Фотоокисление тетрагидробиоптерина как основа фототерапии витилиго

© Т.А. Телегина^{1,2}, Ю.Л. Вечтомова¹, М.С. Крицкий¹, А.С. Низамутдинов³, Э.И. Мадиров^{2,3}, Д.А. Макарова³, А.А. Буглак²

 ¹ Институт биохимии им. А.Н. Баха, Федеральный исследовательский центр "Фундаментальные основы биотехнологии" РАН, 119071 Москва, Россия
 ² Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия
 ³ Казанский федеральный университет, 420008 Казань, Россия
 e-mail: telegina@inbi.ras.ru

Поступила в редакцию 23.01.2022 г. В окончательной редакции 07.02.2022 г. Принята к публикации 10.02.2022 г.

Исследована кинетика фотоокисления тетрагидробиоптерина, вычислены квантовые выходы образования димеров дигидроптерина при использовании в качестве источников УФ излучения: ксеноновой лампы, перестраиваемого УФ лазера и УФ светодиода. На основании сравнительного анализа эффективности этих источников излучения при проведении процесса фотоокисления тетрагидробиоптерина сделано заключение об эффективности УФ светодиодных источников с максимумом испускания в области 325 nm для целей фототерапии витилиго.

Ключевые слова: витилиго, тетрагидробиоптерин, меланин, окислительный стресс, H₂O₂, УФ фототерапия витилиго.

DOI: 10.21883/OS.2022.05.52432.14-22

Введение

20

Биофотоника, изучающая закономерности взаимодействия фотонов с биологическими объектами, является фундаментальной основой биомедицины и используется для изучения механизмов биохимических процессов, а также в качестве фундаментальной основы технологий лечения патологических состояний. Одно из актуальных направлений биофотоники связано с изучением фундаментальных основ фототерапии дерматологических заболеваний, поскольку фототерапия — это неинвазивный, современный метод лечения этих заболеваний. Среди дерматологических заболеваний витилиго представляет несомненный интерес, поскольку относится к социально значимым заболеваниям с малоизученным этиопатогенезом. Заболеваемость витилиго по странам колеблется от 0.1% до 4.0% [1-4]. Наблюдается рост заболеваемости этой болезнью, что определяет актуальность данного исследования.

Витилиго — дерматологическое заболевание, характеризующееся образованием депигментированных участков кожи из-за нарушения биосинтеза меланина и потери меланоцитов в эпидермисе кожи [5–7]. До последнего времени рассматривалось несколько гипотез для объяснения механизма возникновения витилиго: аутоиммунная (иммунная), окислительного стресса, нейроэндокринная, генетическая и гипотеза аутодеструкции. Следует заметить, что отдельное рассмотрение этих гипотез не совсем оправдано, поскольку существуют причинноследственные связи между всеми биохимическими процессами в человеческом организме. В настоящее время считается, что витилиго является результатом комплекса взаимодействий между окислительным стрессом и аутоиммунными процессами у пациентов с генетической предрасположенностью [8,9].

Синтез меланина происходит в клетках — меланоцитах в особых органеллах — меланосомах. Синтезированный темноокрашенный меланин вступает во взаимодействие с белками меланосомального матрикса и образуются темноокрашенные меланопротеины, которые передаются в кератиноциты путем фагоцитоза [10]. Один меланоцит обеспечивает темноокрашенными пигментами до 36 кератиноцитов. Меланоциты расположены в базальном слое эпидермиса. Он имеет толщину $30-150\,\mu$ m, на которую способно проникать ультрафиолетовое излучение УФВ и УФА диапазонов [11,12].

Основные этапы биосинтеза меланина в меланоцитах следующие: фенилаланин→ тирозин→ диоксифенилаланин (DOPA)→ DOPA-хром→·→ меланин. Окисление аминокислоты фенилаланина до тирозина осуществляется ферментом фенилаланингидроксилазой, которая функционирует с участием кофермента тетрагидробиоптерина (H₄Bip). При витилиго в меланоцитах накапливается 3–5-кратный избыток H₄Bip, который ингибирует тирозиназу, являющуюся ключевым ферментом в биосинтезе меланина [6,13–16]. Избыток H₄Bip может легко

окисляться кислородом воздуха (автоокисление) с образованием окисленных птеринов и пероксида водорода (H_2O_2) [17,18]. Окисленные птерины, накапливаясь, способствуют фотоокислению белков и нуклеиновых кислот [19]. Образование окисленных производных H_4 Вір сопровождается синтезом пероксида водорода, который накапливается в миллимолярных концентрациях в коже больных витилиго [16]. В настоящее время активно исследуется роль H_2O_2 в меланогенезе и патогенезе витилиго [9,20–22].

762

УФВ-фототерапия, использующая эксимерный лазер с $\lambda = 308$ nm или узкополосное излучение ламп с $\lambda = 311$ nm, является наиболее успешным методом лечения витилиго [16,23], но механизм терапевтического действия не установлен. Мы предложили гипотезу [24,25], согласно которой разорвать автокаталитический цикл избыточного синтеза H₂O₂ можно путем удаления избытка H₄Bip, переводя его в димеры дигидроптерина ((H₂Ptr)₂) под действием УФ излучения.

Всестороннее изучение фототрансформаций H₄Bip, имеющих место при фототерапии витилиго, требует дальнейших исследований. В связи с этим целью настоящей работы являлось изучение закономерностей фототрансформации H₄Bip в димеры дигидроптерина под действием УФ излучения различных источников света: ксеноновой лампы, УФ лазера и УФ светодиода.

Материалы и методы исследования

Реактивы. 5,6,7,8-тетрагидро-L-биоптерин (H₄Bip) и другие птерины фирмы "Schirks Laboratories" (Швейцария). Остальные реактивы, использованные в работе, были получены от "Sigma-Aldrich Co" (США).

Приготовление образцов. Растворы H₄Bip в 0.1M Трис-HCl буфере (pH 7.2) готовили непосредственно перед проведением эксперимента и определяли концентрацию H₄Bip по молярному коэффициенту экстинкции ($\varepsilon_{297} = 10200 \text{ M}^{-1} \text{ cm}^{-1}$ для pH 7).

УФ облучение. Растворы H_4 Вір облучали при постоянном перемешивании на воздухе в 1 ст кварцевой кювете, используя в качестве источника УФ света ксеноновую лампу спектрофлуориметра FluoroMax 4 "Horiba Scientific" (Япония). Также растворы H_4 Вір облучали в кварцевой кювете с оптическим путем 0.3 ст, используя в качестве источника УФ света импульсный лазер с перестройкой длины волны или светодиод с $\lambda_{max} = 325$ пт.

Облучение с использованием спектрофлуориметра проводили при возбуждении на различных длинах волн в диапазоне 300–350 nm со спектральной шириной щели 20 nm в течение различных промежутков времени. Темновые интервалы, в течение которых производили запись спектров облученных образцов, составляли 2 min. Контроли без облучения ставили параллельно к каждому опыту. В темновых контролях протекал только процесс автоокисления H₄Bip.

В работе использовался перестраиваемый УФ лазер на основе кристалла LiLu_{0.7}Y_{0.3}F₄, активированного ионами Ce³⁺ и Yb³⁺ [26,27]. В качестве источника накачки применялся лазер на кристалле LiCaAlF₆, активированном ионами Ce³⁺ (290 nm) [28], источником возбуждения для которого в свою очередь служило 266 nm излучение 4-й гармоники лазера YAG:Nd (LQ529B) "SolarLS" (Беларусь). Длительность импульса составляла 10 ns при частоте следования импульсов 10 Hz. Образцы облучались лазером на разных длинах волн в диапазоне 290–330 nm.

В работе также использовались светодиоды LED 325W UVTOP (США), изготовленные на основе гетероструктур AlGaN, излучающие на длине волны 325 nm, ширина полосы излучения около 10 nm, оптическая выходная мощность 0.4 mW.

Концентрация продукта фотоокисления H_4Bip — димеров дигидроптерина определялась по полосе поглощения в области 245 nm на разностных спектрах поглощения и рассчитывалась с учетом коэффициента экстинкции ($\varepsilon_{245} = 27000 \, M^{-1} cm^{-1}$ для pH 7.2).

Методы исследования. Регистрацию спектров поглощения темновых контролей и облучаемых образцов производили на спектрофотометре Shimadzu UV-1601 (Япония), Beckman Coulter DU650 (США) или Cary 300 Bio ("Varian", США). Плотность мощности излучения (W·m⁻²), падающего на образец, измеряли радиометром Аргус-04 "ВНИИОФИ" (Россия).

Анализ продуктов реакции проводили методом высокоэффективной жидкостной хроматографии (ВЭЖХ) на катионообменной колонке Luna 5u SCX 100A "Phenomenex" (США) по ранее разработанной методике, описанной в [25]. Колонку калибровали по времени выхода свидетелей — препаратов H₄Bip и его окисленных производных. Детекцию веществ проводили с помощью трёх детекторов: спектрофотометрического, флуориметрического и электрохимического. Использование калиброванной по времени выхода веществ колонки и трёх детекторов позволяло наиболее точно идентифицировать продукты реакции, поскольку все они имели разную степень окисления и флуоресцентные характеристики.

Расчет квантового выхода продуктов фотореакции. Квантовый выход образования димера дигидроптерина (H₂Ptr)₂ (mol/quantum) рассчитывали по формуле:

$$\Phi = \frac{\Delta A \times V \times N_a}{\tau \times \Delta E \times l \times In}$$

где ΔA — изменение концентрации облучаемого раствора в единицах оптической плотности при 245 nm; V — объём облучаемого раствора, l; N_a — число Авогадро, mol⁻¹; τ — время облучения, s; l — толщина поглощающего слоя, cm; In — интенсивность поглощенного света,

Рис. 1. Схема автоокисления тетрагидробиоптерина и замыкание автокаталитического цикла при витилиго. В скобках указаны длинноволновые максимумы спектров поглощения.

quantum/s; ΔE — разность молярных коэффициентов экстинкции (H₂Ptr)₂ и H₄Bip при 245 nm.

Результаты и обсуждение

Автоокисление тетрагидробиоптерина

 H_4Bip является высокоактивным восстановленным соединением, которое подвержено спонтанному автоокислению молекулярным кислородом как *in vivo*, так и *in vitro* в водных растворах [17,18]. Согласно данным литературы [17,18], первым продуктом автоокисления H_4Bip является неустойчивый 6,7-хиноноидный дигидробиоптерин (qH₂Bip) со временем жизни 1.5 min. Затем он изомеризуется в более стабильный дигидробиоптерин (H₂Bip) или трансформируется в дигидробиоптерин (H₂Ptr) с отрывом бокового радикала — дигидроксипропила. Далее H₂Bip переходит в полностью окисленную форму — биоптерин (Bip), а неустойчивый H₂Ptr окисляется кислородом до птерина (Ptr) или до дигидроксантоптерина (H₂Xap). Последовательность реакций автоокисления H₄Bip приведена на рис. 1. В зависимости от рН среды, температуры и природы буфера будет преобладать H_2 Вір или H_2 Рtr и их полностью окисленные формы. В настоящей работе проведен ряд опытов по автоокислению растворов H_4 Вір $(1.6 \pm 0.2) \cdot 10^{-4}$ M в 0.1 М Трис-HCl буфере рН 7.2. Методом ВЭЖХ анализа, на основании совпадения времён выхода исследуемых веществ и веществ-свидетелей, было установлено образование H_2 Вір (время выхода 16.9 min), Вір (время выхода 11.6 min) и Ptr (время выхода 22.0 min) при проведении автоокисления H_4 Вір в темноте в течение 30 min. При этом в преобладающем количестве образуются H_2 Вір и Вір, и это указывает на то, что окислительная трансформация H_4 Вір в темноте идёт в основном без отрыва бокового радикала.

Важно отметить, что на каждой стадии процесса автоокисления H₄Bip образуется H₂O₂, количество которого накапливается по мере протекания процесса. Мы полагаем, что при протекании автоокисления H₄Bip *in vivo* также идёт образование и накопление H₂O₂. Благодаря процессам автоокисления 3–5-кратного избытка H₄Bip, имеющего место при витилиго, в коже пациентов с витилиго накапливается H₂O₂ в милли-

764

Рис. 2. Изменение спектров поглощения раствора $1.53 \cdot 10^{-4}$ М H₄Bip в 0.1М Трис-HCl буфере pH 7.2 при ступенчатом облучении 325 ± 10 nm ксеноновой лампой спектрофлуориметра в присутствии кислорода воздуха; на вставке разностный спектр (разность между облученным и исходным образцом). Длительность облучения: 0 (*1* — исходный спектр), 2 min (*2*), 4 min (*3*), 6 min (*4*), 8 min (*5*), 10 min (*6*), 12 min (*7*), 14 min (*8*), 16 min (*9*).

молярных концентрациях, ведущих к окислительному стрессу. Следовательно, в меланоцитах имеет место окислительный стресс. H_2O_2 при посредстве цитокинов (а именно Y-интерферона) может активировать фермент ГТФ-циклогидролазу, синтезирующую избыток H_4 Вір, который затем будет спонтанно окисляться с образованием H_2O_2 . Мы полагаем, что таким путем может запускаться автокаталитический цикл избыточного синтеза H_2O_2 (рис. 1), лежащий, по-видимому, в основе патогенеза витилиго [24,25]. Известно, что одной из функций активных форм кислорода, в частности H_2O_2 , является индукция иммунной системы. Действительно, при витилиго активируются системы гуморального и клеточного иммунитета, ведущие к уменьшению числа меланоцитов, продуцирующих меланин [8,9].

Фотоокисление Н₄Вір

Было проведено несколько серий опытов по фотоокислению H₄Bip под действием излучения ксеноновой лампы. Раствор H₄Bip облучали УФ излучением с различными длинами волн в интервале 300–350 m. Каждая отдельно взятая длина волны имела разброс в 10 nm, который обеспечивался спектральной шириной щели в 20 nm в спектрофлуориметре, используемом нами в качестве источника УФ света. На рис. 2 приведены результаты опыта по облучению раствора $1.53 \cdot 10^{-4}$ M H₄Bip излучением с длиной волны 325 ± 10 nm (плотность мощности 72 W·m⁻²), при этом интервал облучения и темновой интервал между облучениями составлял 2 min. На разностном спектре поглощения (рис. 2, вставка) можно видеть, что по мере облучения убывает соединение с максимумом длинноволнового поглощения при 308 nm и нарастает поглощение в области 244 nm и перегиб в области 275 nm. Это может говорить об убыли промежуточного межмолекулярного комплекса (хиноноидный дигидроптерин-дигидроптерин (qH₂Ptr-H₂Ptr)) и нарастании количества образующегося димера дигидроптерина (H₂Ptr)₂. Промежуточный межмолекулярный комплекс может образовываться при донорно-акцепторных взаимодействиях бензоидной формы дигидроптеринов (H₂Ptr или H₂Bip) с хиноноидной формой дигидроптеринов (qH₂Ptr или qH₂Bip). Образующийся межмолекулярный комплекс имеет, очевидно, поглощение с максимумом при 307 nm, что выявлено по появлению полосы при 307 nm в спектре четвёртой производной спектра поглощения исходного H₄Bip. Именно полоса поглощения с максимумом 307 nm убывает при проведении фотоокисления Н₄Вір при всех исследуемых длинах волн в интервале 300-350 nm.

В качестве примера опытов по облучению с помощью перестраиваемого УФ лазера (рис. 3) растворов $1.19 \cdot 10^{-4}$ М H₄Bip (световые и темновые интервалы по 2 min) приведены данные опыта, когда облучение проводили на длине волны 325 nm (импульсная мощность 64 µJ) в квадратной кювете с длиной оптического пути 0.3 cm. На рис. 3 можно видеть, что по мере облучения также падает поглощение в области 310 nm и возрастает поглощение в области 244 и 275 nm, которые свидетельствуют об образовании (H₂Ptr)₂ из промежуточного межмолекулярного комплекса.

Провели сравнение процессов фотоокисления H₄Bip при облучении с помощью УФ лазера и ксеноновой лампы при длине волны 325 nm. Из спектральных данных (рис. 3) с учетом молярных коэффициентов экстинкции

Рис. 3. Изменение спектров поглощения раствора $1.19 \cdot 10^{-4}$ М H₄Bip в 0.1М Трис-HCl буфере pH 7.2 при ступенчатом облучении 325 nm на перестраиваемом лазере в присутствии кислорода воздуха; на вставке разностный спектр (разность между облученным и исходным образцом). Длительность облучения: 0 (*1* — исходный спектр), 2 min (*2*), 4 min (*3*), 6 min (*4*), 8 min (*5*), 10 min (*6*).

Рис. 4. Изменение спектров поглощения раствора $1.81 \cdot 10^{-4}$ М Н₄Вір в 0.1М Трис-НСІ буфере рН 7.2 при ступенчатом облучении светодиодом 325 ± 5 nm в присутствии кислорода воздуха; на вставке разностный спектр (разность между облученным и исходным образцом). Длительность облучения: 0 (*1* — исходный спектр), 2 min (*2*), 4 min (*3*), 6 min (*4*), 8 min (*5*), 10 min (*6*), 12 min (*7*), 14 min (*8*), 16 min (*9*).

можно вычислить, что за 10 min облучения лазером 76% H₄Bip переходит в (H₂Ptr)₂. Из спектральных данных (рис. 2) можно рассчитать, что за 10 min облучения ксеноновой лампой 37% Н₄Вір переходит в димеры. Можно заключить, что начальная скорость процесса фотоокисления Н4Вір в случае использования лазера выше, чем при использовании ксеноновой лампы. Хотя необходимо учесть, что плотность мощности лазерного излучения значительно выше, чем у ксеноновой лампы. При фототерапии витилиго избыток энергии может поглощаться не только H4Bip, но и другими хромофорамифотосенсибилизаторами и приводить к нежелательным деструктивным процессам. Более того, фотоокисление Н₄Вір, протекающее по радикальному механизму [29– 31], может ускоряться значительно быстрее, чем димерообразование, поскольку для образования димеров нужен промежуточный межмолекулярный комплекс (qH₂Ptr-H₂Ptr), образование которого, по-видимому, имеет диффузионные ограничения.

Была проведена серия опытов по фотоокислению H₄Bip под действием излучения светодиода с $\lambda_{max} = 325.5$ nm (плотность мощности $2.5 \text{ W} \cdot \text{m}^{-2}$) в квадратной кювете с длиной оптического пути 0.3 cm. На рис. 4 приведена кинетика фотоокисления раствора ($1.81 \cdot 10^{-4}$ M) H₄Bip. Можно видеть, что процесс образования димеров дигидроптерина аналогичен процессу, протекающему при действии УФ излучения ксеноновой лампы или УФ излучения лазера. Также убывает поглощение при 305 nm в области поглощения промежуточного комплекса и нарастают величины поглощения в области 240 и 275 nm, которые соответствуют накоплению (H₂Ptr)₂. Сдвиг на 5 nm в области поглощения димера

дигидроптерина ($\lambda_{max} = 245 \text{ nm}$) произошёл, вероятно, за счет присутствия небольших количеств (около 7%) окисленных птеринов (имеющих поглощение в области 230, 275 и 340 nm).

В целом, мы полагаем, что УФ облучением депигментированных участков кожи пациентов с витилиго можно добиться удаления избытка H_4 Вір и этим разорвать автокаталитический цикл синтеза избытка H_2O_2 , что будет способствовать предотвращению дальнейшего развития патологического процесса.

Расчёт квантовых выходов образования димера дигидроптерина

В работе [25] были рассчитаны квантовые выходы и построен спектр действия УФ излучения ксеноновой лампы в реакции образования димеров дигидроптерина. Было показано, что максимум спектра действия УФ и квантовые выходы отличались менее чем в 2 раза в диапазоне длин волн 300-325 nm, что говорит о применимости этих длин волн для фотоокисления H₄Bip и перевода его в димеры дигидроптерина. Расчёт квантовых выходов образования димеров под действием УФ лазера и построение на основании полученных данных спектра действия также показал, что наиболее эффективным в реакции образования димеров является излучение в области 300-325 nm. Поскольку облучение при 308 и 311 nm в области УФВ (280-315 nm) захватывает область инактивации белков и таким образом может оказывать деструктивное действие на клетки [32,33], то наше внимание было сосредоточено на исследовании наиболее длинноволнового УФ света (325 nm), входящего в спектр действия реакции фотодимеризации. Были рассчитаны квантовые выходы для реакции образования димеров дигидроптерина при облучении с длиной волны 325 nm в начальный период облучения. Для ксеноновой лампы он составил $(1.0 \pm 0.3) \cdot 10^{-2}$, для УФ лазера $(1.5\pm0.3)\cdot10^{-2}$ и для светодиода $(3.8\pm0.7)\cdot10^{-2}.$ Следовательно, квантовые выходы для всех источников представлены величинами одного порядка.

С увеличением импульсной мощности в УФ лазере с 10 до $100 \,\mu$ J квантовые выходы образования димеров дигидроптерина падают приблизительно в 5 раз в исследованном диапазоне длин волны. Благодаря высокой концентрации энергии в узком спектральном диапазоне (а для импульсных лазеров и во временном интервале) лазерные источники света обусловливают преимущество высокой селективности воздействия на тот или иной биохимический процесс. Однако высокая импульсная мощность, характерная для короткоимпульсных лазеров, может быть фактором, ограничивающим использование импульсного излучения в методиках низкоинтенсивной лазерной терапии.

Заключение

При УФ фототерапии витилиго, очевидно, будет разрываться автокаталитический цикл накопления H₂O₂ за счёт удаления 3-5-кратного избытка Н4Вір в виде димеров дигидроптерина. Такая УФ фототерапия будет способствовать восстановлению процесса меланогенеза. Для успешного восстановления меланогенеза необходимо также удаление избытка H₂O₂, образующегося в миллимолярных концентрациях в пораженных витилиго меланоцитах и создающего окислительный стресс. В данных условиях может запускаться автокаталитический цикл избыточного синтеза Н₂O₂ [25]. В связи с этим лучшие результаты терапии витилиго могут быть получены, когда одновременно с УФ фототерапией, призванной удалять избыток H4Bip, применяют антиоксидантную терапию для удаления H2O2 и предотвращения его накопления в меланоцитах. Хорошие результаты комплексной терапии достигают при применении УФВ-фототерапии и псевдокаталазы, разлагающей H₂O₂ [16,23]. По-видимому, возможно применение наночастиц, обладающих антиоксидантными свойствами [34]. Необходимо дальнейшее развитие работ в этом направлении для совершенствования методик фототерапии витилиго с использованием различных источников УФ излучения. С целью оптимизации УФ фототерапии очевидно следует использовать УФ излучение в области 325 nm, поскольку при этом не будут затрагиваться многочисленные белки, которые могут инактивироваться при облучении в области 310 nm. Среди источников УФ для целей фототерапии витилиго, по-видимому, наиболее подходящими являются светодиодные источники, имеющие наибольшую величину квантового выхода в реакции димеризации. Они наиболее дешевы и долговечны, могут быть сконструированы в виде LEDматрицы по размеру депигментированного участка кожи и обеспечить необходимую для низкоинтенсивной УФ фототерапии дозу облучения.

Финансирование работы

Т.А. Телегина, Э.И. Мадиров и А.А. Буглак выполняли работу в рамках гранта РНФ № 20-73-10029. Перестраиваемые УФ лазеры были сконструированы в Казанском федеральном университете в рамках Программы стратегического академического лидерства Казанского (Приволжского) федерального университета.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 H.K. Cho, L.Y. Eun, J.S. Song, W.H. Kang, B.I. Ro. Ann. Dermatol, 21 (1), 75 (2009). DOI: 10.5021/ad.2009.21.1.75

- [2] J.M. Park, H.J. Kim, B.G. Bae, Y.K. Park. Ann. Dermatol, 21 (3), 330 (2009). DOI: 10.5021/ad.2009.21.3.330
- [3] K. Hedayat, M. Karbakhsh, M. Ghiasi, A. Goodarzi, Y. Fakour, Z. Akbari, A. Ghayoumi, N. Ghandi Health Qual. Life Outcomes, 14, 86 (2016). DOI: 10.1186/s12955-016-0490-y
- [4] M.A. Morales-Sánchez, M. Vargas-Salinas, M.L. Peralta-Pedrero, M.G. Olguín-García, F. Jurado-Santa Cruz. Actas Dermosifiliogr., **108** (7), 637 (2017). DOI: 10.1016/j.ad.2017.03.007
- [5] K.U. Schallreuter, J.M. Wood, M.R. Pittelkow, M. Gutlich, K.R. Lemke, W. Rödl, N.N. Swanson, K. Hitzemann, I. Ziegler. Science, 263(5152), 1444 (1994). DOI: 10.1126/science.8128228
- [6] K.U. Schallreuter, J. Moore, J.M. Wood, W.D. Beazley,
 E.M. Peters, L.K. Marles, S.C. Behrens-Williams, R. Dummer,
 N. Blau, B. Thony. J. Invest. Dermatol, **116** (1), 167 (2001).
 DOI: 10.1046/j.1523-1747.2001.00220
- [7] R. Bidaki, N. Majidi, A. Moghadam Ahmadi, H. Bakhshi, R. Sadr Mohammadi, S.A. Mostafavi, M. Kazemi Arababadi, M. Hadavi, A. Mirzaei. Clin. Cosmet. Investig. Dermatol, 11, 383 (2018). DOI: 10.2147/CCID.S151114
- [8] H. Xie, F. Zhou, L. Liu, G. Zhu, Q. Li, C. Li, T. Gao. J. Dermatol. Sci., 81 (1), 3 (2016).
 DOI: 10.1016/j.jdermsci.2015.09.003.
- [9] Y. He, S. Li, W. Zhang, W. Dai, T. Cui, G. Wang, T. Gao, Ch. Li. Sci. Rep., 7, 42394 (2017). DOI: 10.1038/srep42394
- [10] S. Benito-Martínez, L. Salavessa, G. Raposo, M.S. Marks, C. Delevoye. Integr. Comp. Biol., 61 (4), 1546 (2021). DOI: 10.1093/icb/icab094
- J. Sandby-Møller, T. Poulsen, H.C. Wulf. Acta Derm. Venereol., 83 (6), 410 (2003).
 DOI: 10.1080/00015550310015419
- [12] N.G. Jablonski. Annu. Rev. Anthropol., 33 (1), 585 (2004).
 DOI: 10.1146/annurev.anthro.33.070203.143955
- S. Hasse, N.C. Gibbons, H. Rokos, L.K. Marles, K.U. Schallreuter. J. Invest. Dermatol. V., **122** (2), 307 (2004). DOI: 10.1046/j.0022-202X.2004.22230.x
- [14] J.D. Spencer, N.C. Gibbons, H. Rokos, E.M. Peters, J.M. Wood, K.U. Schallreuter. J. Invest. Dermatol., 127 (2), 411 (2007). DOI: 10.1038/sj.jid.5700538
- [15] M. Eskandani, J. Golchai, N. Pirooznia, S. Hasannia. Indian J. Dermatol., 55 (1), 15 (2010). DOI: 10.4103/0019-5154.60344
- [16] K.U. Schallreuter, M.A. Salem, S. Holtz, A. Panske. FASEB J., 27(8), 3113 (2013). DOI: 10.1096/fj.12-226779
- [17] S. Kaufman. Proc. Natl. Acad. Sci. USA, 50 (6), 1085 (1963).
 DOI: 10.1073/pnas.50.6.1085
- [18] M.D. Davis, S. Kaufman. J. Biol. Chem., 264(15) 8585 (1989).
- [19] M.L. Dantola, L.O. Reid, C. Castaño, C. Lorente, E. Oliveros, A.H. Thomas. Pteridines, 28 (3–4), 105 (2017).
 DOI: 10.1515/pterid-2017-0013
- [20] H. Ko, M.M. Kim. Mol. Biol. Rep., 46, 2461 (2019). DOI: 10.1007/s11033-019-04708-8
- [21] J. Yuan, Y. Lu, H. Wang, Y. Feng, S. Jiang, X-H. Gao, R. Qi, Y. Wu, H-D. Chen. Front. Pharmacol., 11, 536 (2020). DOI: 10.3389/fphar.2020.00536
- [22] R. An, D. Li, Y. Dong, Q. She, T. Zhou, X. Nie, R. Pan, Y. Deng. Drug. Des. Devel. Ther., 15, 4837 (2021). DOI: 10.2147/DDDT.S336066
- [23] D.J. Gawkrodger. Br. J. Dermatol., 161 (4), 721 (2009).
 DOI: 10.1111/j.1365-2133.2009.09292.x

- [24] T.A. Telegina, T.A. Lyudnikova, A.A. Buglak, Y.L. Vechtomova, M.V. Biryukov, V.V. Demin, M.S. Kritsky. J. Photochem. Photobiol. A, **354**, 155 (2018).
 DOI: 10.1016/j.jphotochem.2017.07.029
- [25] Т.А. Телегина, Ю.Л. Вечтомова, М.С. Крицкий,
 Э.И. Мадиров, А.С. Низамутдинов, Ю.Н. Обухов,
 А.А. Буглак. Прикл. биохим. Микробиол., 57 (5), 441 (2021). DOI: 10.31857/S0555109921050160
 [Т.А. Telegina, Y.L. Vechtomova, M.S. Kritsky, E.I. Madirov, A.S. Nizamutdinov, Y.N. Obuhov, A.A. Buglak. Appl. Biochem. Microbiol., 57 (5), 571 (2021).
 DOI: 10.1134/S000368382105015X].
- [26] A.S. Nizamutdinov, V.V. Semashko, A.K. Naumov, S.L. Korableva, M.A. Marisov, V.N. Efimov, L.A. Nurtdinova. Proc. SPIE, 7994, 79940H (2011). DOI: 10.1117/12.881885
- [27] I.I. Farukhshin, A.S. Nizamutdinov, S.L. Korableva, V.V. Semashko. Opt. Mater. Express, 6 (4), 1131 (2016).
 DOI: 10.1364/OME.6.001131
- [28] M.A. Dubinskii, V.V. Semashko, A.K. Naumov, R.Yu. Abdulsabirov, S.L. Korableva. J. Modern Opt., 40 (1), 1 (1993) DOI: 10.1080/09500349314550011
- [29] A.A. Buglak, T.A. Telegina, T.A. Lyudnikova, Y.L. Vechtomova, M.S. Kritsky. Photochem. Photobiol., 90 (5), 1017 (2014). DOI: 10.1111/php.12285
- [30] A.A. Buglak, T.A. Telegina, E.A. Vorotelyak, A.I. Kononov. J. Photochem. Photobiol. A, **372**, 254 (2019).
 DOI: 10.1016/j.jphotochem.2018.12.002
- [31] A.A. Buglak, T.A. Telegina, Y.L. Vechtomova, M.S. Kritsky. Free Radic. Res., 55 (5), 499 (2021).
 DOI: 10.1080/10715762.2020.1860213
- [32] Alberto Boretti, Bimal Banic, Stefania Castelletto. Clinical Reviews in Allergy and immunology, 60, 259–270 (2021). DOI: 10.1007/s12016-020-08811-8
- [33] S. Ratnesar-Shumate, G. Williams, B. Green, M. Krause, B. Holland, S. Wood, J. Bohannon, J. Boydston, D. Freeburger, I. Hooper, K. Beck, J. Yeager, L.A. Altamura, J. Biryukov, J. Yolitz, M. Schuit, V. Wahl, M. Hevey, P. Dabisch. J. Infect. Dis., 222 (2), 214 (2020). DOI: 10.1093/infdis/jiaa274
- [34] S. Shibuya, Y. Ozawa, K. Watanabe, N. Izuo, T. Toda,
 K. Yokote, T. Shimizu. PLoS One, 9 (10), e109288 (2014).
 DOI: 10.1371/journal.pone.0109288