01 Исследование и разработка безразрядной изоляции проводов космического применения

© С.Ю. Толстиков, В.С. Саенко, А.П. Тютнев

Учебно-исследовательская лаборатория функциональной безопасности космических аппаратов и систем, Московский институт электроники и математики им. А.Н. Тихонова, Национальный исследовательский университет "Высшая школа экономики", 123458 Москва. Россия

e-mail: stolstikov@hse.ru

Поступило в Редакцию 31 января 2022 г. В окончательной редакции 9 марта 2022 г. Принято к публикации 10 марта 2022 г.

Предложена физическая модель заряжения цилиндрического слоя изоляции проводов космического применения при воздействии изотропного электронного излучения с равномерной по объему диэлектрика инжекцией электронов. Получено аналитическое решение дифференциального уравнения первого порядка, вытекающего из предложенной модели заряжения. Разработано и получило государственную регистрацию программное обеспечение, позволяющее проводить полный расчет физических параметров проводов космического применения устойчивых к эффектам электризации. Полученные результаты предложено использовать для моделирования и тестирования проводов космического применения для полного исключения физической возможности возникновения электростатических разрядов типа "изоляция—жила" при функционировании (космического аппарата) на орбите во время геомагнитных возмущений в магнитосфере Земли.

Ключевые слова: электризация, объемное заряжение, полимерная изоляция, темновая проводимость, устойчивость к электростатическим разрядам.

DOI: 10.21883/JTF.2022.06.52504.20-22

Введение

В работе [1] сделан вывод, что более половины отказов бортовой электроники (БЭ) космических аппаратов (КА) на геостационарной и высокоэллиптических орбитах происходят в результате электризации КА, сопровождающейся возникновением электростатических разрядов (ЭСР), которые создают определенные сложности в работе БЭ. Во-первых, это очень короткий 3-5 ns передний фронт разрядного импульса, во-вторых, амплитуда этого импульса достигает величины 100 А [1]. Эти параметры ЭСР позволяют наводить значительные токи в цепях БЭ, что приводит к обратимым и необратимым отказам в ее работе [2]. И если в настоящее время проблема с электризацией внешней поверхности КА практически решена за счет правильного выбора конструктивных и материаловедческих решений, то сегодня на повестке дня стоит актуальный вопрос защиты БЭ от поражающих факторов внутренней электризации. Внутренняя электризация определяется наличием в спектре радиационных поясов Земли электронов с энергией 1-2 MeV и выше, которые с некоторой потерей своей энергии проходят сквозь корпус КА и заряжают диэлектрики БЭ внутри корпуса. Поэтому на сегодняшний день наиболее остро стоит вопрос защиты электронных средств КА от эффектов внутренней электризации. Благодаря данным, полученным с аппарата CRRES [3], ЭСР наблюдаются даже при незначительном

суммарном флюенсе электронов порядка 2 · 10¹⁰ e/cm², набранном за 10 h. Внутренняя электризация КА приводит к накоплению объемных зарядов в полимерных корпусах аппаратуры [4] и полупроводниковых приборов [5], а также в диэлектриках печатных плат [6]. В цитируемых работах даны пути решения проблем электризации для диэлектриков полимерных корпусов полупроводниковых приборов и печатных плат. В настоящей работе рассмотрен вопрос защиты от эффектов электризации проводов космического применения. При нахождении космического аппарата в околоземной плазме происходит накопление зарядов, в том числе в диэлектриках проводов и кабелей КА. Предметом данного исследования является процесс накопления объемного заряда в изоляции проводов (рис. 1), а также поиск возможностей для предотвращения электростатических разрядов между изоляций и токопроводящей жилой.

1. Физическая модель заряжения изоляции проводов

Все металлические элементы конструкции КА гальванически связаны между собой, причем не только за счет обычных резьбовых соединений, но обязательно с помощью перемычек с контролируемым переходным сопротивлением. Электрическая емкость КА относительно окружающей его космической плазмы рассчитывается как емкость уединенной сферы и составляет 150–200 рF. При нахождении KA на геостационарной орбите зарядка и разрядка подобной сферы занимает доли секунды. Заряд, инжектированный из плазмы в диэлектрик, сохраняется намного дольше и определяется максвелловским временем релаксации. Поэтому при проектировании проводов KA следует избегать использования высококачественных диэлектриков, отдавая предпочтение диэлектрикам с повышенной проводимостью. Здесь следует отметить, что повышенная проводимость изоляции проводов может полностью исключать возникновение ЭСР и при этом не ухудшать работу БЭ. Это убедительно показано нами в работе [6].

В настоящее время в КА до сих пор применяются диэлектрики с недостаточной для исключения ЭСР проводимостью [7].

Как уже отмечалось ранее, важным результатом, полученным в ходе проведенных исследований на КА CRRES [3], явилось экспериментальное установление нового критерия возникновения ЭСР. Это суммарный флюенс электронов $2 \cdot 10^{10}$ e/cm² за 10 h облучения. Следует отметить, что плотность тока электронов при этом ничтожно мала (порядка 10⁻¹⁰ A/m²) и радиационной электропроводностью диэлектрика можно пренебречь. Поэтому при разработке физической модели заряжения будем принимать во внимание только темновую (исходную) электропроводность изоляции провода, которая и будет обеспечивать сток инжектированного заряда на проводящую жилу. Ранее по результатам эксплуатации SCATHA [7], был сформирован дополнительный критерий — электрическое поле в объеме диэлектрика, при котором возможен ЭСР в космосе, составляет

Рис. 1. Процесс заряжения диэлектрического слоя изоляции провода электронами, где R_1 — радиус металлической жилы провода, R_2 — внешний радиус диэлектрического слоя провода.

Рис. 2. Модель (справа) накопления объемных зарядов в диэлектрическом слое.

 $F_{\rm max} = 2 \cdot 10^7 \, {\rm V/m}$. Этот критерий мы примем в качестве основного при дальнейшем рассмотрении.

Нами предложена физическая модель, для описания которой выбраны следующие положения:

1. Рассматривается токопроводящий сплошной цилиндр радиуса *R*₁ (рис. 2). Металлическая жила провода, эффективно заземлена, т.е. имеет нулевой потенциал.

2. Пусть S_o , A/m³ (рис. 2) — скорость однородной инжекции электронов в объем цилиндрического диэлектрического слоя R_2-R_1 (рис. 2) при облучении изотропным потоком электронов.

3. Принимается, что диэлектрический слой имеет постоянную темновую проводимость γ_T , которая обеспечивает частичный сток инжектированных электронов на токопроводящую жилу.

4. Для моделирования использовано дифференциальное уравнение, описывающее накопление объемного заряда в диэлектрике при однородной инжекции электронов:

$$\frac{\partial \rho}{\partial t} = -\operatorname{div}(\gamma_T \cdot F(R)) + S_0. \tag{1}$$

5. Аналитическим решением дифференциального уравнения (1), описывающего стационарный процесс накопления объемных зарядов, является F_{max} — максимальное электрическое поле, при радиусе R_1 , на границе раздела металнул с нулевым потенциалом — заряженный диэлектрик.

$$F_{\max} = -\frac{S_0}{\gamma_T \cdot R_1} \cdot \left(R_2^2 - R_1^2\right).$$
 (2)

Решение дифференциального уравнения проведено для наиболее востребованного стационарного случая, когда электрическое поле в диэлектрике изоляции максимально.

2. Обсуждение результатов

Заметим, что для аналитических расчетов используются условия наихудшего случая при работе данного КА на заданной орбите. Понятно, что эти условия определяются или точкой на геостационарной орбите

Рис. 3. Образец провода МС 26-15 1×0.08 mm.

Рис. 4. Результаты расчета электрического поля в диэлектрическом слое по предложенной модели для различных радиусов жил и соответствующей им толщины изоляции, материал — полиимид.

или самой орбитой в других случаях и могут сильно различаться. По формуле (2) рассчитывается максимальная напряженность электрического поля в диэлектрическом слое провода.

Для расчета электрического напряжения в диэлектрике был выбран образец монтажного провода MC 26-15. Согласно ТУ16.К76-160-2000, образец представляет собой медную посеребренную жилу с полиимидной изоляцией (рис. 3), темновая проводимость которой составляет $10^{-14} \Omega^{-1} \cdot m^{-1}$. Технические характеристики данного образца следующие: максимальное переменное напряжение до 250 V (частота до 10 kHz) или постоянное напряжение до 350 V. Пример расчетов для выбранного образца с сечением жилы от 0.08 до 0.5 mm² и внешним радиусом от 0.25 до 1.25 mm представлены на рис. 4.

Из рисунка видно, что максимальная напряженность электрического поля при данных условиях облучения возрастает с уменьшением радиуса токопроводящей жилы провода и увеличением толщины слоя его изоляции. На рис. 4 проведена линия параллельная оси абсцисс, соответствующая значению электрического поля $2 \cdot 10^7$ V/m. Область ниже этой линии характеризуется отсутствием возможности возникновения электростатических разрядов. Область выше линии разграничения характеризуется возможностью протекания ЭСР и провода с параметрами, характерными для этой области, не

должны использоваться в космической технике, работающей на геостационарной или на высокоэллиптических орбитах, пересекающих радиационные пояса Земли.

Заключение

С помощью предложенной аналитической модели и разработанной нами программы расчета для каждого радиуса токопроводящей жилы можно подобрать соответствующую толщину изоляции и удельную объемную проводимость диэлектрика изоляции, что позволит избежать достаточного для ЭСР электрического поля в диэлектрическом слое. Таким образом, разработанная программа расчета предполагает требуемое изменение радиуса токопроводящей жилы, толщины изоляции и электропроводность материала изоляции. Критерием выбора требуемой совокупности параметров провода является расчетное электрическое поле не превышающее $2 \cdot 10^7$ V/m.

Так же при необходимости можно проанализировать данные для конкретных образцов с уже заданными параметрами токопроводящей жилы и изоляции. В противном случае необходимо подобрать обоснованную замену.

Разработано и получило государственную регистрацию программное обеспечение [8], позволяющее проводить полный расчет физических параметров проводов космического применения, устойчивых к эффектам электризации. Полученные результаты предлагается использовать при моделировании и тестировании проводов космического применения для исключения ЭСР типа "изоляция—жила" при функционировании КА на орбите во время геомагнитных возмущений в магнитосфере Земли.

Благодарности

Авторы выражают благодарность Программе фундаментальных исследований НИУ ВШЭ за ее поддержку.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Soria-Santacruz. Introductory Tutorial // Spacecraft Charging Technology Conference. 23 June 2014. Pasadena, USA. Poster 254.
- [2] M. Tafazoli. Acta Astronautica, 64, 195 (2009).
- [3] H.B. Garrett, A.C. Whittlesey. *Guide to Mitigating Spacecraft Charging Effects* (Wiley, NY, USA, 2012)
- [4] V.S. Saenko, A.P. Tyutnev, M.A. Afanasyeva, A.E. Abrameshin. IEEE Transactions on Plasma Science, 47 (8), 3653 (2019). DOI: 10.1109/TPS.2019.2893186
- [5] А.П. Тютнев, Г.А. Белик, А.Е. Абрамешин, В.С. Саенко. Перспективные материалы, 5, 28 (2012).

- [6] V. Saenko, A. Tyutnev, A. Abrameshin, G. Belik. IEEE Transactions on Plasma Science, 45 (8), 1843 (2017).
- [7] NASA-Technical Handbook: Mitigating in-Space Charging Effects — A Guideline (document Rec. NASA-HDBK-4002A, Mar. 2011)
- [8] С.Ю. Толстиков. Программа расчета максимального электрического поля на диэлектрическом слое провода. (Св-во о гос. регистрации программы для ЭВМ № 2021660525. 30.11.2021)