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1. Introduction

Interest in properties of silicon carbide monocrystals,

actively studied for a long time [1], is still noticeable.

Suffice it to say that biennial international and Euro-

pean conferences on silicon carbide and cognate materials

(ICSCRM and ECSCRM) are held. Recently there is

increasing attention to the cubical polytype of 3C−SiC,

which has the maximum (among SiC polytypes) electron

mobility of 1200 cm2/V · s [2], which does not depend on

crystallographic direction.

The issue of possible existence of GeC and

SnC monocrystals and their properties has arisen relatively

recently [3–8]. The relevant theoretical studies (first-
principles calculations) paid the main attention to stability of

certain crystalline structures, band spectrum and resilience.

This paper considers, from a unified viewpoint, the dielectric

and optical properties of cubic carbides XC, where X = Si,

Ge, Sn. Thereat, we use a model of Harrison’s binding

orbitals [9–11], well-proven in the description of tetrahedral

semiconductors.

2. Dielectric properties of carbides

Having defined the linear χ(1) and quadratic χ(2) dielectric

susceptibilities as coefficients of crystal polarization expan-

sion P according to electric field intensity E, i.e. in the form

P i =
∑

j

χ
(1)
i j E j +

∑

jk

χ
(2)
i jkE jEk + . . . ,

it can be showed [12,13] that contributions of the electron

subsystem to these characteristics are equal

χel1 =
ne(eγd)2α3

c

12V2

, χel14 =

√
3ne(eγd)3α4

cαp

48V 2
2

, (1)

while ionic (lattice) contributions are as follows

χ ion1 =
ne(eγd)2α2

p(1 + 2α2
c )

24αcV2

,

χ ion14 =

√
3ne(eγd)3α2

cαp(1− 2α2
p)

48V 2
2

. (2)

The following expressions are obtained for total (low-

frequency) values of linear and square susceptibilities:

χ1 = χel1 (1 + ϑ), ϑ =
α2
p(1 + 2α2

c )

2α4
c

,

χ14 =

√
3ne(eγd)3α2

cαp

48V 2
2

. (3)

Here, V2 = 3.22(~2/md2) is the covalent energy of the

σ -bond of sp3-orbitals for A and B atoms, where ~ is

the reduced Plank’s constant, m is the free electron mass,

d = a
√
3/4 is the distance between the nearest neighbors

in the sphalerite structure with lattice constant a . As

distinct from [12,13], we set V2 > 0; αc = V2/

√

V 2
2 + V 2

3

and αp =
√

1− α2
c are covalency and polarity of the

bond, respectively; V3 = |εA
h − εB

h |/2 is the polar energy

of bond, where ε
A(B)
h = (ε

A(B)
s + 3ε

A(B)
p )/4 is the energy of

sp3-orbitals and ε
A(B)
s(p) is the energy of the s(p)-state of the

A(B) atom; ne = 32/a3 is the electron density, e is the

electron charge, γ is the scaling factor taking into account

the corrections for local field and used as an adjustable

parameter [9,12,13]. For high-frequency ε∞ and static ε0 of

dielectric susceptibilities, we have the following

ε∞ = 1 + 4πχel1 , ε0 = 1 + 4πχ1. (4)

By setting a = 4.36, 4.59 and 5.11 Å respectively for SiC,

GeC and SnC [3], we obtain the values of the model’s initial
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Table 1. Initial parameters: distance between the nearest

neighbors d, covalent V2 and polar V3 energies, covalency αc and

polarity αp of the bond X−C . The upper row of values is the

calculation as per Mann tables [11], the lower row is the calculation

as per Hermann–Skillman tables [9]

Crystal SiC GeC SnC

d, Å 1.89 1.99 2.21

V2, eV 6.87 6.20 5.02

V3, eV
1.88 1.93 2.41

1.42 1.37 1.77

αc
0.96 0.95 0.90

0.98 0.98 0.94

αp
0.26 0.30 0.44

0.20 0.22 0.33

Table 2. Values of linear χel1 , χ1 and square χel14, χ14 suscepti-

bilities, ε∞, ϑ , ε0 . The upper row of values is the calculation

as per Mann tables [11], the lower row is the calculation as per

Hermann–Skillman tables [9]

Crystal SiC GeC SnC

χel1
0.43 0.44 0.42

0.46 0.49 0.48

χ1
0.48 0.51 0.58

0.49 0.53 0.57

ε∞
6.46 6.57 6.28

6.81 7.11 7.00

ϑ
0.11 0.15 0.39

0.06 0.08 0.19

ε0
7.00 7.39 8.29

7.13 7.63 8.18

χel14
1.86 2.54 4.59

1.60 2.12 4.08

χ14
0.14 0.25 1.10

0.07 0.10 0.50

parameters given in Table 1. The scaling multiplier γ can

be assessed as per the experimental data ε∞ = 6.52 and

ε0 = 9.72 for 3C−SiC [14]. By choosing ε∞ for fitting, we

obtain the value γ = 1.44, which will be used for all the

carbides under consideration.

3. Numerical estimates of dielectric
susceptibilities

To proceed with analysis, the expressions for χel1
and χ14 should be rewritten as χel1 ≈ 0.26(dα3

c ) and

χ14 ≈ 0.67(d4α2
cα

3
p) · 10−12 m/V, where d is measured in Å.

The calculation results are given in Table 2. Table 2 shows

that the values of χel1 , χ1 and ε∞ for various XC are close.

The closeness is due to the fact that decrease of covalency αc

in the row SiC→ SnC is compensated by increase of d .
Increase of ε0 in the same row is related to increase of

the multiplier ϑ . It should be noted that the obtained

values of ε0 are apparently underestimated. In any case,

the situation is such for 3C−SiC.

The smallness of square susceptibilities χel14 and χ14 of the

compounds XC as compared to semiconductors A3B5 and

A2B6 (see, for instance, Table 5.1 in [9]) is explained by the

low polarity of bonds αp. Increase of χel14 and χ14 upon a

transition from SiC to SnC is related to an increase both of

αp and of d . The largest values of χel14 and χ14 correspond

to 3C−SnC. It is easily shown that the maximum value

of χel14 occurs with α∗

c =
√
4/5 and α∗

p =
√
1/5, practically

coinciding with the covalency and polarity of Sn−C bond.

It must be noted that this paper ignores the metalli-

city of interatomic bonds [9,10], consideration of which,

generally speaking, can considerably affect the calculation

results [11,12].

4. Optical properties

Linear electrooptical coefficients r41 and rel41, which

respectively describe the change in the refraction in-

dex n =
√
ε∞ of noncentrosymmetric crystals in a low-

frequency electric field and electron contribution to r41 are

determined according to [11,12], as

r41 = −4πχ14/n4, rel41 = −4πχel41/n4. (5)

The calculation results are given in Table 3. It is easy to

understand that the character of change in the coefficients

rel41 and r41 in the carbide row is determined by square

susceptibilities χel14 and χ14. The obtained values of |rel41|
and |r41| are small as compared to other materials (see, for
instance, Table 77.2 in [15]), which is related to the small

polarity of X−C bonds.

According to [16], photoelastic constants pi j (i = 1, 4;

j = 1, 2, 4) for cubic tetrahedral crystals are as follows

p11 = ξ

(

1 +
8λ

8 + λ

)

, p12 = ξ

(

1− 4λ

8 + λ

)

,

p44 =
99ξλ

(8 + λ)(8 + 3λ)
, (6)

where ξ = −2η(ε∞ − 1)/3ε2
∞
, η = 2(1− 3α2

p), λ = 0.85.

The results of calculation of pi j given in Table 3 are close to

diamond photoelastic constants p11 = −0.31, p12 = −0.09

and p44 = −0.12 (see Table 77.1 in [15]). The minor

decrease in the values of |pi j | in the SiC→ SnC rows is

due to the increasing bond polarity.
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Table 3. Values of linear electrooptical coefficients r el
14 , r41,

elastooptical constants pi j i = 1, 4; j = 1, 2, 4, compression bulk

moduli B and derivative dielectric susceptibilities according to

pressure ∂ε∞/∂P and ∂ε0/∂P . The upper row of values is the

calculation as per Mann tables [11], the lower row is the calculation

as per Hermann–Skillman tables [9]

Crystal SiC GeC SnC

−r el
14, 10

−12 m/V
0.55 0.74 1.46

0.40 0.53 1.05

−r41, 10
−12 m/V

0.04 0.07 0.35

0.02 0.02 0.13

−p11
0.25 0.22 0.14

0.26 0.24 0.19

−p12
0.08 0.07 0.04

0.08 0.08 0.06

−p44
0.13 0.11 0.07

0.13 0.12 0.10

B , GPa
166 124 64

177 137 72

−∂ε∞/∂P, 10−2 GPa−1 1.74 2.19 2.13

1.93 2.55 3.75

−∂ε0/∂P, 10−2 GPa−1 2.43 3.46 7.13

2.49 3.19 6.71

−(∂ε∞/∂P)/B
2.89 2.71 1.36

3.41 3.48 2.70

−(∂ε0/∂P)/B
4.03 4.29 4.56

4.41 4.37 4.83

5. Dependence of dielectric
susceptibilities ε∞ and ε0

on pressure P

The paper [17] has shown that

∂ε∞

∂P
= −η

ε∞ − 1

3B
,
∂ε0

∂P
= (ε∞ − 1)

∂ϑ

∂P
+ (1 + ϑ)

∂ε∞

∂P
,

∂ϑ

∂P
= −

2α2
p

α2
cB

(

1−
2α2

p

3α2
c

)

, (7)

where B is the compression bulk modulus. In the model

of Harrison’s bonding orbitals B = 2α3
cV2/

√
3d3 [9]. The

calculation results are given in Table 3. It should be

emphasized that the values of |∂ε∞/∂P| and |∂ε0/∂P| given
in Table 3 are the maximum estimates, since the used

calculation variant (exclusive of short-range repulsion [18])
underestimates the value of compression bulk modulus. In

fact, for 3C−SiC according to the data of Table 4.6 from [19]
we have B = 246GPa, which is ∼ 1.5 times greater than

our result. Therefore, Table 3 also includes the results

of calculation of dimensionless derivatives (∂ε∞/∂P)B and

(∂ε0/∂P)B , which allow for determining the values of

∂ε∞/∂P and ∂ε0/∂P on the basis of known (from an

experiment or first-principles calculations) values of the

compression bulk modulus.

In conclusion of this section we would like to note that

the following interrelation is present within the Harrison’s

model framework

ε∞ − 1

ε0 + 1
= 1 + ϑ. (8)

Using the Lyddane–Sachs–Teller formula

ω2
TO(0)/ω2

LO(0) = ε∞/ε0 [19], where ω2
TO(0) and

ω2
LO(0) are frequencies of transverse and longitudinal

optical phonons in the Brillouin band center, we get [16]:

∂ωTO(0)

∂P
=

ωTO(0)

3B
(2 + 3α2

p),

∂ωLO(0)

∂P
=

ωLO(0)

2
√
ε∞ε∞

(

∂ε0

∂P
− ε0

ε∞

∂ε∞

∂P

)

+

√

ε0

ε∞

∂ωTO(0)

∂P
. (9)

Thus, with the help of the interrelations (7) and (9), de-

pendencies of dielectric susceptibilities (optical frequencies)

on pressure can be used to find the corresponding depen-

dencies for optical frequencies (dielectric susceptibilities).

6. Conclusion

This paper describes, within the framework of a unified

approach, the obtained values of a whole range of dielectric

and optical characteristics of group IV cubic carbides.

To the authors’ knowledge, such estimates for GeC and

SnC have not been made thus far. The simplicity of

the model of Harrison’s bonding orbitals made it possible

to obtain analytical expressions for these characteristics.

Thereat, the parameters of the model d and εs(p), which

represents a simplified variant of the LCAO method, are

not adjustable parameters. It should be noted that not only

the 3C−SiC crystals are of applied interest. Thus, these

materials are used to create superlattices, e.g., GeC/SiC,

SnC/SiC, SnC/GeC [21] and GeC/GaN [22].
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