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1. Introduction

At the turn of the last quarter of the XX century, Y. Imry

and S.-k. Ma published their famous paper [1] dealing with

systems having continuous symmetry of the order parameter

(O(n)-systems, n ≥ 2 is the number of components of the

order parameter). They showed that the injection into a

system of an arbitrarily weak random field, conjugate to the

order parameter the correlation function of which droops at

short distances, causes breakdown of the long-range order

in spaces with dimension d < 4 even in the system ground

state (the Imry−Ma theorem). The most energetically

favorable is the state where the order parameter follows the

large-scale static fluctuations of the random field direction.

In literature it was called the Imry−Ma state (phase). The
value dl = 4 was called the lower critical dimension. The

system’s ground state at spatial dimension d > dl is the state

of long-range order, and at d < dl — the Imry−Ma state.

The lower critical dimension is dl = 2 for Ising systems with

a single-component order parameter.

Literature often uses the term
”
Larkin−Imry−Ma theo-

ry“. In 1970 A.I. Larkin published a paper [2] where he

showed, under the framework of the Ginzburg−Landau

phenomenological theory, that presence of defect-induced

spatial fluctuations of coefficients preceding the terms,

quadratic in the order parameter, and the gradient terms

in free energy decomposition, causes disappearance of the

long-range order in the location of Abrikosov vortex lines

in a mixed state of a semiconductor of the second type.

Both classical papers [1,2] deal with breakdown of long-

range order, however, it seems unreasonable to combine

them into a unified theory. Firstly, the Ginzburg−Landau

phenomenological theory is true in the vicinity of the

phase-transition point and its predictions cannot be directly

referred to the system’s ground state, which was described

on the basis of a microscopic Hamiltonian in [1]. Secondly, a
change in coefficients preceding the terms that are quadratic

in the order parameter in the free energy decomposition

does not reflect the influence of a random field, conjugate

to the order parameter, since this contribution is linear in

terms of the order parameter. Further analysis is based on

an Imry−Ma microscopic model and the relevant theory

name is used.

In their paper [1] the authors did not specify a random

field source, they merely stated that it can be created

by randomly frozen centers. In most of their subsequent

1∗ 3
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papers, the authors supposed that a random field is present

in each node of the spin lattice. This overview analyzes

the systems where a random field is created by chaotically

located point defects (defects of the
”
random local field“

type), dimensionless concentration of which c (their average
quantity per one cell) is small (c ≪ 1).
We will not dwell on a description of the transition

from a paraphase to a long-range order phase in a system

containing such defects, since the available advances in

description of the temperature region, adjoining the phase

transition point, are insignificant, and only a qualitative

description of system behavior has been made so far [3,4].
Outside the region of strong fluctuations, defined by the

Levanyuk−Ginzburg criterion [5], the mean field approxi-

mation holds true and the theory of quasi-isolated defects is

applicable [6,7].
Mathematical modeling of systems with defects of the

”
random local field“ type faces great challenges due to

the presence of many metastable states. In particular, if

the number of components of the order parameter is n ≤ d,
the presence of topological defects causes a behavior similar

to spin glass behavior [8].
A phase transition from the paraphase to the Imry−Ma

phase is similar to the phase transition of glass formation.

The main fluctuations in the system above the tempera-

ture TI−M of this transition are dynamic fluctuations of

the order parameter. Below TI−M there are
”
frozen“ static

fluctuations of the order parameter that follow the large-

scale fluctuations of the direction of the random defect

field. Value of TI−M is found from the equation of the

correlation radius for the order parameter of a defect-free

system and the typical scale of static fluctuations in the

Imry−Ma phase [9].
The most vivid and unexpected result of the study of

O(n)-models with a random field was the prediction, based

on theoretical consideration and numerical modeling, of

the phenomenon of a long-range random field induced

order — RFIO, which arises at the end temperature

in a two-dimensional X−Y -model with collinear random

fields [10,11]. It is well known that, in the absence of a ran-

dom field according to Mermin−Wagner−Hohenberg theo-

rem, the long-range order in a two-dimensional O(n)-model

is absent at a non-zero temperature [12,13]. Later, the

presence of long-range order was confirmed in a similar

three-dimensional model [14–16]. It is also non-trivial, since

the dimension
”
three“ is less than the critical one and,

according to the Imry−Ma theorem, the long-range order

in it must be absent. A principal role in explanation of

this phenomenon is played by distribution of random field

directions in the space of the order parameter. As will be

shown below, the Imry−Ma theorem is true only in case

of an ideally isotropic distribution. Anisotropic distribution

of random fields induces an effective global anisotropy in

the space of the order parameter [17,18]. The occurrence

of effective anisotropy disrupts the continuous symmetry

of the order parameter and moves the system to another

universalism class. The effective number of order parameter

components decreases. In case of the X−Y -model, it

decreases from two to one, causing the occurrence of long-

range order at a non-zero temperature.

The competition of two aspects of defect influence: on the

one hand — their random fields, and on the other hand —
effective anisotropy induced by them, results in non-trivial

phase diagrams, to the description of which our overview

is largely dedicated. Moreover, the overview considers the

possibility of occurrence of Imry−Ma phases in systems

with a space dimension that exceeds the lower critical

dimension.

As early as 1978, the Imry−Ma theorem was applied

to random anisotropy systems [19,20]. They include

O(n)-systems that contain point defects, which cause

anisotropy of the
”
easy axis“ type at the place of their

location, thereat, the direction of the easy axis has a

random nature (defects of the
”
random local anisotropy“

type). Special cases of random anisotropy systems should

include nanocrystalline uniaxial ferromagnets with random

orientation of crystallites’ crystalline lattices [21,22] and,

consequently, with random orientation of easy axes, as well

as liquid crystals in a porous matrix [23–25] and superfluid
3He−A in aerogel [26–28].

The overview structure is as follows: the second section

gives the Imry and Ma arguments for the cases of mul-

ticomponent and single-component order parameters and

demonstrates the possibility of occurrence of an Imry−Ma

phase in the space of a dimension that exceeds the

lower critical dimension. The third section describes the

anisotropy induced by anisotropic distribution of random

defect fields in the space of the system order parameter.

The fourth section describes the phase diagrams resulting

from the competition of random defect fields and defect-

induced anisotropy. The fifth section describes systems

having defects of the
”
random local anisotropy“ type, and

the sixth one — an important particular case of such

systems: nanocrystalline ferromagnets.

2. Imry−Ma theorem

2.1. Classical spin system

The results given in this overview are based on conside-

ration of the classical spins of a unit length, since the latter

can be included, without restriction of generality, into the

corresponding interaction or field constants.

Exchange interaction energy of n-component localized

spins s i , that form a d-dimensional simple cubic lattice,

in the approximation of nearest neighbors’ interaction is

as follows

Wex = −1

2
J

∑

i,δ

si si+δ, (1)

where J is the exchange integral, summation by i is done for
the entire spin lattice, and by δ — for the nearest neighbors

to the given spin.
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The energy of spins’ interaction with random local fields

of defects is equal to

Wde f = −
∑

l

slhl, (2)

summation is done for defects randomly located in lattice

nodes, while distribution density of random local fields h

in the spin space (order parameter space) has the property

ρ(h) = ρ(−h), which ensures absence of a mean field in the

infinite system. This overview is limited to consideration of

the case of weak defect fields, when |hl| ≪ J .

2.2. Imry−Ma arguments for n ≥ 2

Let us reproduce the Imry−Ma arguments for the above-

mentioned model. Let us consider the region of a

d-dimensional space with typical linear size L expressed in

units of the spin lattice constant. The number of defects in

volume Ld is equal to cLd . A typical average value of a

defect field in this region, which differs from zero due to

static fluctuations of the number of defects having different

directions of the random field, by order of magnitude

is equal to [29]
√

c〈h2l 〉/Ld , where angle brackets mean

averaging by fields of all defects.

In the Imry−Ma phase, when the average order parame-

ter in each such region is directed along the mean defect

field, due to its interaction with the field, the system gets

an energy gain. The corresponding negative addition to the

ground-state energy per a spin cell by order of magnitude is

w1 ≈ −
(

c〈h2l 〉
Ld

)1/2

. (3)

However, in this case inhomogeneity of the order parameter

along d directions on the typical scale L arises in the

Imry−Ma phase. Since the order parameter is turning con-

tinuously, the next positive contribution to energy (per cell)
occurs due to the energy of inhomogeneous exchange

w2 ≈
dJ
L2

. (4)

It is easily seen that total energy w1 + w2 for d < 4

at greater values of L takes negative values. Thus, the

Imry−Ma phase is energetically more favorable than the

homogeneous ordered state. This proves the Imry−Ma

theorem.

For weak random fields (〈h2l 〉 ≪ J2) and c ≪ 1 in a four-

dimensional space w2 ≫ |w1| and the Imry−Ma phase does

not occur.

By minimizing the total energy w1 + w2 by the param-

eter L, we find the optimal values of this energy and the

typical inhomogeneity scale [30]:

w I−M ≈ −(4− d)

(

c〈h2l 〉
16Jd/2

)
2

4−d

, (5)

L∗ ≈
(

16J2

c〈h2l 〉

)
1

4−d

. (6)

Applicability of the above-mentioned estimates requires

the inequation

c(L∗)d ≫ 1, (7)

i.e. a fluctuation region with the optimal sizes shall contain a

large number of defects. In case of weak random fields, this

inequation is fulfilled automatically for d = 2; 3. For d = 1

the inequation (7) leads to the condition

cJ ≫
√

〈h2l 〉. (8)

If the reverse inequation is fulfilled, i.e. with

cL∗ < 1 (9)

the action of defects of the
”
random local field“ type on the

order parameter is not longer collective, and a state occurs

where the order parameter in a one-dimensional spin thread

turns from defect to defect so as to be turned on each defect

along its random field [30]. Thereat, the typical value L is of

the order c−1, energy of order parameter’s interaction with

defects is equal to

w1 ≈ −c
√

〈h2l 〉, (10)

w2 ≪ |w1| and w I−M ≈ w1.

2.3. Imry−Ma arguments for n = 1

In case of Ising systems (n = 1), abrupt domain walls

occur between the regions instead of a gradual turn of the

order parameter from one region of size L to another region.

Energy of such a wall per cell is of the order 2J . Taking into

account the linear concentration of domain walls (∼ L−1),
we find

w2 ≈
2dJ

L
. (11)

The defect-induced field randomly takes on value ±h0.

Comparing the expressions (3) and (11), it can be con-

cluded that with d < dl = 2 the system ground state is the

Imry−Ma phase. However, our reasoning did not take

into account the domain wall roughness due to defects.

As shown in the papers [31,32], the wall is always rough

in three-dimensional systems with defects of the
”
random

local field“ type, and the effective wall width increases as

domain sizes increase. Density of domain wall surface

energy in these conditions depends on L. It was later

precisely demonstrated [33] that, even with consideration

of the aforesaid effects, the lower critical dimension for an

Ising model with defects of the
”
random local field“ type is

equal to two.

There are opposite viewpoints on the question of existen-

ce of a long-range order in case of space dimension dl = 2.

The papers [34,35] gave a negative answer to this question,

while the papers [36,37] have showed that a long-range

order occurs in the region of weak random fields at the

zero temperature. It should be noted that authors usually

consider a square lattice of Ising spins, where a random field

Physics of the Solid State, 2022, Vol. 64, No. 1
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exists on each lattice node, and its magnitude is described

by a Gaussian distribution.

A simple energy consideration within the framework of

a more realistic model shows [38] that with J2 ≫ ch2
0 the

energy of occurring domain walls is much greater than the

energy gain due to interaction of the order parameter with

defect fields. That is, the Imry−Ma phase does not occur,

which agrees with the conclusions made in [36,37]. For final
solving of this issue, the dependence of energy of a rough

domain wall on domain size should be found in a two-

dimensional space. If the main contribution to energy in the

region of large values of L is linear by L, wall roughness
will not affect the made conclusions.

The condition d < dl = 2 is met only by one integer

value d = 1, while domain walls in a one-dimensional array

remain abrupt. By minimizing the total energy, we obtain

values w I−M and L∗ for a one-dimensional Ising model with

defects of the
”
random local field“ type

w I−M ≈ −ch2
0

8J
, (12)

L∗ ≈ 16J2

ch2
0

. (13)

In case of weak random fields, this inequation (7) is fulfilled
automatically.

2.4. Imry−Ma phase in quasi-one-dimensional

systems with n = 1 and d ≥ dl

It should seem from the previous reasoning that the

Imry−Ma phase cannot be the ground state for a system

with a dimension exceeding the lower critical dimension. It

will be shown below that this applies only to spin systems

on square lattices, where exchange interaction with all the

nearest neighbors is described by one exchange integral. In

case of spin systems on rectangular lattices, when exchange

interaction with the nearest neighbors in different directions

may differ significantly, the Imry−Ma phase may also

occur in case of space dimension d ≥ dl [30,38]. Let us

demonstrate this by the example of quasi-one-dimensional

Ising systems, for which this phase may occur in a three-

dimensional space [38].
It is well known that at a temperature different from the

absolute zero, there is no long-range order in the chain

of Ising spins. As temperature decreases in a defect-

free system, the one-dimensional radius of spin correlation

increases exponentially. When it reaches the critical size,

weak exchange interaction of spins, pertaining to neighbo-

ring spin chains, in a quasi-one-dimensional system becomes

significant. Crossover from one-dimensional behavior to

d-dimensional takes place (d ≥ 2), and a long-range order

occurs in the system [39].
Presence of random defect fields may cause the oc-

currence of an unordered Imry−Ma state. Nature of

the ground state is determined by the ration of energy

of interaction between neighboring one-dimensional spin

chains and energy of their interaction with defect fields.

Let us consider the following simple model.

Let the index m number the parallel spin chains that

form a (d − 1)-dimensional square lattice (d ≥ 2) in a

perpendicular cut, while the index i — spins along the given

chain. Then the spin interaction energy is as follows

Wex = −J‖

∑

i,m

σi,mσi+1,m − 1

2
J⊥

∑

i,m,δ

σi,mσi,m+δ , (14)

summation by i and m is done for the whole spin lattice,

and by δ — for the neighboring chains nearest to the given

one. The exchange integral that describes the interaction of

neighboring spins pertaining one chain, J‖ > 0, is much

larger than the one for neighboring spins pertaining to

different chains, J⊥ > 0. Energy of spins’ interaction with

random local fields of defects is described by formula (2),
where the index l sets a pair of indices i l, ml .

Temperature of crossover from one-dimensional to

d-dimensional behavior and occurrence of a long-range

order in a mean field approximation is found based on

the condition of transformation of spin system susceptibility

into infinity [39] or based on the conditions of equality of

temperature and energy of interaction of a correlated spin

region, the size of which is equal to the one-dimensional

correlation radius r‖, with a molecular field

T ≈ z J⊥r‖(T ), (15)

where z is the number of spin chains nearest to the given

one. In our model z = 2(d − 1). According to [39],

r‖ =
1

2
exp

(

2J‖

T

)

, (16)

which makes it possible to obtain an expression for the

temperature of ferromagnetic transition in a defect-free

system [39]:

Tc ≈ 2J‖

ln
( 4J‖

z J⊥

)

. (17)

A correction to the ground state energy of non-interacting

defect-free spin chains owing to interaction between the

chains and occurrence of a d-dimensional long-range order

per cell is

wd = − z J⊥

2
. (18)

Defects of the
”
random local field“ type at 2J‖ > h0 do

not change the ordered state energy owing to a random

sign of the defect field. If an Imry−Ma phase occurs in

the system, the correlation between spins that pertain to

neighboring chains becomes disrupted, and a correction to

the ground state energy of non-interacting defect-free spin

chains owing to interaction with random fields is described

by the formula (12) with J ≡ J‖.

Occurrence of an Imry−Ma phase requires that

|w I−M | > |wd |, (19)

Physics of the Solid State, 2022, Vol. 64, No. 1
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Figure 1. Phase diagram for a quasi-one-dimensional Ising model

with defects of the
”
random local field“ type [38] with z = 4,

h2
0/J2

‖ = 10−1 and J⊥/J‖ = 10−4 : P is the paramagnetic phase,

F is the ferromagnetic phase, I−M is the Imry−Ma phase.

from where we get a condition for defect concentration [38]:

c >
4z J⊥J‖

h2
0

. (20)

For c ∼ 10−2 and h2
0/J2

‖ ∼ 10−1 this gives the condition

J⊥/J‖ . 10−4. In case of such a weak exchange interac-

tion, dipole-dipole interaction between spins can become

essential. For occurrence of an Imry−Ma phase, it values

shall also not exceed 10−4J‖.

Temperature T∗ of occurrence of an Imry−Ma phase is

found from the condition L∗ = r‖ [9] and equal to

T ∗ ≈ 2J‖

ln
(

32J2
‖

ch2
0

)
. (21)

It is easy to see that the condition (19) is virtually equivalent

to the condition T ∗ > Tc .

A phase diagram for a quasi-one-dimensional Ising model

with defects of the
”
random local field“ type in vari-

ables
”
temperature — defect concentration“ [38] is shown

in Fig. 1.

3. Anisotropy induced by random defect
fields

3.1. Approximation quadratic in defect field. Case
2 < d < 4

Let us show that anisotropic distribution of random fields

induces an effective global anisotropy in the space of the

order parameter.

Let us consider the action of a separate defect on a

homogeneous ferromagnetic state with an order parameter

of s0. Let us go to the continuous distribution of

the order parameter s(r), designating its perpendicular s0
component s⊥(r). Let |s0| = 1 ≫ |s⊥(r)|. All distances are

made
”
dimensionless“, by dividing them by the spin cell

size. Then, in an approximation quadratic in s⊥(r), the

expression (1) takes the form of [5]:

Wex =
J
2

∫

dd r
∂s⊥

∂x i

∂s⊥

∂x i
. (22)

Energy of interaction of a random field h(r) with the

order parameter s(r) has the following form in continuous

representation

Wde f = −
∫

ddr h(r)s(r), (23)

where

h(r) =
∑

l

hl δ(r− rl). (24)

Energy of random field’s interaction with the longitudinal

component of the order parameter is equal to zero owing

to the ratio ρ(h) = ρ(−h). For simplicity, we will neglect

the system’s longitudinal susceptibility in the region of low

temperatures, being much lower than the magnetic ordering

temperature. Therefore Wde f can be written as

Wde f = −
∫

ddr h⊥(r)s⊥(r), (25)

where

h⊥(r) =
∑

l

[hl − s0(s0hl)]δ(r− rl) (26)

is the component of the random field perpendicular to s0.

It leads to a local deviation of the order parameter and

occurrence of a non-zero component s⊥(r). As a result,

there is a negative addition to the ground state energy

proportional to (h⊥l )2. It is maximal in modulus when the

direction s0 is perpendicular to the local impurity field.

In the particular case of anisotropic distribution of random

field directions, when all hl are collinear, it is energetically

favorable for the order parameter to orient perpendicularly

to this direction [17]. Thus, in case of a X−Y -model (n = 2)
there is anisotropy of the

”
easy axis“ type, while in case of a

Heisenberg model (n = 3) — anisotropy of the
”
easy plate“

type. In case of a complanar distribution of random field

directions, an easy axis, perpendicular to the said plane,

occurs in the order parameter space in the Heisenberg

model. In case of a more common anisotropic distribution

of random field directions, it is favorable for the order

parameter to orient perpendicularly to the predominant

direction of random fields. Owing to the condition of

parity of the function ρ(h), the predominant direction of

random fields should be determined by considering only

the hemisphere of their directions in a n-dimensional space

of the order parameter.

The Green function for the set problem is well

known [40]. It assigns a relation between Fourier com-

ponents of the order parameter and the random field

s⊥(k) = χ⊥(k)h⊥(k), (27)

Physics of the Solid State, 2022, Vol. 64, No. 1
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where

χ⊥(k) = (Jb2k2)−1, (28)

h⊥(k) =
1

N

∫

ddr h⊥(r) exp(−ikr)

=
1

N

∑

l

[hl − s0(s0hl)] exp(−ikrl), (29)

N is the number of elementary cells. Therefore,

s⊥(r)=
1

N

∑

k

χ⊥(k)
∑

l

[hl−s0(s0hl)] exp[ik(r−rl)], (30)

summation by k is done for the Brillouin zone.

Substitution of this expression into formulas (22) and (25)
gives the following effective anisotropy energy per cell [41]:

wan =
c χ̃⊥

2

[

s201〈h2
l1〉 + s202〈h2

l2〉 + . . . + s20n〈h2
ln〉

]

, (31)

where hl j and s0 j are j-e components of field hl and order

parameter s0, respectively, and

χ̃⊥ =

∫

ddk

(2π)d
χ⊥(k). (32)

Value of χ̃⊥ in a space of dimension 2 < d < 4 does not

have peculiarities in case of k = 0.

In particular, in case of collinear orientation of random

fields, anisotropy energy is as follows

wan =
1

2
c χ̃⊥〈h2l 〉 cos2 ϕ ≡ 1

2
K cos2 ϕ, (33)

where ϕ is the angle between the order parameter vector

and axis of
”
hard magnetization“, to which random impurity

fields are collinear, while K is the anisotropy constant.

In case of a complanar and isotropic (in the assigned

plane) distribution of random fields in a Heisenberg model,

volumetric density of anisotropy energy is equal to

wan = −1

4
c χ̃⊥〈h2l 〉 cos2 ϕ ≡ −1

2
K cos2 ϕ, (34)

where ϕ is the angle between the order parameter vector

and the normal line to the plane where random fields lie.

For d = 3 the value is χ̃⊥ ∼ 0.2/J . Thus, the effective

anisotropy constant is a value of the order K ∼ 0.1c〈h2l 〉/J .
In case of a more common ellipsoidal distribution of

random fields, we choose the following value as an effective

anisotropy constant K

K = 2(wmax
an − wmin

an ), (35)

where wmax
an and wmin

an are the maximum and minimum

values of the expression (31) as functions of the direction

of vector s0.

For a X−Y -model with |hl| = const,

ρ(h) = A[h2
x + (1 + ε)h2

y ], (36)

where the constant A is found from the normalization

condition, ε > −1, while the value of K, calculated using

the formula (35), is equal to

K =
|ε|χ̃⊥c〈h2l 〉
2(2 + ε)

. (37)

With any sign of ε, defects induce anisotropy of the
”
easy

axis“ type, direction of which is perpendicular to the

predominant direction of random fields.

For a Heisenberg model with the distribution |hl|=const,

ρ(h) = A[h2
x + h2

y + (1 + ε)h2
z ], (38)

the value of K is equal to

K =
2|ε|χ̃⊥c〈h2l 〉
5(3 + ε)

. (39)

In case of −1 < ε < 0, an easy axis z occurs in the

system, and in case of ε > 0 — an easy plane xy .

3.2. Approximation quadratic in defect field.
Case d = 2

A peculiarity of two-dimensional models is the absence

of a long-range order in a pure system at the end tempe-

rature. This is evidenced, in particular, by the logarithmic

divergence of value χ̃⊥ while the lower limit of integration

in modulus k tends to the value k = 0. Therefore, the

problem should be solved in a self-consistent way, making

an assumption of the presence of global anisotropy induced

by random fields [18], the energy of which is written as

Wan =
1

2
K

∫

d2r
(

s01(r)
)2
. (40)

Since the random field makes the order parameter deviate

from the easy direction to the hard one, then χ⊥(k) is as

follows

χ⊥(k) = (Jk2 + K)−1. (41)

The constant K cuts the divergence of the integral χ̃⊥ in

case of small k, which make the main contribution to χ̃⊥

with d = 2. As a result

χ̃⊥ =
1

4πJ
ln

4πJ
K

. (42)

The value of K is found an iterative solution of a

self-coupling equation that arises after substitution of the

expression (42) in formulas (33) or (34). After the

first iteration for the case of collinear random fields, we

have [41]:

K =
c〈h2l 〉
4πJ

ln
16π2J2

c〈h2l 〉
, (43)

while for the case of a complanar and an isotropic (in the

assigned plane) distribution of random fields with n = 3, we

identically obtain

K =
c〈h2l 〉
8πJ

ln
32π2J2

c〈h2l 〉
. (44)
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3.3. Fourth-order approximation by defect field

Possibly, the following equation is met in case of

anisotropic distribution of directions of random local de-

fect fields in a n-dimensional space of a vectorial order

parameter

〈h2
l1〉 = 〈h2

l2〉 = · · · = 〈h2
ln〉. (45)

In this case, an effective anisotropy quadratic in h⊥(r) does

not arise in the system. This distribution of random defect

fields corresponds to a situation when defect fields with

equal probability are collinear to n mutually perpendicular

directions in the order parameter space, which for consider-

ation convenience were chosen as the axes of the Cartesian

coordinate system. Then anisotropy energy per cell is as

follows

wan = K
n

∑

j=1

s40 j . (46)

In order to obtain the constants of anisotropy, propor-

tional to the fourth powers of random fields’ components,

the following powers of exchange interaction energy decom-

position (22) by the powers s⊥(r) [41] must be taken into

account.

It results in the following order estimate of the value for

the effective anisotropy constant K in a three-dimensional

space

K ≈ 10−3 c〈h4l 〉
J3

. (47)

Since K > 0, the vector s0 in an equilibrium state is

directed along one of the main diagonal lines of the

Cartesian coordinate system in the order parameter space.

As compared to the case of collinear orientation of

random fields, the effective anisotropy constant contains

a small parameter 〈h2l 〉/J2, which is natural since energy

decomposition by even degrees of a random field takes place

exactly for this dimensionless parameter.

Quantity of order parameter components is not essential,

because anisotropy of the fourth and higher orders by hl

induces the formation of easy axes, but not easy planes.

In a two-dimensional coordinate space, the problem

should be solved in a self-coordinated way, as in the

previous section. As a result of the first iteration, the

expression for the anisotropy constant will be as follows [41]:

K ≈ c〈h4l 〉
J3

ln
J4

c〈h4l 〉
. (48)

4. Phase diagrams

4.1. Critical value of the constant for anisotropy
of the

”
easy axis“ type and

the Imry−Ma theorem

Evidently, the weak defect-induced anisotropy studied

in the previous section will not affect the phase diagram

of single-component systems which already have strong

anisotropy, but can, by removing the degeneration, signi-

ficantly affect the behavior of O(n)-models.

The paper [29] has showed that the presence of weak

crystalline anisotropy of the
”
easy axis“ type causes the

following: an Imry−Ma phase occurs in a space of

dimension 2 ≤ d < 4 only if concentration of defects of the

”
random local field“ type exceeds the critical value. Indeed,

homogeneous ordering of spins of a collinearly easy axis

reduces the energy in relation to the value that corresponds

to the homogeneous state of an isotropic system, by K/2

per cell. In the heterogeneous Imry−Ma state, the order

parameter deviates from the easy axis and no such energy

gain takes place. Therefore, the Imry−Ma phase will be

energetically favorable if

|w I−M | > K/2, (49)

where w I−M is given by the expression (5).
The critical value of the anisotropy constant, that satisfies

the conversion of this inequation into an equation, by order

of magnitude is [29]:

Kcr ≈ J

[

c〈h2l 〉
J2

]
2

4−d

. (50)

If K > Kcr, then a long-range order arises in the system,

while in case of K < Kcr the Imry−Ma phase satisfies the

ground state. This rule remains unchanged also when

anisotropy is not crystallographic in nature, but is created

by the defects themselves.

It is well known [3] that a nonmagnetic substitutional

impurity or a vacancy in a two-sublattice collinear an-

tiferromagnet, being in an external magnetic field, is a

defect of the
”
random local field“ type. The local field

value is directly proportional to density of the applied

magnetic field. The comparison of |w I−M | with the

energy of crystalline anisotropy shows that in the collinear

phase the inequation (49) is not fulfilled [42]. The role

of crystalline anisotropy in the spin-flop phase is played

by an external field that orients the magnetizations of

antiferromagnet sublattices so that the resultant magnetic

moment, arising due to their skewing, is directed along

the field. And energy of this effective anisotropy in the

given phase exceeds |w I−M |. Thus, the Imry−Ma phase

is not implemented in an antiferromagnet with an identical

exchange interaction with all the nearest neighbors. It may

arise in the collinear phase of a quasi-one-dimensional two-

sublattice collinear antiferromagnet in the case of fulfillment

of the conditions formulated in Section 2.4.

It is seen from the previous overview section that

the effective anisotropy constant, created by anisotropic

distribution of defect fields, is proportional to defect con-

centration c . At the same time, value of Kcr in a space with

dimension 2 < d < 4 contains a higher power of c .
In particular, in case of a three-dimensional coordinate

space Kcr ∝ c2. From this it follows that effective anisotropy

within the limit c → 0, arising in any order by hl , will

Physics of the Solid State, 2022, Vol. 64, No. 1



10 A.A. Berzin, A.I. Morosov, A.S. Sigov

K–1

c

1

F I M-

Figure 2. Phase diagram for a three-dimensional system [41]
in variables

”
defect concentration c — constant for effective

anisotropy of the
”
easy axis“ type K“ : F — ferromagnetic phase,

I−M — unordered Imry−Ma phase.

exceed the critical value. In case of d = 2, quantity

K ∝ −c ln c , that is this quantity in the small concentration

region also exceeds the critical value Kcr ∝ c . Thus, the

Imry and Ma theorem in spaces of dimension 2 ≤ d < 4

is not true at any arbitrarily weak effective anisotropy

of the
”
easy axis“ type, induced by random local defect

fields. In systems having a dimension d < 2 within small

concentrations K < Kcr and the Imry and Ma theorem is

true.

Comparing the expressions (37), (39) and (50), one can

make sure that in the case of d = 3 and strongly anisotropic

distributions of random fields, which cause anisotropy of the

”
easy axis“ type, the Imry−Ma state is not implemented in

the whole possible range of defect concentrations c < 1.

The condition K < Kcr for weakly anisotropic distribu-

tions of random fields gives a lower bound for defect

concentration, at which an unordered Imry−Ma state is

observed. For instance, with d = 3 the following takes

place for a distribution of random defect fields, set by the

formula (37)

c > 0.1ε
J2

〈h2l 〉
. (51)

With J2/〈h2l 〉 ∼ 100 and ε ∼ 10−3 we have c > 0.01.

A typical phase diagram of the system ground state [41]
is given in Fig. 2.

Concentration dependences K and Kcr in a two-

dimensional space differ by a logarithmic dependence,

therefore, given the difference of the numerical coefficients

in these dependences, the Imry−Ma phase can be also

observed in the case of strongly anisotropic distributions

of random fields [9].
The paper [43], in a theoretical study of a O(n)-system

with weak uniaxial anisotropy, found that the injection of

impurities of the
”
random local field“ type with fields,

collinear to the easy axis, causes (as the impurity concen-

tration increases) a transition to the phase where the order

parameter is perpendicular to the easy axis. The author

interpreted this as a defect-induced spin-flop transition.

Taking into account the aforesaid consideration, it should

be more correctly classified as an orientational transition.

Indeed, introduction of impurities reduces the anisotropy

constant value, and its sign changes in case of a critical

impurity concentration, that is, anisotropy of the
”
easy

plane“ type arises.

4.2. Anisotropy of the
”
easy plane“ type

When defects cause effective anisotropy of the
”
easy

plane“ type, the situation is not so simple. If anisotropy

is weak (K < Kcr), the Imry−Ma phase satisfies the ground

state. Otherwise (K > Kcr), the issue of the system ground

state should be solved by projecting all random fields onto

an easy hyperplane of the dimension m (n > m ≥ 2) in the

order parameter space and by considering the problem on

the said hyperplane. The operation should be repeated if

anisotropy of the
”
easy plane“ type with K > Kcr arises in

it. As a result, we get one of the three possible cases:

− Projections of random fields onto the easy plane are

equal to zero. Thereat, system’s behavior is identical to

behavior of a pure system with a number of order parameter

components that corresponds to the hyperplane dimension.

An inhomogeneous Imry−Ma state does not arise, though

random fields induce the occurrence of order parameter

components that are perpendicular to the easy plane.

− Anisotropy of the
”
easy axis“ type takes place in the

easiest plane. Then the problem reduces to a problem with

anisotropy of the
”
easy axis“ type, but with a number of

order parameter components equal to m.

− The distribution of projections of random local defect

fields onto the easy plane meets the condition K < Kcr. The

system ground state in this case is the Imry−Ma phase.

4.3. Temperature phase diagrams

Temperature of occurrence of the Imry−Ma phase in a

one-dimensional Ising model is given by the formula (21),
where J‖ should be replaced by J . This is the sole

dimension for a system with d < dl .

Let us consider O(n)-systems (n ≥ 2) in spaces with

dimension d < dl, that is, in one-dimensional, two-

dimensional and three-dimensional spaces. In a three-

dimensional space, in the absence of defects, a long-range

order in O(n)-systems arises at the end temperature Tc . As

already noted, temperature of transition to the Imry−Ma

phase (TI−M) is found from the equation of the correlation

radius for the order parameter of a defect-free system rc and

the typical scale L∗ of static fluctuations in the Imry−Ma

phase [9]:

rc(TI−M) = L∗. (52)

Since L∗ ≫ 1, and rc diverges near the point of second-

order phase transition from the paraphase into the ordered

phase, then for d = 3 we have TI−M ∼ Tc . That is, a

transition from the paraphase into the phases shown in Fig. 2

occurs at T ∼ Tc .
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A similar situation takes place in a two-dimensional X−Y -
model. It is well known that a phase transition takes place in

it at the end temperature TBKT = πJ/2: from the paraphase

with an exponentially drooping correlation function of the

order parameter into the Berezinskii−Kosterlitz−Thouless

(BKT) phase with a power mode of correlation function

drooping [44–46]. According to [47], the correlation radius

behaves as

rc = exp(bτ −1/2), (53)

where b = const, τ = (T − TBKT )/TBKT, that is, it diverges

near the transition temperature. Consequently, similarly to

a three-dimensional system, TI−M ∼ TBKT .

The formation of arbitrarily weak anisotropy in a system

leads to the occurrence of a long-range order [48] and

the BKT phase does not arise. An estimate for the

transition temperature Tc can be found from simple energy

considerations [9]. For this, we equate (by absolute value)
Tc and anisotropy energy ∼ πKr2c of a correlated round

region having a radius equal to correlation radius rc . The

result is Tc ∼ TBKT . Since real crystalline systems always

contain weak anisotropy induced by the crystalline lattice

symmetry, experimental observation of the BKT phase in

such systems is hardly possible.

When anisotropy is created by random defect fields, the

system phase diagram is richer: if anisotropy is more than

the critical one, the phase with long-range order arises, and

if it is less than the critical one, then the Imry−Ma phase.

Let us consider a particular case of anisotropic distribu-

tion of random fields’ directions, where all hl are collinear.

As already note, an easy axis occurs in the system; it is

perpendicular to the random fields’ direction, while the

anisotropy constant value is given by the formula (43). The
condition K > Kcr is fulfilled in the region of concentrations

c < ccr = 5.5 · 10−2 . The order parameter in the arising

ordered phase is collinear to the easy axis, its large-scale

static fluctuations are suppressed, there are only local

deviations of spins near defects.

With greater concentrations, when K < Kcr, the

Imry−Ma phase with a long-range order is implemented

in the system. The reasons for occurrence of this unique

phase are outlined in the paper [49]. A multitude of random

fields’ directions in the X−Y -model can be set by points on

a unit circumference in the order parameter space. In case

of fields collinear to the ξ axis of the Cartesian orthogonal

coordinate system (ξ, η) in the given space, a multitude of

random fields’ directions is set by points A and B in Fig. 3.

Upon transition from the region having a typical size L∗ and

one field direction to a neighboring region with the opposite

field direction, the order parameter makes a 180◦ turn.

Thereat, the order parameter direction changes either along

the ACB arc, or along the ADB arc. Energy of interaction

with random fields does not depend on this choice. Energy

of inhomogeneous exchange will be admittedly lesser if the

order parameter in the whole spin lattice turns along the

same arc, e.g., ACB. Thereat, a mean value of the vectorial

order parameter, parallel to the η axis, will occur in the

A B

C

D

h

x

Figure 3. Space of directions of the order parameter for the

X−Y -model.
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T

Figure 4. Phase diagram of a two-dimensional X−Y -model

with collinear directions of random defect fields [9] with

J2/〈h2l 〉 = 100: P — paramagnetic phase, F — ferromagnetic

phase, I−M + LRO — Imry−Ma phase with a long-range order.

system. It is far from saturation even in the ground state,

since there is a second component of the order parameter

that changes its sign from region to region. We believe

that this phase is the closest to the one considered the

papers [10,11] where the authors introduced a random field

into each cell (c = 1) and demonstrated the presence of a

long-range random field induced order.

The phase diagram of a two-dimensional X−Y -model

with defects of the
”
random local field“ type [9] is given

in Fig. 4.

In the remaining unconsidered cases: d = 1; n ≥ 2

and d = 2; n ≥ 3, the long-range order in a defect-

free isotropic system arises only at the absolute zero

temperature. The correlation radius diverges as temper-

ature approaches the absolute zero (see, for instance,

the data on the two-dimensional Heisenberg model [47],
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Figure 5. Phase diagram of a two-dimensional Heisenberg model

with anisotropy of the
”
easy plane“ type, induced by defects

of the
”
random local field“type [9], with J2/〈h2l 〉 = 100: P —

paramagnetic phase, BKT — BKT phase, I−M — unordered

Imry−Ma phase.

one-dimensional X−Y model [50,51] and one-dimensional

Heisenberg model [52,39]).
A defect-free two-dimensional Heisenberg model with

weak anisotropy was considered in the paper [53]. In case

of anisotropy of the
”
easy axis“ type, the system goes to the

class of Ising models, and a long-range order arises in it at

temperature Tc equal to

Tc ≈ 4πJ

ln
(

J
K

) . (54)

The expression (54) is found, similarly to the case of a

two-dimensional X−Y -model, from the ratio Tc ∼ πKr2c .
Correlation radius for a two-dimensional Heisenberg model

is given by the formula [47]:

rc = exp

(

2πJ
T

)

. (55)

If weak anisotropy of the
”
easy plane“ type arises in a

two-dimensional Heisenberg model, then a crossover to a

two-component order parameter and a phase transition to

the BKT phase [53] take place at temperature Tc , which is

set by the formula (54).
When anisotropy is created by defects of the

”
random

local field“ type, the recommendations outlined in the two

previous sections should be followed. Value of temperature

of transition to the Imry−Ma phase determined by the

equation (52) is equal to

TI−M ≈ 2πJ
lnL∗

≈ 4πJ

ln
(

J2

c〈h2l 〉

) ≈ 4πJ

ln
(

J
Kcr

) . (56)

It should be noted that the condition K > Kcr is equivalent

to the condition Tc > TI−M .

In a particular case, when all defect fields are collinear to

the z axis of the Cartesian orthogonal coordinate system in

the spin space, an easy plane xy arises in it. A crossover

to a two-component order parameter takes place in the

region of values K > Kcr at T ≈ Tc . Since projections

of random fields onto an easy plane are equal to zero,

which makes the arising system equivalent to a pure X−Y -
model, and Tc ≪ J, then the crossover is accompanied by

a phase transition to the BKT phase. With K < Kcr, the

Imry−Ma phase is implemented. The phase diagram of

a two-dimensional Heisenberg model with defects of the

”
random local field“ type and anisotropy of the

”
easy plane“

type [9] is given in Fig. 5.

The long-range order in one-dimensional O(n)-systems at

temperatures other than the absolute zero is not present [5],
while a transition to the Imry−Ma phase occurs at the

end temperature TI−M determined by the ratio (52).
The paper [30] generalized the calculation made in the

paper [52] to obtain an expression for the correlation radius

for a one-dimensional system with a n-component order

parameter

rc =
2J

(n − 1)T
. (57)

As a result, we obtain

TI−M ≈























1

n − 1

(

cJ〈h2l 〉
2

)1/3

, ifcJ ≫
√

〈h2l 〉,

2cJ
n − 1

, ifcJ ≪
√

〈h2l 〉.

(58)

The Imry−Ma phase with a long-range order must be

observed in the particular case of collinear random fields at

the absolute zero temperature.

5. O(n)-systems with defects
of the

”
random local anisotropy“ type

5.1. Arguments similar to those given

by Imry and Ma

Let us consider a O(n)-model that contains point defects

of the
”
random local anisotropy“ type. Energy of spins’

interaction with such defects is equal to

Wimp = −K0

∑

l

(slnl)
2, (59)

where K0 > 0 is the constant of defect-induced anisotropy,

summation is done for defects randomly located in lattice

nodes, while nl is the unit vector that sets a direction for

the random easy axis.

Let us consider a case of chaotic distribution of local

easy anisotropy axes in the order parameter space. Due to

static fluctuations in the space region of a system having a

typical linear size L, impurities with a certain direction of

easy axes are predominant and mean anisotropy with the

constant KL ∼ K0

√

c/Ld arises. When the vector of the

order parameter follows the static spatial fluctuations of the
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easy axis direction, there is an energy gain as compared to

the homogeneous state. Per cell, its value is

w1 ≈ −KL ≈ −K0

(

c
Ld

)1/2

. (60)

Comparing it to the energy of inhomogeneous exchange (4),
we can easily see that the Imry−Ma phase in case of d < 4

at large values of L is energetically more favorable that a

homogeneous ordered state.

The optimal scale of inhomogeneity L∗, satisfying the

minimum total energy, and an addition to the homogeneous

state energy per cell are respectively equal to

L∗ ≈
(

16J2

cK2
0

)
1

4−d

, (61)

w I−M ≈ −(4− d)

(

cK2
0

16Jd/2

)
2

4−d

. (62)

Formulas for defects of the
”
random local anisotropy“ type

are obtained from the formulas for defects of the
”
random

local field“ type by replacing 〈h2l 〉 with K2
0 . In particular, the

critical anisotropy constant is equal to [54]

Kcr ≈ J

[

cK2
0

J2

]
2

4−d

. (63)

5.2. Anisotropic distribution of easy axes

As distinct from defects of the
”
random local field“ type,

actual occurrence of global anisotropy in case of anisotropic

distribution of easy axes in the order parameter space

seems obvious. Anisotropy occurs in an approximation

which is linear in K0. By replacing the components of the

random field vector in the formulas (36) and (38) with the

components of vector n, we obtain an anisotropy constant

described by the formulas (37) and (39), where χ̃⊥〈h2l 〉
should be replaced with K0.

When global anisotropy, linear in the constant K0, does

not arise (e.g., when defects’ easy axes are equally probably

parallel to the axes of an orthogonal Cartesian coordinate

system), the following terms of energy decomposition by

powers of the parameter K0/J can be taken into account

and cubic anisotropy can be obtained. Its energy per cell is

equal to [55,56]

wan =
cK2

0 χ̃
⊥

2
〈(s0nl)

4〉 =
cK2

0 χ̃
⊥

2n

n
∑

j=1

s40 j , (64)

the angle brackets mean averaging by easy axes of all

defects.

Further comparison of the arising anisotropy with the

critical value is completely identical to the case of defects of

the
”
random local field“ type. The condition of Imry−Ma

phase existence in case of global anisotropy of the
”
easy

axis“ type gives the following limitation on the asymmetry

lg e
–6 –4 –2 0 2 4

0

0.06

T
J

c
/4

p

0.08

P

F I M-

0.02

0.10

0.04

Figure 6. Phase diagram of a two-dimensional Heisenberg model

with defect-induced (defect of the
”
random local anisotropy“ type)

global anisotropy of the
”
easy axis“ type [58] in the variables

”
temperature−asymmetry“ with K0/J = 10−2 and c = 10−2 :

P — paramagnetic phase, F — ferromagnetic phase, I−M —
Imry−Ma phase.

degree of easy axes distribution in the order parameter

space [54]:

ε < (1÷ 10) c
d−2
4−d

(

K0

J

)
d

4−d

. (64)

For d = 3 we obtain, in case of the values c ∼ 10−2

and K0/J ∼ 10−2, a region of values ε < 10−7 (for
comparison, in case of defects of the

”
random local

field“ type, the limitation ε < 10−3 has been obtained

in Section 4.1 with c ∼ 10−2 and hl ∼ 0.1J). In a

real sample, it is difficult to create an isotropic dis-

tribution of easy axes with similar accuracy. This,

of course, does not exclude the possible existence of

metastable inhomogeneous states. The fundamental sig-

nificance of
”
disorder isotropy“ for occurrence of the

Imry−Ma phase has been noted in the paper [57],
but a critical value of anisotropy was not calculated in

the paper.

For d = 2, estimation gives a limitation

ε < 10−1÷10−2 [54] that can be implemented ex-

perimentally. An example of a phase diagram of a

two-dimensional Heisenberg model with defects of the

”
random local anisotropy“ type and global anisotropy of the

”
easy axis“ type [58] is given in Fig. 6. Since the degree of

asymmetry of easy axes distribution in the Imry−Ma phase

is small, a long-range order cannot exist in it.

In case of anisotropy of the
”
easy plane“ type, the issue

of occurrence of a long-range order or an Imry−Ma state

is solved similarly to the case of random fields, only not

random fields, but vectors nl must be projected onto the

”
easy plane“.

An example of a non-point defect of the
”
random

anisotropy“ type is the aerogel in 3He−A that affects

orientation of the order parameter’s orbital portion. The

paper [28] describes experimental observation of a transition

from the Imry−Ma state into a state with a long-range order
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as anisotropy, caused by aerogel deformation, increases. A

theoretical estimation of the necessary global anisotropy

value for restoration of the long-range order was made in

the paper [59].

6. Imry−Ma phase in a nanocrystalline
ferromagnet

6.1. Case of nanocrystallites’ strong exchange
coupling

Another interesting experimentally implementable system

with random anisotropy is a nanocrystalline ferromagnet

with crystallographic anisotropy of the
”
easy axis“ type.

Since crystalline lattice orientation changes from crystallite

to crystallite, we have a random anisotropy system.

Anisotropy energy is as follows

Wan = −1

2
K0

∑

α

∑

i∈Vα

(si,αeα)
2, (65)

where K0 is the constant of crystallographic anisotropy in

the crystallite volume, si,α is the i-th spin pertaining to

the crystallite under number α, Vα is the volume of this

crystallite, eα is the unit vector that sets a direction of the

easy axis in the given crystallite.

This section is limited to analysis of the results of

consideration of ferromagnets having a high quality factor,

where crystallographic anisotropy is much greater than

anisotropy of the shape which is not taken into account

in this respect.

Such systems were described for the first time in the

paper [20], which deals with amorphous ferromagnets

where anisotropy of the
”
easy axis“ type changed randomly

on the structural correlation length D. Then it was

showed, based on the arguments of the Imry−Ma type, that

the ferromagnetic state for random anisotropy systems is

unstable in relation to occurrence of order parameter static

fluctuations.

The papers [21,22] applied this theory to nanocrystalline

ferromagnets, where the role of structural correlation

length is played by typical crystallite size R. Thereat,

is was supposed that exchange interaction between spins

of the neighboring crystallites is the same as inside the

crystallite. In this case, a domain wall with the thickness

of 1 ∼ √
J/K0 tries to form on the crystallites boundary,

where J is the exchange integral in the crystallite volume.

In case of R ≫ 1, such walls form freely, and magneti-

zation in the volume of each crystallite is parallel to its

easy axis. This is the region of crystallites’ individual

behavior.

With R ≪ 1, domain walls cannot form on inter-

crystallite boundaries, and the Imry−Ma phase arises,

where magnetization changes on the scales L ≫ R, follo-
wing the fluctuations in the easy axis direction. Quantity

of crystallites in volume Ld is about (L/R)d . Average

anisotropy across the volume, arising in the given volume

due to statistical fluctuations, is equal to K0(R/L)d/2 . The

corresponding energy gain per cell is equal to

w1 ≈ −K0

(

R
L

)d/2

. (66)

Inhomogeneous exchange energy is given by the for-

mula (4). The optimal scale of inhomogeneity L∗ and

an addition to the homogeneous state energy per cell are

respectively equal to

L∗ ≈ 1

(

1

R

)
d

4−d

, (67)

w I−M ≈ −K0

(

R
1

)
2d

4−d

. (68)

The estimate w I−M in case of a random dimension of space

was obtained in the paper [60]. This value can be used to

estimate the magnitude of coercive field according to the

formula [20–22]:

Hc ≈ |w I−M |
Ms

, (69)

where Ms is the value of saturation magnetization. This

estimate was used in [21] to obtain a power dependence of

the three-dimensional sample’s coercive field on crystallite

size Hc ∝ R6.

However, a whole range of alloys have a power depen-

dence with a smaller index: Hc ∝ R3 (see, for instance, the
monograph [61]). It was explained in the papers [62,63]
by means of a model with assumed presence both of

random anisotropy and uniaxial anisotropy, homogeneous

across the sample volume, which was much greater than

the random one. The coercive field magnitude is de-

termined by the total anisotropy energy, consequently,

in this case the summand in Hc , proportional R3, is a

small addition to the constant value and cannot cause

a considerable change in the coercive field. There-

fore, the suggested model contradicts the experimental

data which gives evidence of a change in the coer-

cive field by several orders upon a change in crystallite

size [64,65].

6.2. Case of nanocrystallites’ weak exchange
coupling

In order to eliminate the said contradiction, the paper [66]
suggested a model of nanocrystallites’ weak exchange cou-

pling. This can be related both to the structure of boundaries

(large distances between neighboring spins that pertain to

different crystallites, presence of amorphous phase) and to

a different chemical composition in the crystallites’ volume

and in the boundary regions.

Let exchange interaction of the nearest (to each other)
spins, pertaining to neighboring crystallites, is described

by an exchange integral J̃≪J . If J̃ exceeds the domain

wall energy per cell in the wall plane ε ∼ √
JK0, then the
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Figure 7. Phase diagram of a nanocrystalline system [66]
in the variables

”
typical crystallite size — exchange integral of

intercrystalline interaction“. The solid line is the boundary between

regions of individual (above the line) and collective behavior of

crystallites. The dashed line separates the regions of the first (to
the right of the line) and second mechanisms of magnetization turn.

boundary between crystallites’ individual and collective be-

havior remains unchanged (R ∼ 1). In case of J̃ ≪ √
JK0, a

magnetization turn on the atomic scale in the inter-crystallite

gap is energetically more favorable. The critical size Rcr is

found from the condition of equality of anisotropy energy

in crystallite volume K0R3 and inhomogeneity energy at the

crystallite boundary J̃R2:

Rcr ≈
J̃

K0

≈ J̃√
JK0

1 ≪ 1. (70)

It is to be recalled that all distances are given in units of

the spin lattice constant. With R ≫ Rcr there is individual,

and in the opposite case — collective behavior of crystallite

magnetizations.

The phase diagram of a system [66] in the variables

”
typical crystallite size R — exchange integral of inter-

crystalline interaction“ is given in Fig. 7. The boundary

between the individual and collective behavior of crys-

tallite magnetizations is showed by a solid line. Above

it there is individual behavior, and below it is collec-

tive behavior. A transition from one behavior type to

another occurs continuously as the system parameters

change.

Type of inhomogeneous exchange energy depends on

the mechanism of magnetization turn from one region

with linear size L to another. If magnetization turns

continuously on scale L (the first turn mechanism), the

expression (4) is true.

Magnetization can turn
”
stepwise“ by successive jumps

on crystallite boundaries (the second turn mechanism). The
quantity of such steps on length L is equal to L/R, while

the turn angle at each crystallite boundary is about R/L.
Since inhomogeneity energy is proportional to the turn angle

square, inhomogeneity energy in the contact region per cell

in the crystallite boundary plane is equal to

w
(1)
2 ≈ J̃R2

L2
. (71)

The relative fraction of contact regions is about R−1. As

a result, the average volumetric density of inhomogeneity

energy is

w2 ≈
J̃R
L2

. (72)

By comparing the expressions (4) and (72), we find that

the first turn mechanism predominates at J̃R ≫ J, and the

second one — in case of the inverse ratio.

The boundary between the regions where one of the turn

mechanisms prevails is showed in Fig. 7 by a dashed hyper-

bola R =
(

J
K0

)(

J̃
K0

)−1
. It is a continuation of the straight line

J̃
K0

=
√

J
K0

that separates two mechanisms of magnetization

turn at the boundaries of large crystallites. A transition

from one mechanism to another occurs continuously as the

parameters change.

In case of the first turn mechanism, the esti-

mates (67), (68) hold good for the parameters L∗

and w I−M , obtained for the case of strong crystallite

interaction. For the second turn mechanism, by minimizing

the sum of energies (66) and (72) in terms of L, we

find [66]:

L̃∗ ≈
(

J̃
K0

)
2

4−d

R
2−d
4−d , (73)

w I−M ≈ −K0

(

RK0

J̃

)
d

4−d

. (74)

Dependence Hc ∝ w I−M ∝ J̃− d
4−d explains the coercive

field growth with temperature increase, found in the

paper [67]. Indeed, the value of J̃ drops as the amorphous

phase, located in the inter-crystallite gap, approaches the

Curie temperature. Hc continues growing up to violation

of the condition K0R ≪ J̃ and transition to the phase of

individual behavior of crystallite magnetizations.

It is easily seen that dependence of coercive field (in
the region of prevalence of the second turn mechanism)
on crystallite size (Hc ∝ R1/3, Hc ∝ R, Hc ∝ R3 for one-

dimensional, two-dimensional and three-dimensional struc-

tures, respectively) differs significantly from the one in the

region of prevalence of the first mechanism (Hc ∝ R2/3,

Hc ∝ R2, Hc ∝ R6 for one-dimensional, two-dimensional

and three-dimensional structures, respectively).
Thus, the dependence Hc ∝ R3 observed in the exper-

iment [61,64,65] is explained by the weak inter-crystallite

bond and by the stepped mechanism of magnetization turn.

6.3. Texturing degree

The phase diagram [66] given in Fig. 7 is true in

the absence of sample texturing, i.e. in the absence of

anisotropy in the distribution of easy axes’ directions in the

order parameter space.
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Let us estimate the critical degree ε of asymmetry of

distribution ρ(e) of easy axes’ directions in the order

parameter space, upon exceeding of which the Imry−Ma

state becomes energetically unfavorable and a homogeneous

ferromagnetic state arises. Let ρ(e) be given by the

expressions (36) or (38), in which the components of the

random field vector have been replaced by the components

of the vector e.

The critical value of ε in case of global anisotropy of the

”
easy axis“ type is equal to

εcr ≈
(

R
1

)
2d

4−d

, J̃R ≫ J, (75)

εcr ≈
(

RK0

J̃

)
d

4−d

, J̃R ≪ J. (76)

For R = 0.11 from (75) we obtain εcr = 10−6 for d = 3 and

εcr = 10−2 for d = 2. For RK0 = 0.1J̃ we find from (76):
εcr = 10−3 for d = 3 and εcr = 10−1 for d = 2 [66]. It is

easily seen that the least severe requirements to texturing

degree refer to two-dimensional samples with crystallites’

weak interaction and the second mechanism of magne-

tization turn. Therefore, the Imry−Ma state is more

conveniently studied on thin (with the thickness of one

crystallite) nanocrystalline ferromagnetic films, texturized

so that the crystallites’ crystallographic easy axes are

isotropically distributed in the film plane. The substrate

should be amorphous, so that it does not create texturing in

the film plane.

7. Conclusion

The article by Y. Imry and S.-K. Ma [1] was published

45 years ago. Within this time, the Imry−Ma phase theory,

from our point of view, has underwent three stages.

At the first one everything was rather simple. Knowing

the space dimension and having made sure that the system

has a random field or random anisotropy, the correlation

function of which droops at short distances, we were able

to conclude that the system ground state corresponds to

an unordered Imry−Ma phase, where the order parameter

direction follows large-scale fluctuations of a random field

or random anisotropy. According to the prevailing viewpoint

in science, a random field and random anisotropy destroyed

the long-range order.

The beginning of the second research stage has heralded

the prediction of the occurrence of a random field induced

order (RFIO) in a two-dimensional system [10]. All things
got mixed up. A long-range order occurred at the end

temperature, where it was not present in a pure system.

It was realized that random fields may not only destroy but

also create a long-range order.

The beginning of the third stage has set the understanding

of the role of weak homogeneous anisotropy of the
”
easy

axis“ type in suppression of the inhomogeneous Imry−Ma

state [57,28,29]. Establishing of the fact of occurrence

and finding of a method to calculate the value of global

anisotropy, induced by anisotropic distribution of random

fields in the order parameter space [17,18,41], made it

possible to mark ways for determination of the system

state. Only now much more needs to be known than at

the first stage, in order to predict a region of Imry−Ma

phase existence. Information about the distribution of

random fields or easy axes in the order parameter space

is necessary. In most cases, the Imry−Ma phase arises

in case of relatively strong proximity of this distribution to

the isotropic one. While in a theoretical consideration the

degree of such proximity can be set by the author, in an

experimental study the obtaining of such information, from

our point of view, presents severe difficulties. Therefore, we

end the overview with a wish of success for enthusiasts who

plan to study the very interesting Imry−Ma phases. Their

theory, and the more so experimental studies are nowhere

near completion.

The two authors (A.A.B. and A.S.S.) deeply lament the

untimely death of a talented physicist, friend and co-

author — Alexander Igorevich Morozov — and dedicate

this article to his cherished memory.
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