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Bending test of nanoscale consoles in atomic force microscope
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Consoles and bridges of MgNi2Si2O5(OH)4 nanoscrolls were tested for bending in atomic force microscope.

Using test data, we analyze how the consoles or bridges were fixed, and took this information into account when

calculating the Young’s modulus of the nanoscrolls. The results on the consoles are in good agreement with the

results on the bridges when modeling the latter as three-span beams, and the former as beams on an elastic

foundation with a suspended console.
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The Young’s modulus of a suspended quasi-one-

dimensional nanoobject (tube, rod, scroll) may be de-

termined with an atomic force microscope (AFM) by

performing a bending test [1]. Consoles and bridges form

as a result of drying out of a colloidal droplet of tested

objects on various substrates with depressions [2,3]. The

technique is based on AFM measurements of the stiffness

profile of the object and the theory of small deflection of

rods [4]. Unknown fixing conditions are the primary source

of measurement error. The calculated values of the Young’s

modulus of a bridge regarded as a supported beam and a

fixed-end beam differ by a factor of 4. This uncertainty is

resolved [5,6] by comparing the measured stiffness profile

to the profile of the center span of a model three-span

beam (Fig. 1, a, top). If we extend the side spans, the

center span goes smoothly from the fixed-end state to the

supported state. The value of λ = L/l matching the theory

to the measurement data is used to correct the Young’s

modulus. In actual practice, both the suspended object

and the substrate may be deformed. A model with an

elastic foundation supporting the object (Fig. 1, a, bottom)
then becomes applicable. However, this model lacks a

compact formula for the stiffness profile [7]. Both bridges

and consoles were subjected to AFM bending tests [3]. The
measurement results for consoles on a substrate are also

affected by the fixing conditions. The aim of the present

study was to resolve the associated uncertainty of values of

the Young’s modulus of a console.

The diagram of a supported console beam (model I) is

shown at the top of Fig. 1, b: the first span is fixed at

point x = −L and supported at point x = 0; the second

span (console with length l) is supported at point x = 0,

and force F is applied at point x = X , X ∈ (0, l]; the

Young’s modulus is E , and the moment of inertia of the

beam is I . The formula for console deflection z (x) in this

statically indeterminate problem may be derived using the

method of addition of the action of forces [8] (the derivation

of this formula is presented as a supplementary material in

the online version of the paper). The formula is as follows:

z (x) = F
3XLx + 6Xx2

− 2x3

12EI
, x ∈ [0, X ], X ∈ (0, l].

(1)
Dependence (1) cannot be verified directly in an AFM.

However, one may measure the stiffness or the deflection

(deformation) of the console, which is inversely propor-

tional to stiffness, at load point x = X :

z (X) = F
3LX2 + 4X3

12EI
. (2)

Normalizing z (X) and X by the maximum z (l) and

console length l, respectively, we find the formula for fitting
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Figure 1. a — fixing conditions for a nanobridge: the diagrams

of a three-span beam (top) and a beam on an elastic foundation

(bottom) were considered in [5] and [7] (diagrams at the top

and at the center (a beam on ring springs corresponding to

boundary conditions z II(0) = 4z I(0)/L and z II(l) = −4z I(l)/L)
are equivalent). b — fixing conditions for a console (present
study): model I — diagrams at the top and at the center,

model II — diagram at the bottom.
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Krylov’s functions

i Yi Ki

1 Y1(x) = cosh x cos x K1(x)= 1
2
(cosh x+ cos x)

2 Y2(x)= 1
2
(cosh x sin x+ sinh x cos x) K2(x)= 1

2
(sinh x+ sin x)

3 Y3(x) = 1
2
sinh x sin x K3(x)= 1

2
(cosh x− cos x)

4 Y4(x)= 1
4
(cosh x sin x− sinh x cos x) K4(x)= 1

2
(sinh x− sin x)

the deflection profile to the experimental data for model I

ζI(χ) =
4

4 + 3λ
χ3 +

3λ

4 + 3λ
χ2, χ =

X
l
, λ =

L
l
, (3a)

and, inserting X = l into Eq. (2), obtain the expressions for

Young’s modulus E

E =
F

z (l)
l3

3I
4 + 3λ

4
= E08I,

8I =
4 + 3λ

4
, E0 =

F
Dmax

64l3

3πd4
. (3b)

Here, E0 is the Young’s modulus of a rigidly fixed

console, Dmax = z (l) is the maximum deformation, 8I is

the correction factor, and I = πd4/64 for a cylindrical beam

with diameter d .
The diagram of model I is equivalent to a con-

sole on a ring spring (Fig. 1, b, center). Moment

of force EIz II [4] produced by the spring and con-

sole deflection angle z I are linearly related. The de-

flection of such a console is governed by the so-

lution of equation z IV = 0 with boundary conditions

z (0) = 0, z II(0) = 4z I(0)/L, z II(X) = 0, z III(X) = −F/EI .
It is easy to verify (see also the supplementary materials

in the online version of the paper) that the solution is for-

mula (1).
The diagram of a beam on an elastic foundation with

a suspended console (model II) is shown at the bottom

of Fig. 1, b: the first span is on an elastic foundation

x ∈ [−L, 0], foundation modulus kW ; the second span

(x ∈ [0, l]) is suspended. In the general case, the deflection

of the first span [9] is characterized by a linear combination

of z 1(x) Krylov’s functions Yi (see the table), and the beam

deflection is characterized by polynomial z 2(x):

z 1(x) =

4
∑

i=1

AiYi(βx), β =
4

√

kW

4EI
=

4

√

16kW

πE
d−1,

z 2(x) =

3
∑

i=0

a ix
i . (4)

The moment of inertia of a cylindrical beam section with

diameter d was used for I in (4).
The analytical form of z 1(x) and z 2(x) was

determined (see the supplementary materials in the online

version of the paper) and z 2(x) for boundary condi-

tions z I
1(−L) = z 1(−L) = 0, z II

1 (0) = z II
2 (0), z I

1(0) = z I
2(0)

and z 1(0) = z 2(0), z III
2 (X) = −F/EI and z II

2 (X) = 0.

The basic relations of model II:

formula for fitting to experimental data

ζII(χ) =
[

3K4(2βl3) + 6K3(2βl3)(βlχ) + 6K2(2βl3)(βlχ)2

+ 2
(

K1(2βl3) − 1
)

(βlχ)3
][

3K4(2βl3) + 6K3(2βl3)βl

+ 6K2(2βl3)β2
l + 2

(

K1(2βl3) − 1
)

β3
l

]

−1
,

3 = L/l, βl = βl; (5a)

correction factor

8II = 1 +
3K4(2βl3) + 6K3(2βl3)βl + 6K2(2βl3)β2

l

2
(

K1(2βl3) − 1
)

β3
l

,

E = E08II. (5b)

Krylov’s functions Ki are listed in the table.

Models I and II both have one fitting parameter:

λ (see (3a)) and βl (see (5a)); parameter 3 is known in

each test. Factor 8I may be infinite and is independent

of the substrate stiffness. Factor 8II is large at soft (βl is

small) substrates and ∼ 1 at rigid substrates. It is reasonable

to expect that the Young’s modulus values determined using

model I will be higher than those provided by model II.

The procedure of AFM bend testing for a suspended

object (models I and II) was applied to determine the

Young’s modulus of nanoscrolls of the MgNi2Si2O5(OH)4
composition. A suspension of nanoscrolls, which were

obtained by hydrothermal synthesis [10], in isopropyl

alcohol was prepared. A droplet of this suspension was

deposited onto a TGZ2 silicon calibration grating (NT-
MDT SI, Russia) and left to dry out. The samples were

studied in the PeakForce QNM AFM mode of a BioScope

Catalyst (Bruker, United States) instrument. In addition to

deformation, the topography and peak force error signals,

which are needed to correct the deformation values [6] for
the contribution from the AFM probe slipping within sloped

regions of the sample [11], were recorded. AFM data were

processed in Gwyddion 2.55.

Two profiles were retrieved along a nanoscroll from the

image of corrected deformation [5]. The suspended part of

a nanoscroll in the topography image specified the length

of the first profile; the length of the second profile was

defined by the region of nonzero deformation. The profiles

normalized vertically and horizontally were analyzed using

models I and II for consoles and the algorithm [5] for

bridges with fitting dependence

ζ (χ) = 43(χ − χ2)3
2 + λ

(1 + 2λ)(2 + 3λ)

+ 42(χ − χ2)2
6λ(1 + λ)

(1 + 2λ)(2 + 3λ)
, (6a)
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Figure 2. AFM data on the relief height within TGZ2 regions with MgNi2Si2O5(OH)4 nanoscrolls forming a bridge (a) and a console (b)
(the corresponding data for the signal of corrected deformation D are shown in the insets; in both cases, the signal variation is 0−20 nm,

and the profiles of D were retrieved along the dashed line) and normalized ζ (χ) profiles of a bridge (c) and a console (d). The imaging

parameters are as follows: the stiffness of FMG01 cantilevers is 2.4 (a, c) and 3.6N/m (b, d); the frequency and the amplitude of vertical

probe oscillations are 1 kHz and 150 nm; the horizontal scan rate is 0.3Hz; and peak force F = 80 (a, c) and 15 nN (b, d). In panel a,

bridge span length l = 1701 nm; in panel b, console length l = 417 nm, and the length of the unsuspended beam part is L = 859 nm.

and the following expressions for correction factor 8 and

Young’s modulus E :

8 =
4λ + 2

λ + 2
, ECB =

F
Dmax

l3

3πd4
, E = ECB8, (6b)

where ECB is the Young’s modulus for a fixed-end beam,

χ = X/l, and λ = L/l (see Fig. 1, a).
Out of the two deformation profiles, the profile better

fitted (with a smaller residual) by curves (3a), (5a), or (6a)
was chosen. The average height of the unsuspended part

was taken as the external diameter (d) of a nanoscroll. In-

serting the fitting parameter, the suspended part dimensions,

and the measured F/Dmax value into (3b), (5b), or (6b), we
determined the needed E value.

Fig. 2 presents an example of AFM data for a

bridge and a console. The Young’s modulus of the

bridge was E = 134GPa with fitting parameter λ = 0.42

and correction factor 8 = 1.52 (l = 1701 nm, d = 81 nm,

F/Dmax = 7.2N/m). The results of analysis of the console

data with the use of model II were as follows: E = 63GPa,

βl = 5.47, 8II = 1.66 (l = 417 nm, d = 57 nm, 3 = 2.06,

F/Dmax = 0.81N/m). The results for the same console

provided by model I: E = 63GPa, λ = 0.87, 8I = 1.65.

The exact match between the Young’s modulus values was

accidental.

Large values of βl in model II and small values of λ

in model I correspond to console deflection in accordance

with the χ3 law. Significant deviations from χ3 were

observed more often. According to model I, five out of 18

consoles deflected in accordance with the χ2 law and had

infinite 8I. The value of E averaged over the remaining 13

consoles is E = 496 ± 1057GPa (8I = 7.42± 13.30). The

Young’s modulus for 12 studied bridges is ∼ 4 times lower:

E = 134 ± 148GPa (8 = 1.52 ± 0.56). The analysis of all

18 consoles with the use of model II did, in contrast, yield a

value of E that agreed closely with the Young’s modulus of

bridges: E = 109 ± 86GPa (8II = 3.05± 1.15). Therefore,
the use of model II is preferable in tests of consoles.

Let us consider kW , the coefficient relating the force per

unit length to the displacement of an elastic foundation

in model II. The value of (βld/l)4 averaged over 18

tests is 0.072. According to (4), (βld/l)4 = 16kW /πE
and kW = 0.014E . A rigid cylinder (nanoscroll with

length L), is indented to depth z i into a soft substrate

by force Fi : Fi/L ≈ [πES/4(1− ν2
S )]z i [12], where ES

and νS are the Young’s modulus and the Poisson’s ratio

of the substrate. Thus, ES ≈ kW = 0.014E ≈ 2GPa (E is

the Young’s modulus of a nanoscroll). Since the Young’s

modulus of projections of a SiO2 TGZ2 grating is 70GPa,

the value of ES apparently characterizes the contamination

of the grating and nanoscrolls.

We note in conclusion that a refined procedure for AFM

bend testing of a suspended object was proposed. This

procedure is sensitive to the conditions of fixing of the

object on a substrate. Two models of fixing conditions of

consoles were examined. Only the model of a beam on an

elastic foundation with a suspended console provides results

that agree with the Young’s modulus of bridges.
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