5	
945	854 97294	5	2 4	934 25820	4	- 4	1067.83810	5	- 4	1124.00383	2	- 2	1252.01750	7	- 3	
955	882.38815	2.7	0	963 63710	5	- 6	1095,70107	9	- 7	1152.61474	21	-13	1281.94225	7	- 7	
9 5 4	882.38887	26	-17	963.63716	4	- 7	1095.70113	8	- 6	1152.61474	21	- 6	1281.94225	7	1	
9 6 4	915.95488	5	- 4	999.46768	5	- 7	1129.79549	5	- 2	1186.80138	4	- 4	1317.79585	2	- 3	
9 6 3	915.95488	5	- 5	999.46768	5	- 7	1129.79549	5	- 2	1186.80138	4	- 4	1317.79585	2	- 2	
973	955.66199	7	- 1	1041.85751	3	- 2	1170.10853	2	- 3	1227.20578	3	- 2	1360.14720	4	3	
972	955.66199	7	- 1	1041.85751	3	- 2	1170.10853	2	- 3	1227.20578	3	- 2	1360.14720	4	3	
982	1001.57994	6	- 1	1090.63999	1	- 1	1216.63545	4	- 5	1273.81401	3	0	1408.97030	2	4	
9 8 1	1001.57994	6	- 1	1090.63999	1	- 1	1216.63545	4	- 5	1273.81401	3	0	1408.97030	2	4	
991	1053.55499	11	- 7	1145.80840	3	1	1269.37358	6	- 1	1326.61276	2	- 2	1464.24059	-	7	
990	1053.55499	11	- 7	1145.80840	3	1	1269.37358	6	- 1	1326.61276	2	- 2	1464.24059	-	7	
10 0 10				895.30098	2	- 1	1031.79235	5	10	1088.37527	2	- 3	1213.65027	3	0	
10 1 10				895.97268	8	0	1032.43693	4	- 1	1089.00832	5	9	1214.30050	2	14	

Таблица 7	(продолжение)
-----------	---------------

Полоса	V ₁₀	V ₁₀ V ₇		ν_8	ν_8					<i>v</i> ₆					
J K _a K _c	Е	Δ	δ	Ε	Δ	δ	Ε	Δ	δ	Ε	Δ	δ	Ε	Δ	δ
1	2	3	4	2	3	4	2	3	4	2	3	4	2	3	4
10 1 9				905.45466	4	- 1	1041.32018	2	12	1098.04751	4	4	1223.92323	4	- 2
10 2 9	834.18754	6	5	910.90877	3	- 3	1046.50613	5	1	1103.20163	5	7	1229.28402	3	14
10 2 8	836.69156	10	- 7	913.86725	3	0	1049.27004	5	6	1106.04687	4	0	1232.34233	10	0
10 3 8	850.17207	7	2	928.17532	2	- 3	1062.83212	1	- 2	1119.61086	5	- 1	1246.53662	1	1
10 3 7	850.41173	10	9	928.47230	3	- 1	1063.10902	2	1	1119.90124	4	0	1246.85319	4	1
10 4 7	871.46168	5	-14	951.02474	2	- 2	1084.47464	2	- 2	1141.32722	3	- 3	1269.33239	4	- 5
10 4 6	871.47068	8	2	951.03585	3	- 1	1084.48504	2	- 3	1141.33838	2	- 6	1269.34465	3	- 6
10 5 6	898.86054	6	- 4	980.38135	5	- 3	1112.31125	4	- 6	1169.24870	9	- 7	1298.62814	9	-10
10 5 5	898.86213	6	- 7	980.38155	6	- 4	1112.31144	5	- 4	1169.24888	7	- 4	1298.62814	9	13
10 6 5	932.41669	9	- 1	1016.11776	5	- 6	1146.39012	7	- 1	1203.41851	5	- 7	1334.46383	2	- 2
10 6 4	932.41669	9	- 4	1016.11776	5	- 7	1146.39012	7	- 1	1203.41851	5	- 7	1334.46383	2	- 2
10 7 4	972.11342	6	- 3	1058.54023	6	- 1	1186.69318	8	3	1243.81209	7	- 3	1376.80378	3	1
10 7 3	972.11342	6	- 3	1058.54023	6	- 1	1186.69318	8	3	1243.81209	7	- 3	1376.80378	3	1
10 8 3	1018.10156	6	- 3	1107.31223	2	0	1233.21300	4	- 2	1290.41281	2	- 1	1425.61869	19	2
10 8 2	1018.10156	6	- 3	1107.31223	2	0	1233.21300	4	- 2	1290.41281	2	- 1	1425.61869	19	2
10 9 2	1070.02718	5	1	1162.46899	3	3	1285.94526	2	4	1343.20140	2	4	1480.88249	4	6
10 9 1	1070.02718	5	1	1162.46899	3	3	1285.94526	2	4	1343.20140	2	4	1480.88249	4	6
10 10 1	1128.18521	4	- 3	1223.97525	4	5	1344.89328	1	1	1402.17781	2	- 3	1542.56909	-	3
10 10 0	1128.18521	4	- 3	1223.97525	4	5	1344.89328	1	1	1402.17781	2	- 3	1542.56909	-	3

Примечание. Δ — значение экспериментальной погрешности в единицах 10^{-5} cm⁻¹ (Δ отсутствует в случаях, когда верхние уровни энергии были определены из одного перехода), δ — разность $E^{\exp} - E^{calc}$ также в единицах 10^{-5} cm⁻¹.

делению последних. Обойти эту проблему позволяет тот факт, что значения центробежных параметров должны быть близки к таковым для основного колебательного состояния [34]. Таким образом, при фиксировании параметров на значениях из табл. 4 процедура определения параметров эффективного гамильтониана позволила уточнить центры полос вместе с вращательными параметрами и параметрами резонансного взаимодействия. Результаты данного исследования, а именно параметры эффективного гамильтониана представлены в табл. 5 и 6. Для сравнения в табл. 5 также приведены значения соответствующих параметров из работ [32,33]. Между результатами данной работы и результатами работ [32,33] наблюдается определенная корреляция, однако результаты настоящей работы позволяют воспроизвести энергетическую структуру и положения линий спектра с существенно большей точностью. В табл. 7 приведена часть колебательно-вращательных уровней исследованных состояний до J = 10, а также экспериментальные и расчетные погрешности определения в колонках 3 и 4.

8. Заключение

В данной работе проведен анализ инфракрасного спектра высокого разрешения молекулы C_2H_3D в диапазоне 600-1300 сm⁻¹, объектом анализа стали резонирующие полосы ν_4 , ν_6 , ν_7 , ν_8 и ν_{10} . Экспериментальные переходы в количестве 27950 с максимальными квантовыми

числами $J^{\text{max}} = 40$ и $K_a^{\text{max}} = 20$ были отнесены к исследуемым полосам. Теоретическая модель эффективного гамильтониана включала в себя как взаимодействие пяти исследуемых состояний друг с другом, так и их взаимодействие с состоянием ($v_3 = 1$). Полученные параметры воспроизводят экспериментальные данные с погрешностью $d_{\text{rms}} = 1.7 \cdot 10^{-4} \text{ cm}^{-1}$ для 4028 верхних уровней энергий и с погрешностью $d_{\text{rms}} = 2.1 \cdot 10^{-4} \text{ cm}^{-1}$ для более чем 24000 положений линий.

Финансирование работы

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 20-32-90004\20.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- F.B. Abeles, H.E. Heggestad. J. air pollution control association, 23 (6), 517(1973).
 DOI: 10.1080/00022470.1973.10469798
- T. Kostiuk, P. Romani, F. Espenak, T.A. Livengood, J.J. Goldstein. J. Geophysical Research: Planets, 98 (E10), 18823 (1993). DOI: 10.1029/93JE01332

- B. Bézard, J.I. Moses, J. Lacy, T. Greathouse, M. Richter, C. Griffith. Bulletin of the American Astronomical Society. (33) 1024 (2021).
- [4] R.J. Vervack Jr, B.R. Sandel, D.F. Strobel. Icarus, 170 (1), 92(2004). DOI: 10.1016/j.icarus.2004.03.005
- [5] A. Coustenis, R.K. Achterberg, B.J. Conrath, D.E. Jennings, A. Marten, D. Gautier, C.A. Nixon, F.M. Flasar, N.A. Teanby, B. Bézard, et. al. Icarus, 189(1), 35(2007).
 DOI: 10.1016/j.icarus.2006.12.022
- [6] J.P. Fonfria, K.H. Hinkle, J. Cernicharo, M.J. Richter, M. Agúndez, L. Wallace. The Astrophysical J., 835 (2), 196 (2017). DOI: 10.3847/1538-4357/835/2/196
- [7] O.N. Ulenikov, G.A. Onopenko, E.S. Bekhtereva, T.M. Petrova, A.M. Solodov, A.A. Solodov. Molecular Physics, 108(5), 637(2010). DOI: 10.1080/00268971003645362
- [8] O.N. Ulenikov, O.V. Gromova, Yu.S. Aslapovskaya, V.-M. Horneman. J. Quantitative Spectroscopy and Radiative Transfer, **118**, 14(2013).
 DOI: 10.1016/j.jqsrt.2012.11.032
- O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, G.A. Onopenko, Yu.S. Aslapovskaya, K.-H. Gericke, S. Bauerecker, V.-M. Horneman. J. Quantitative Spectroscopy and Radiative Transfer, 149, 318(2014).
 DOI: 10.1016/j.jqsrt.2014.08.013
- [10] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, C. Maul, S. Bauerecker, M.G. Gabona, T.L. Tan. J. Quantitative
- Spectroscopy and Radiative Transfer, **151**, 224 (2015). DOI: 10.1016/j.jqsrt.2014.09.024
- [11] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.V. Kashirina, S. Bauerecker, V.-M. Horneman. J. Molecular Spectroscopy, **313**, 4 (2015). DOI: 10.1016/j.jms.2015.04.008
- [12] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, K.B. Berezkin, E.A. Sklyarova, C. Maul, K.-H. Gericke, S. Bauerecker. J. Quantitative Spectroscopy and Radiative Transfer, 161, 180 (2015). DOI: 10.1016/j.jqsrt.2015.04.008
- [13] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.V. Kashirina, G.A. Onopenko, C. Maul, S. Bauerecker. J. Molecular Spectroscopy, **317**, 32 (2015). DOI: 10.1016/j.jms.2015.08.010
- [14] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, Yu.S. Aslapovskaya, A.G. Ziatkova, C. Sydow, C. Maul, S. Bauerecker. J. Quantitative Spectroscopy and Radiative Transfer, 184, 76(2016). DOI: 10.1016/j.jqsrt.2016.06.040
- [15] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, A.L. Fomchenko, F. Zhang, C. Sydow, C. Maul, S. Bauerecker. J. Quantitative Spectroscopy and Radiative Transfer, 182, 55(2016). DOI: 10.1016/j.jqsrt.2016.04.026
- [16] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, Yu.V. Konova, A.N. Kakaulin, C. Sydow, S. Bauerecker. J. Quantitative Spectroscopy and Radiative Transfer, 250, 107021(2020). DOI: 10.1016/j.jqsrt.2020.107434
- [17] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, Yu.V. Konova, Yu.S. Aslapovskaya, C. Sydow, K. Berezkin, S. Bauerecker. J. Quantitative Spectroscopy and Radiative Transfer, 261, 107434 (2021). DOI: 10.1016/j.jqsrt.2020.107434
- [18] Y. Verbist-Scieur, C.P. Courtoy, A. Fayt, L.D. Van. Molecular Physics, 33 (2), 351(1977).
 DOI: 10.1080/00268977700100301
- [19] T.L. Tan, K.L. Goh, H.H. Teo. J. Molecular Spectroscopy, 228 (1), 105 (2004).
 DOI: 10.1016/j.jms.2004.07.008

- [20] Y. Verbist-Scieur, C.P. Courtoy, A. Fayt. J. Molecular Spectroscopy, 85 (2), 480 (1981). DOI: 10.1016/0022-2852(81)90218-6
- [21] G.B. Lebron, T.L. Tan. J. Molecular Spectroscopy, 261 (2), 119 (2010). DOI: 10.1016/j.jms.2010.04.001
- [22] E. Hirota, Y. Endo, S. Saito, K. Yoshida, I. Yamaguchi,
 K. Machida. J. Molecular Spectroscopy, 89 (1), 223 (1981).
 DOI: 10.1016/0022-2852(81)90171-5
- [23] Ю.С. Макушкин, О.Н. Улеников, А.Е. Чеглоков, В.С. Смирнов. Симметрия и ее применения к задачам колебательно-вращательной спектроскопии молекул: В 2 ч., Под ред. В.С. Смирнова., 1(Издательство Томского университета, Томск, 1990).
- [24] J.K.G. Watson. J. Chemical Physics, 46 (5), 1935 (1967).DOI: 10.1063/1.1840957
- [25] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, I.B. Bolotova, I.A. Konov, V.-M. Horneman, C. Leroy. J. Quantitative Spectroscopy and Radiative Transfer, **113** (7), 500 (2012). DOI: 10.1016/j.jqsrt.2012.01.006
- [26] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, V.-M. Horneman, S. Alanko. J. Molecular Spectroscopy, 255 (2), 111 (2009). DOI: 10.1016/j.jms.2009.03.009
- [27] O.N. Ulenikov, G.A. Onopenko, J.-H. Zhang, Z.-Y. Zhou, Q.-S. Zhu, R.N. Tolchenov et.al. J. Molecular Spectroscopy, 189 (1), 29 (1998).
 DOI: 10.1006/jmsp.1997.7498
- [28] W.J. Lafferty, J.-M. Flaud, R.L. Sams, El HadjiAbib Ngomd. J. Molecular Spectroscopy, 252 (1), 72 (2008). DOI: 10.1016/j.jms.2008.06.013
- [29] O.N. Ulenikov, R.N. Tolchenov, M. Koivusaari, S. Alanko, R. Anttila. J. Molecular Spectroscopy, **167** (1), 109 (1994). DOI: 10.1006/jmsp.1994.1221
- [30] J.M.L. Martin, T.J. Lee, P.R. Taylor, J.-P. François. J. Chemical Physics, **103** (7), 2589 (1995). DOI: 10.1063/1.469681
- [31] G.B. Lebron, T.L. Tan. J. Molecular Spectroscopy, 265 (1), 55 (2011). DOI: 10.1016/j.jms.2010.11.003
- [32] P. Herbin, G. Blanquet, A. Valentin. J. Molecular Spectroscopy, **127** (2), 390 (1988). DOI: 10.1016/0022-2852(88)90129-4
- [33] T.L. Tan, G.B. Lebron. J. Molecular Spectroscopy, 263 (2), 160 (2010). DOI: 10.1016/j.jms.2010.08.002
- [34] D. Papousek, M.R. Aliev. Molecular vibrational-rotational spectra, 1st ed.(Elsevier Scientific, Amsterdam, 1982).