07,09

Образование "первичных" трещин при разрушении кварца

© В.И. Веттегрень 1,2, А.Г. Кадомцев¹, А.В. Пономарев², Р.И. Мамалимов^{1,2}, И.П. Щербаков¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Институт Физики Земли им. О.Ю. Шмидта РАН, Москва, Россия

E-mail: mamalun@mail.ru

Поступила в Редакцию 27 апреля 2022 г. В окончательной редакции 27 апреля 2022 г. Принята к публикации 2 мая 2022 г.

Получен спектр и исследованы временные зависимости сигналов фрактолюминесценции при разрушении поверхности кварца "микрорезанием" перпендикулярно оси (0001). Анализ полученных данных показал, что при разрушении появляются кластеры из 4 самых мелких — "первичных" трещин. Образование трещин связывается с разрушением барьеров, препятствующих движению дислокаций по плоскостям скольжения. Размеры трещин — несколько nm, а скорость роста — несколько m/s. Распределение трещин по размерам имеет степенной вид.

Ключевые слова: "первичные" нанотрещины, фрактолюминесценция, кварц.

DOI: 10.21883/FTT.2022.08.52701.368

1. Введение

Трещины в металлах, полимерах и кристаллах к настоящему времени изучены большим числом методов: фрактолюминесценцией (FL), электронной микроскопией, акустической эмиссией, рентгеновской микротомографией и др. [1-15]. Установлено, что процесс разрушения кристаллов начинается с накопления и объединения самых мелких "первичных" трещин с размерами несколько nm [6-9]. Они образуются при прорыве дислокациями барьеров, препятствующих их движению по плоскостям скольжения [6-9,16]. Установлено, что в напряженном твердом теле трещины вначале накапливаются независимо друга от друга во всем объеме, а затем происходит их объединение [1-15], укрупнение и образование очага разрушения магистральной трещины. Все эти процессы начинаются с образования "первичных" трещин.

В настоящей работе мы исследуем распределение "первичных" трещин по размерам на поверхности кварца в момент его разрушения, когда их концентрация становится столь большой, что они начинают взаимодействовать друг с другом. В этом случае распределение "первичных" трещин P(l) по размерам l может быть описано степенной функцией [10–13]:

$$P(l) \sim l^{\beta},\tag{1}$$

где β , обычно, ≈ -1 [10–13,17,18].

В качестве классического примера можно привести закон Гутенберга–Рихтера — зависимость количества землетрясений от их энергии [19]. Такой же закон соблюдается и для распределения акустических сигналов при разрушении горных пород [10–15]. Природа степенных законов распределения связана с сильной взаимозависимостью рождения и развития ансамбля трещин, которая приводит к их укрупнению и лавинообразному разрушению тела [20,21].

2. Объект и методы исследования

Образцы из монокристалла кварца разрушали методом "микрорезания" поверхности. Схема установки приведена в [6,7]. С этой целью были приготовлены образцы, в виде параллелепипедов с размерами $2 \times 2 \times 4$ сm, ось (0001) которых параллельна их длинному ребру. Один из торцов параллелепипеда прижимали к стальному диску, на поверхности которого приклеены микрокристаллы алмаза с линейными размерами $\approx 7 \mu$ m. Пластина посажена на ось электромотора. После его включения диск начинал вращаться со скоростью 5 m/s, микрокристаллы "разрезали" поверхность кристалла кварца, что приводило к FL (фотография установки приведена в [6]).

Спектр FL кварца (рис. 1) регистрировали оптоволоконным спектрометром AvaSpec-ULSi2048L-USB2 OE.

Для исследования временных зависимостей интенсивности FL излучение фокусировали на поверхность фотоэлектронного умножителя PEM-136. Электрическое напряжение с его выхода подавали на вход аналогово-цифрового преобразователя ADC — 3112 фирмы "ACTACOM". Напряжение на выходе ADC через каждые 2 ns записывалось в память компьютера.

Кварц имеет трехмерный каркас из тетраэдров SiO₄. Прорыв барьеров и образование "первичных" трещин в этом кристалле происходит путем разрыва —Si–O–Si-связей. Образующиеся при разрывах свободные радика-

Рис. 1. Спектр FL кварца.

лы — \equiv Si-O• находятся в возбужденном электронном состоянии. При переходе в основное состояние энергия возбуждения выделяется в виде излучения в видимой области спектра — FL. Анализируя вид и динамику накопления сигналов FL с временным разрешением 2 ns, можно проследить за прорывами барьеров и образованием "первичных" трещин.

3. Спектр и динамика FL

В спектре FL (рис. 1) при разрушении кварца наблюдалось 2 полосы: интенсивная — 2.12 и слабая — 3.3 eV. Первая полоса соответствует радикалам \equiv Si–O•, а вторая (3.3 eV) — центрам FL — [AlO₄/*M*⁺]⁰, где *M*⁺ — Li⁺, Na⁺, H⁺ [22,23], расположенным на берегах "первичных" нанотрещин. Эти трещины в кварце образуются при прорыве барьеров, препятствующих движению дислокаций по плоскостям скольжения [6,7]. При "микрорезании" кристаллов кварца перпендикулярно оси (0001) нанотрещины образуют кластеры из 4 штук, появляющихся друг за другом через $\approx 8-15$ ns [6,7]. Появление каждой трещины приводит к образованию максимума в сигнале FL [24]. Поэтому временная зависимость FL содержит 4 наложенных максимума в каждом сигнале (рис. 2).

Всего было проанализировано 3300 сигналов FL. Длительность каждого сигнала $\tau \sim 50$ ns. Интенсивность сигналов, пропорциональная числу трещин, изменялась на порядок (рис. 2). Первый максимум в ≈ 2 раза больше остальных трех максимумов в кластере. Он соответствует самым крупным трещинам в кластере.

4. Распределение "первичных" трещин по размерам

На рис. 3 показано распределение интенсивности I_m первого максимума в сигналах FL в двойных логарифмических координатах. До $I_m \approx 200 \,\mu\text{V}$ она линейная, тангенс угла наклона прямой линии ≈ -1 . Выше $200 \,\mu\text{V}$ зависимость становится нелинейной. В наших условиях измерения интенсивности, ее значение $I_m = 1 \,\mu\text{V}$ соответствует $\approx 0.165 \,\text{nm}$ (метод оценки размера трещины по интенсивности FL описан в [6]). Это показывает, что распределение "первичных" трещин по размеру меньшему, чем $l \approx 200 * 0.165 \approx 30 \,\text{nm}$, подчиняется степенному закону.

Другой способ проверить это заключение — найти величину отношения расстояния между кластерами L к их размеру l. В работе [23] было найдено, при условии, что трещины имеют вид шара, величина $L/l \approx 3$.

Обратимся вновь к рис. 3. Из него следует, что интервал между максимумами — $T \approx 120$ ns, а время "жизни" кластеров, как отмечалось выше $\tau \approx 50$ ns. Тогда и $T/\tau \approx L/l \approx 2.4$. Этот результат согласуется с предположением о том, что распределение кластеров

Рис. 2. Фрагмент временной зависимости сигналов FL (a) и одиночный сигнал FL (b).

Рис. 3. Распределения интенсивности первого максимума в сигналах FL (a) и интервалов между сигналами (b).

"первичных" нанотрещин по размеру имеет степенной вид.

5. Заключение

При "микрорезании" поверхности кристаллов кварца образуются "первичные" нанотрещины, размер которых — несколько nm. На поверхности берегов трещин расположены возбужденные ≡ Si-O• радикалы, которые образуются при разрывах Si-O-Si связей кристаллической решетки кварца. При релаксации возбуждения возникают сигналы FL. Распределение "первичных" трещин по размерам описывается степенной зависимостью. Это справедливо для размеров трещин менее 30 nm.

Финансирование работы

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант РФФИ № 20-05-00155а) и в рамках государственного задания Министерства науки и высшего образования Российской Федерации Института физики Земли им. О.Ю. Шмидта РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] П.Г. Черемской, В.В. Слезов, В.И. Бетехтин. Поры в твердом теле. Энергоатомиздат, М. (1990). 376 с.
- [2] В.И. Бетехтин, А.Г. Кадомцев. ФТТ 47, 5 (2005).
- [3] В.Р. Регель, А.И. Слуцкер, Э.Е. Томашевский. Кинетическая природа прочности твердых тел. Наука, М. (1974). 560 с.

- [4] В.А. Петров, А.Я. Башкарев, В.И. Веттегрень. Физические основы прогнозирования долговечности конструкционных материалов. Политехника, СПб (1993). 475 с.
- [5] В.И. Веттегрень, А.В. Пономарев, Р.И. Мамалимов,
 И. П. Щербаков. Физика Земли. 6, 106 (2020).
 DOI: 10.31857/S0002333720060125.
- [6] В.И. Веттегрень, А.Г. Кадомцев, И.П. Щербаков, Р.И. Мамалимов, Г.А. Оганесян. ФТТ 3, 1120 (2021). DOI: 10.21883/FTT.2021.08.51165.060.
- [7] В.И. Веттегрень, А.Г. Кадомцев, И.П. Щербаков, Р.И. Мамалимов, Г.А. Оганесян. ФТТ 63, 1594 (2021).
 DOI: 10.21883/FTT.2021.10.51410.122.
- [8] В.И. Веттегрень, А.В. Пономарев, Р.И. Мамалимов, И.П. Щербаков. Физика Земли, 6, 87 (2021).
 DOI: 10.31857/S0002333721060119.
- [9] D. Amitrano. J. Geophys. Res. 108, B1 2444, 19-1-19-15 (2003). DOI: 10.1029/2001JB000680.
- [10] Г.А. Соболев, А.В. Пономарев. Физика землетрясений и предвестники. Наука, М. (2003). 270 с.
- [11] D.A. Lockner, J.D. Byerlee, V. Kuksenko, V. Ponomarev, A. Sidorin. In: Fault Mechanics and Transport Properties of Rocks / Eds B. Evans, T.F.L. Wong. Academic Press (1992). P. 3.
- [12] S. Wiemer, M. Wyss. Adv. Geophys. 45, 259 (2002).
- [13] Е.Е. Дамаскинская, И.А. Пантелеев, Д.Р. Гафурова, Д.И. Фролов. ФТТ 60, 1353 (2018). DOI: http://dx.doi.org/10.21883/FTT.2018.07.46122.017.
- [14] Е.Е. Дамаскинская, В.Л. Гиляров, Ю.Г. Носов, К.М. Подурец, А.А. Калоян, Д.В. Корост, И.А. Пантелеев. ФТТ 64, 455 (2022). DOI: 10.21883/FTT.2022.04.52185.262.
- [15] A.H. Cottrell. Theory of Crystal Dislocations. Gordon and Breach, N.Y. (1964). 91 p.
- [16] В.И. Владимиров. Физическая природа разрушения металлов. Металлургия, М. (1984). 280 с.
- [17] P. Bak. How Nature Works: the Science of Self-Organized Criticality. Springer-Verlag (1996). 212 c.
- [18] T.H.W. Goebel, D. Schorlemmer, T.W. Becker, G. Dresen, C.G. Sammis.Geophys. Res. Lett. 40, 2049 (2013). DOI: 10.1002/grl.50507.

- [19] B. Gutenberg, C. Richter. Seismicity of the Earth and Associated Phenomena. 2nd ed. Princeton Univ. Press, N.Y. (1954). 295 p.
- [20] Г. Николис, И. Пригожин. Самоорганизация в неравновесных системах. Мир, М. 1979). 512 с.
- [21] M.A. Stevens, M.R. Kalceff. Phillips Phys. Rev. B 52, 5, 3122 (1995).
- [22] J. Götze. Microsc. Microanal. 18, 1270 (2012).
 DOI: 10.1017/S1431927612001122.
- [23] N.J. Turro, V. Ramamwrite, J.C. Scaiano. Modern Molecular Photochemistry. Columbia University: University Sci. Press. (2010). 1085 p.
- [24] Г.А. Соболев, В.И. Веттегрень, С.М. Киреенкова, В.Б. Кулик, Р.И. Мамалимов, Ю.А. Морозов, А.И. Смульская, И.П. Щербаков. Нанокристаллы в горных породах. ГЕОС, М. (2016). 102 с.

Редактор Д.В. Жуманов