14

Модель линейного ингибирования активности фермента в ходе полимеразной цепной реакции

© А.А. Фёдоров,¹ Д.Г. Сочивко,² Д.А. Варламов,² В.Е. Курочкин¹

¹ Институт аналитического приборостроения РАН, 190103 Санкт-Петербург, Россия ² ООО "Синтол", 127550 Москва, Россия e-mail: f_aa@mail.ru

Поступило в Редакцию 29 декабря 2021 г. В окончательной редакции 11 марта 2022 г. Принято к публикации 11 марта 2022 г.

> В настоящее время имеется множество моделей полимеразной цепной реакции, в том числе претендующих на точные количественные оценки кинетики компонентов реакции. При этом отсутствуют модели, позволяющие проводить такие оценки в случаях постановки реакции в условиях, отличающихся от оптимальных. Предложена модель полимеразной цепной реакции, позволяющая описать кинетику ее продуктов в условиях неоптимальной температуры стадии элонгации. Предложено математическое описание работы фермента в неоптимальных условиях, учитывающее ингибирование активности фермента продуктом реакции.

> Ключевые слова: модель ПЦР, неоптимальные условия ПЦР, ингибирование полимеразы, модель Михаэлиса-Ментен.

DOI: 10.21883/JTF.2022.07.52650.332-21

Введение

Метод полимеразной цепной реакции (ПЦР) является на сегодняшний день одним из основных аналитических инструментов в генетических исследованиях. В ходе ПЦР при участии фермента происходит циклическое копирование целевого фрагмента молекулы, анализируемой ДНК. С помощью метода ПЦР в реальном времени (ПЦР-РВ) проводят количественный анализ специфических фрагментов ДНК [1], а последующее "плавление" продукта реакции может предоставить важную информацию о специфичности проведенной реакции [2]. Регистрация результатов ПЦР-РВ — накопление копий анализируемого фрагмента ДНК проводится либо с помощью интеркаляционных красителей, либо гибридизационных зондов [3] — флуоресцентных репортеров, сигнал которых пропорционален количеству ДНК в реакционном объеме.

Несмотря на более чем тридцатилетнюю историю использования метода ПЦР как количественного, математические модели, позволяющие количественно описать кинетику компонентов в ПЦР, до недавнего времени отсутствовали. В основе количественных оценок метода ПЦР-РВ лежит использование референсных проб с известной концентрацией. Данный подход требует значительных ресурсозатрат как разработчиков реагентной, так и программно-аппаратной баз. Кроме того, такой подход может приводить к ошибкам вследствие различия физико-химических условий протекания реакции в объемах с референсными и анализируемыми пробами. Появление математического аппарата, позволяющего по заданным параметрам реакции смоделировать кинетическую кривую сигнала флуоресцентного репортера, создало бы хороший научно-технический задел для дальнейшего развития метода ПЦР-РВ. Особенно актуальной представляется данная задача для реализации ПЦР в нестандартном формате, для решения частных задач, например, экспресс-диагностики заболеваний в формате микрочипа [4].

Описание массообмена и кинетики компонентов в ПЦР на основе дифференциальных уравнений химической и ферментативной кинетики является единственным способом, позволяющим описать процесс количественно. В рамках данного подхода был предложен целый ряд моделей, учитывающих те или иные составляющие ПЦР [5-7], однако экспериментальная верификация данных моделей фактически не проводилась. Это позволяет утверждать, что представленные модели позволяют оценить лишь некоторые общие закономерности кинетики компонентов в ходе ПЦР. В работах [8,9] впервые были предложены модели ПЦР, позволяющие имитировать экспериментальные ПЦР-РВ кривые с высокой точностью, как в случае использования гибридизационного зонда, так и интеркаляционного красителя. Однако моделирование и экспериментальная верификация предложенных моделей ПЦР-РВ были выполнены для случая оптимальных экспериментальных условий, а именно при оптимальной температуре этапа элонгации — 62°С, подобранной и рекомендованной производителем используемой тест-системы. В то же время весьма интересной, в том числе с практической точки зрения, представляется возможность модельного исследования кинетики компонентов ПЦР в условиях, отличных от оптимальных. В связи с этим была оценена

Рис. 1. Аппроксимация экспериментальной ПЦР-РВ кривой (ромбы) с помощью предложенной ранее ПЦР-РВ модели (сплошная линия). Для получения экспериментальной кривой был использован набор реагентов для анализа гена Fc фрагмента IgG иммуноглобулинового рецептора IIIа человека (*FCGR3A*, GenBank NG_009066.1) производства ЗАО Синтол (г. Москва). Концентрация праймера $C_r(0) = 2 \cdot 10^{-7}$ М, зонда $C_Z(0) = 1.2 \cdot 10^{-7}$ М, фермента — 5 и. Количество ДНК в модельном образце составляло 10⁶ копий на реакцию. Графики нормированы на максимальные значения.

возможность предложенной модели аппроксимировать экспериментальные ПЦР-РВ кривые, полученные при установке температуры элонгации, отличающейся от оптимума.

Полученные на той же самой ПЦР тест-системе и том же амплификаторе Bio-Rad CFX96 экспериментальные данные, но уже в случае не оптимальной температуры элонгации, показали, что предложенный математический аппарат описывает получающиеся экспериментальные ПЦР-РВ кривые значительно хуже. На рис. 1 продемонстрирована аппроксимация данной моделью экспериментальной кривой, полученной при температуре этапа элонгации 57°С, что на 5°С ниже рекомендованной.

Представленная на рис. 1 модельная кривая является оптимизированной кривой. Процесс оптимизации заключался в подборе следующих параметров: концентрации исходной ДНК, констант связывания праймера и зонда с одноцепочечной ДНК, а также параметра активности фермента, для которых среднеквадратичное отклонение (СКО) модельной кривой от экспериментальной было бы минимальным. Для оптимального набора параметров, указанных в подписи к рисунку, минимальное значение СКО составило 0.015, что почти на два порядка больше, чем демонстрировала данная модель при аппроксимации экспериментальных кривых ПЦР-РВ, полученных при оптимальной температуре элонгации. Таким образом, при постановке ПЦР в неоптимальных условиях, а именно отклонении температуры от рекомендованных производителем значений, предложенная ранее модель теряет свою адекватность.

Очевидно, это обусловлено неспособностью модели описать некоторую температуроуправляемую составля-

ющую ПЦР. Таких основных составляющих в самом процессе и соответственно в предложенной модели два. Во-первых, это взаимодействие праймера и зонда с одноцепочечной ДНК-мишенью. Однако этот процесс достаточно простой, представляет собой фактически одностадийную бимолекулярную реакцию, характеризующуюся своей константой скорости. Поскольку вариация данных констант скорости заложена в модель и используется при аппроксимации экспериментальных данных, то потеря адекватности работы модели из-за данного фактора кажется крайне маловероятной. Другим процессом, интенсивность которого значительно зависит от температуры, является работа фермента.

1. Математическое описание активности фермента в ходе ПЦР

В ряде первых работ по моделированию ПЦР было показано, что формализм Михаэлиса—Ментен "вроде бы" работает и для такой сложной системы как ПЦР [10,11], хотя он математически выводится для случая значительного количественного превосходства субстрата над ферментом [12]. Модели ПЦР, предложенные позднее, в лучшем случае учитывали работу фермента именно в таком неявном виде, как приближение Михаэлиса—Ментен [13]:

$$\frac{dC_{\text{Product}}(t)}{dt} = \frac{V_{\text{max}}}{K_M + C_{\text{Substrate}}(t)} C_{\text{Substrate}}(t),$$

где V_{max} и K_M — константы, характеризующие активность фермента, $C_{\text{Product}}(t)$ и $C_{\text{Substrate}}(t)$ — концентрации продукта реакции и ее субстрата в момент времени t. Именно в таком виде учитывалась работа фермента в разработанной ранее модели, результаты которой хорошо согласовывались с экспериментальными данными. Тем не менее вследствие значительного расхождения модельных и экспериментальных кривых при снижении температуры элонгации было решено найти другой, более точный подход к описанию работы фермента.

Надо отметить, что работа фермента по включению нуклеотидов в синтезируемую цепь ДНК уже сама по себе является сложным и многостадийным процессом. Если учитывать образование всех промежуточных комплексов, то включение одного нуклеотида проходит в семь стадий-реакций, каждая из которых имеет свои константы ассоциации и диссоциации [14].

Таким образом, аппроксимация этого процесса простой моделью Михаэлиса—Ментен, вероятно, является слабым звеном предложенной ранее модели. Поскольку использование в модели ПЦР полной схемы работы фермента, представленной в [14], не представляется возможным, ввиду большого числа дополнительных неизвестных параметров, было решено пойти по пути поиска эмпирического описания работы фермента некоторым простым способом, который, с одной стороны, учитывал бы важные для нашей задачи молекулярные аспекты его работы, с другой стороны, давал бы адекватное описание его работы в макроскопическом масштабе.

Описанию работы ДНК полимеразы посвящено достаточно много обзоров и работ [14–17]. Исследования проводились для различных полимераз, в различных условиях, поэтому и характеристики взаимодействия для этих полимераз заметно отличались. Тем не менее по данным литературным источникам удалось сформулировать три важных для нас аспекта этого взаимодействия:

 фермент взаимодействует как с двойными цепями ДНК, так и с одиночными, образуя прочный комплекс;

2) после связывания фермента с ДНК наиболее вероятным событием является движение ("скольжение") фермента вдоль цепи ДНК;

3) если в процессе движения фермент находит на одноцепочечной ДНК праймер, т.е. свое "рабочее место", то начинает синтез комплементарной цепи.

Приведенные факты позволяют сделать вывод об ингибировании работы фермента продуктом реакции в ходе синтеза комплементарной цепи при ПЦР.

По аналогии со случаем простого линейного ингибирования в ферментативной кинетике [14] нами было предложено простое эмпирическое выражение, учитывающее ингибирование реакции ее продуктом:

$$\frac{dC_{\text{Product}}(t)}{dt} = \frac{V_{\text{max}}}{K_M + A \sum C_{dsDNA}(t)} C_{\text{Substrate}}(t), \quad (1)$$

где V_{max} и K_M — константы, используемые для характеристики активности фермента, $\sum C_{dsDNA}(t)$ — сумма концентраций продуктов реакции в момент времени t, A — константа, позволяющая масштабировать эффект ингибирования.

2. Модель

F

Схема реакций предлагаемой модели ПЦР-РВ для описания кинетики компонентов ПЦР на одном цикле выглядит следующим образом:

Первичные реакции:

$$F + \Pr \underset{k_{-1}}{\overset{k_1}{\leftrightarrow}} S, \ F' + \Pr' \underset{k_{-1}}{\overset{k_1}{\leftrightarrow}} S', \ F + Z \underset{k_{-1}}{\overset{k_1}{\leftrightarrow}} FZ,$$

$$F' + Z' \underset{k_{-1}}{\overset{k_1}{\leftrightarrow}} FZ',$$

$$S + Z' \underset{k_{-1}}{\overset{k_1}{\leftrightarrow}} SZ, \ S' + Z' \underset{k_{-1}}{\overset{k_1}{\leftrightarrow}} SZ', \ FZ + \Pr \underset{k_{-1}}{\overset{k_1}{\leftrightarrow}} SZ,$$

$$FZ' + \Pr' \underset{k_{-1}}{\overset{k_1}{\leftrightarrow}} SZ',$$

$$+ F' \xrightarrow{k_2} P_2, \ F + S' \xrightarrow{k_2} P_2 + \Pr', \ F' + S \xrightarrow{k_2} P_2 + \Pr,$$

$$F + FZ' \xrightarrow{k_2} P_2 + Z',$$

$$F' + FZ \xrightarrow{k_2} P_2 + Z, \ F + SZ' \xrightarrow{k_2} P_2 + \Pr' + Z',$$

$$F' + SZ \xrightarrow{k_2} P_2 + \Pr + Z.$$

Вторичные реакции:

$$S + S' \xrightarrow{k_2} P_2 + \Pr' + \Pr, \ S + FZ' \xrightarrow{k_2} P_2 + \Pr + Z',$$

$$S' + FZ \xrightarrow{k_2} P_2 + \Pr' + Z,$$

$$S + SZ' \xrightarrow{k_2} P_2 + \Pr + \Pr' + Z',$$

$$S' + SZ \xrightarrow{k_2} P_2 + \Pr + \Pr' + Z,$$

$$FZ + FZ' \xrightarrow{k_2} P_2 + Z + \Gamma' + Z',$$

$$FZ' + SZ' \xrightarrow{k_2} P_2 + Z + \Pr' + Z',$$

$$FZ' + SZ \xrightarrow{k_2} P_2 + Z + \Pr + \Gamma' + Z',$$

$$SZ + SZ' \xrightarrow{k_2} P_2 + Z + \Pr + \Pr' + Z'.$$
Peaktuu cuntesa продукта:

$$S \xrightarrow{k_m} P_1 \quad S' \xrightarrow{k_m} P'.$$

$$S \xrightarrow{k_m} P_1, S' \xrightarrow{k_m} P'_1,$$
$$SZ \xrightarrow{k_m} P_1Z, SZ' \xrightarrow{k_m} P_1Z'.$$

Здесь используются следующие обозначения: F и F' — две одиночные комплементарные цепи двойной исходной цепи ДНК; Pr и Pr' — праймеры к каждой из комплементарных цепей F и F'; S и S' — комплексы фрагмента ДНК и соответствующего праймера (S = F + Pr, S' = F' + Pr'); Z и Z' — зонды к каждой из цепей F и F'; FZ и FZ' — комплексы фрагмента ДНК и соответствующего зонда. Здесь и далее не будем использовать двойное штрихование и будем писать FZ' вместо F'Z'; SZ и SZ' — комплексы фрагмента ДНК с соответствующими праймерами и зондами.

Все промежуточные комплексы, в случае неучастия в синтезе комплементарной цепи, диссоциируют при нагревании на исходные компоненты. Для продуктов реакции введем такие обозначения: P_1 и P'_1 — двойная цепь, полученная синтезом и не внесшая вклад во флуоресцентный отклик системы; P_1Z и P_1Z' — двойная цепь, полученная синтезом и внесшая вклад во флуоресцентный отклик системы; P_2 — двойная цепь, полученная синтезом и внесшая вклад во флуоресцентный отклик системы; P_2 — двойная цепь, полученная гибридизацией одиночных.

Кинетика синтеза продуктов реакции P_1Z и P_1Z' описывалась выражением (1). Здесь следует отметить, что на практике используется зонд только к одной из комплементарных цепей Z, однако для упрощения модели вводился в рассмотрение зонд ко второй цепи Z'. Как и ранее, в модели рассматриваются процессы только на одной из комплементарных цепей ДНК, что позволяет упростить систему уравнений модели:

$$\frac{dC_F}{dt} = -k_1 C_F C_{Pr} + k_1 C_S - k_1 C_F C_Z + k_{-1} C_{FZ}$$
$$-k_2 C_F C_F - k_2 C_S C_{FZ} - k_2 C_F C_{SZ},$$
$$\frac{dC_{Pr}}{dt} = -k_1 C_F C_{Pr} + k_{-1} C_S - k_1 C_{FZ} C_{Pr} + k_{-1} C_{SZ}$$
$$+ k_2 C_S C_F + k_2 C_F C_{SZ} + k_2 C_S C_S + k_2 C_S C_{FZ} + 2k_2 C_S C_{SZ},$$

Журнал технической физики, 2022, том 92, вып. 7

$$\frac{dC_S}{dt} = k_1 C_F C_{Pr} - k_{-1} C_S - k_1 C_S C_Z + k_{-1} C_{SZ} - k_2 C_S C_F
- k_2 C_S C_S - k_2 C_S C_{FZ} - k_2 C_S C_{SZ} - k_M C_S,
\frac{dC_Z}{dt} = -k_1 C_F C_Z + k_{-1} C_{FZ} - k_1 C_S C_Z + k_{-1} C_{SZ}
+ k_2 C_F C_{FZ} + k_2 C_F C_{SZ} + k_2 C_S C_{FZ} + k_2 C_S C_{SZ}
+ k_2 C_F Z_F Z_F + 2k_2 C_F Z_S Z_F + k_2 C_S Z_S,
\frac{dC_{FZ}}{dt} = k_1 C_F C_Z + k_{-1} C_{FZ} - k_1 C_{FZ} C_{Pr} + k_{-1} C_{SZ}
- k_2 C_F C_{FZ} - k_2 C_S C_{FZ} - k_2 C_{FZ} C_{FZ} - k_2 C_{FZ} C_{SZ},
\frac{dC_{SZ}}{dt} = k_1 C_{FZ} C_{Pr} - k_{-1} C_{SZ} + k_1 C_S C_Z - k_{-1} C_{SZ}
- k_2 C_F C_{SZ} - k_2 C_S C_{SZ} - k_2 C_{FZ} C_{SZ} - k_2 C_{SZ} C_{SZ} - k_M C_{SZ},
\frac{dC_{P_2}}{dt} = k_2 C_F C_F + 2k_2 C_S C_F + 2k_2 C_F C_{FZ} + 2k_2 C_F C_{SZ}
+ k_2 C_S C_S + 2k_2 C_S C_F Z_F + 2k_2 C_S C_S Z_F + k_2 C_F C_{FZ}
+ 2k_2 C_{FZ} C_{SZ} + k_2 C_S C_F,
\frac{dC_{P_1}}{dt} = \frac{V_{max}}{K_M + A(C_{P_1} + C_{P_1Z} + C_{P_2})} C_S,
\frac{dC_{P_1Z}}{dt} = k_2 C_F C_F + k_2 C_F C_F C_F C_S C_F, (2)$$

где *C*_{*D*} — концентрация компонента *D*.

Моделирование проводили с помощью программы, написанной на языке C++. Система (2) решалась численно методом Рунге-Кутты 4-го порядка. Программа позволяла повторить модельные вычисления заданное количество раз, имитируя необходимое количество циклов ПЦР.

3. Результаты и обсуждение

Для различных комбинаций параметров V_{max} , k_1 , $C_F(0)$ и A был проведен анализ адекватности работы предложенной модели. Сравнение с экспериментальными данными было проведено как для случая оптимальной температуры элонгации 62°С, так и для случая пониженной температуры 57°С (экспериментальные данные были получены ранее). В результате анализа было обнаружено, что при значении параметра A = 0.2удалось максимально точно описать экспериментальные кривые как для оптимальной температуры элонгации, так и пониженной. Соответствующие результаты аппроксимации представлены на рис. 2 и 3.

Проведенные исследования позволяют сделать вывод о том, что адекватная модель ПЦР должна учитывать ингибирование работы фермента продуктом реакции. Простая эмпирическая формула учета этого ингибирования может быть представлена выражением (1). Адекватность работы моделей, предложенных ранее для

Рис. 2. Аппроксимация экспериментальной ПЦР-РВ кривой (ромбы), полученной при температуре элонгации 62° С, с помощью предложенной ПЦР-РВ модели при A = 0.2 (сплошная линия). Графики нормированы на максимальные значения.

Рис. 3. Аппроксимация экспериментальной ПЦР-РВ кривой (ромбы), полученной при температуре элонгации 57°С, с помощью предложенной ПЦР-РВ модели при A = 0.2 (сплошная кривая). Графики нормированы на максимальные значения.

оптимальных условий, может быть объяснена тем, что в таких условиях в течение стадии элонгации на каждом цикле количество синтезированных копий приближается к теоретическому порогу — двукратному увеличению количества копий мишени, приходящихся на начало цикла. В связи с чем, кинетика синтеза в течение цикла элонгации не оказывает существенного влияния на количество копий мишени по окончании цикла. В неоптимальных условиях количество копий ДНК не успевает достигнуть максимального значения, а потому, модель ПЦР, описывающая более точно процесс синтеза, оказывается в данном случае наиболее адекватной.

Финансирование работы

Работа выполнена в рамках Государственного задания Министерства науки и высшего образования РФ ИАП РАН № 075-00761-22-00, тема "Совершенствование методов медико-биологического контроля живых тканей и генетического анализа, их методического, программного и приборного обеспечения для научных исследований и практического применения", код FFZM-2022-0010.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- О.С. Антонова, Г.Е. Рудницкая, А.Н. Тупик, А.Л. Буляница, А.А. Евстрапов, В.Е. Курочкин. Научное приборостроение, **21** (4), 5 (2011).
- [2] D.A. Belov, A.L. Bulyanitsa, N.A. Korneva, A.S. Aldekeeva, Yu.V. Belov. J. Phys. Conf. Ser., 2103 (4), 012057 (2021). DOI: 10.1088/1742-6596/2103/1/012057
- [3] С.М. Бикбулатова, Д.А. Чемерис, Ю.М. Никоноров, О.И. Машков, Р.Р. Гарафутдинов, А.В. Чемерис, В.А. Вахитов. Вестник Башкирского ун-та, 17 (1), 59 (2012).
- [4] Н.А. Есикова, Н.Н. Гермаш, А.А. Евстрапов. Научное приборостроение, **30** (4), 21 (2020). DOI: 10.18358/np-30-4-i2126
- [5] J.L. Gevertz, S.M. Dunn, C.M. Roth. Biotechnol. Bioeng., 92 (3), 346 (2005). DOI: 10.1002/bit.20617
- [6] M.V. Smith, C.R. Miller, M. Kohn, N.J. Walker, C.J. Portier. BMC Bioinformatics, 8 (1), 409 (2007). DOI: 10.1186/1471-2105-8-409
- [7] K. Marimuthu, C. Jing, R. Chakrabarti. Biophys. J., 107 (7), 1731 (2014). DOI: 10.1016/j.bpj.2014.08.019
- [8] A.A. Федоров, Д.Г. Сочивко, Д.А. Варламов, B.E. Курочкин. ЖТФ, **88**(1), 1478 (2018).DOI: 10.21883/JTF.2018.10.46489.6-18 A.A. Fedorov, D.G. Sochivko, D.A. Varlamov, V.E. Kurochkin. Tech. Phys., **63** (10), 1430 (2019). DOI: 10.1134/S1063784218100109]
- [9] А.А. Федоров, Д.Г. Сочивко, Д.А. Варламов. ЖТФ, 90 (9), 1581 (2020). DOI: 10.21883/JTF.2020.09.49693.422-19
 [А.А. Fedorov, D.G. Sochivko, D.A. Varlamov. Tech. Phys., 65 (9), 1516 (2020). DOI: 10.1134/S1063784220090169]
- [10] J. Petruska, M.F. Goodman, M.S. Boosalis, L.C. Sowers, C. Cheong, I.Jr. Tinoco. Proc. Natl. Acad. Sci. USA, 85 (17), 6252 (1988). DOI: 10.1073/pnas.85.17.6252
- [11] R.K. Saiki, D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, H.A. Erlich. Sci., 239 (1), 487 (1988). DOI: 10.1126/science.2448875.
- [12] Э. Корниш-Боуден. Основы ферментативной кинетики (Мир, М., 1979.), с. 280. [Пер. с англ.: A. Cornish-Bowden Principles of Enzyme Rinetics (Academic Press, Butterworth–Heinemann, 1976)]
- [13] S. Schnell, C. Mendoza. J. Theor. Biol., 184 (4), 433 (1997).
 DOI: 10.1006/jtbi.1996.0283
- [14] J.A. Brown, Z. Suo. Biochemistry, 48 (11), 7502 (2009).
 DOI: 10.1021/bi9005336
- [15] A. Langer, M. Schräml, R. Strasser, H. Daub, Th. Myers,
 D. Heindl, U. Rant. Sci. Rep., 15 (51), 12066 (2015).
 DOI: 10.1038/srep12066
- [16] C. Monico, M. Capitanio, G. Belcastro, F. Vanzi, F.S. Pavone. Int. J. Mol. Sci., 14 (2), 3961 (2013). DOI: 10.3390/ijms14023961
- [17] D. Daitchman, H.M. Greenblatt, Y. Levy. Nucl. Acids Res., 46 (12), 5935 (2018). DOI: 10.1093/nar/gky436