18

Плазмон-активированный фёрстеровский перенос энергии в молекулярных системах

© Н.Х. Ибраев¹, М.Г. Кучеренко², Д.А. Темирбаева¹, Е.В. Селиверстова¹

 ¹ Институт молекулярной нанофотоники, Карагандинский университет им. Е.А. Букетова, 100024 Караганда, Казахстан
 ² Оренбургский государственный университет, 460018 Оренбург, Россия

e-mail: niazibrayev@mail.ru

Поступила в редакцию 30.11.2021 г. В окончательной редакции 08.02.2022 г. Принята к публикации 15.02.2022 г.

Для объяснения экспериментально наблюдаемого влияния наночастиц серебра на флуоресценцию ряда органических красителей и безызлучательный межмолекулярный перенос энергии электронного возбуждения в многослойных наноструктурах была использована ранее предложенная теоретическая модель плазмонного резонанса в сферических наночастицах (НЧ) металлов. Расчет скоростей радиационных и безызлучательных (FRET) процессов в пленочных структурах с НЧ Ад произведен для молекул флуоресцеина и родамина С, а также двухкомпонентных систем флуоресцеин—нильский красный (НК) и родамин С—НК. Использован вариант модели, учитывающий влияние НЧ на FRET между молекулами, излучательный распад молекул донора и акцептора, а также перенос энергии от красителя к плазмонным НЧ. Расчет скорости FRET U_{DA} для парь флуоресцеин—нильский красный. Оценка коэффициента усиления флуоресценции молекул доноров и акцептора энергии и скорости переноса энергии от красителя к НЧ серебра показала их незначительный вклад в формирование результирующего усиления эффективности переноса энергии НЧ.

Ключевые слова: перенос энергии, наночастицы серебра, плазмон, модель.

DOI: 10.21883/OS.2022.05.52426.1-22

Введение

Межмолекулярный безызлучательный индуктивнорезонансный перенос энергии (FRET) нашел широкое применение в области биофизики и биоимиджинга [1,2], ближнепольной оптической микроскопии [3] и фотовольтаике [4–6]. Он также интересен при решении задач, в которых эффективный перенос оптического возбуждения на расстояниях, меньших длины волны, является ключевым процессом.

В настоящее время существует достаточно большое число работ, посвященных влиянию металлических наночастиц (НЧ) на межмолекулярный безызлучательный перенос энергии в донорно-акцепторной (DA) системе. Показано, что эффективность переноса энергии может быть как увеличена, так и уменьшена и зависит от свойств плазмонного резонанса НЧ металла, взаимного расположения компонентов системы и расстояния между донорно-акцепторной парой и металлической НЧ, а также от спектрального перекрытия между ними [7–9]. Кроме того, плазмонный эффект позволяет значительно увеличить расстояния, на которых осуществляется перенос энергии, как это было показано в работах [10–12].

Например, авторами работ [13–15] показано, что плазмон-усиленный перенос энергии между светоизлучающими молекулами позволяет увеличить люминесцентные характеристики акцепторных молекул или квантовых точек. Как было показано в работах [16–18], это явление активно изучается с точки зрения его использования в гибридных наноструктурах металлполупроводник для создания новых активных материалов для светоизлучающих диодов. Кроме того, сильная зависимость эффективности и скорости FRET в условиях диполь-дипольного взаимодействия с плазмонными наноструктурами и резонансными фотонными полостями имеет высокий потенциал использования в метаматериалах и фотонных кристаллах [19,20].

В ряде теоретических и экспериментальных работ FRET исследован на уровне отдельных молекул и частиц либо для определенных (так называемых "модельных") соединений [21,22]. Однако для широкого класса соединений данный процесс остается все еще малоизученным, а число работ, посвященных созданию модельных представлений плазмон-активированного переноса энергии между органическими молекулами, относительно небольшое [23–26].

В настоящей работе использована ранее предложенная в [23] теоретическая модель, описывающая влияние локализованного плазмонного резонанса сферических НЧ металла на развитие FRET, и произведена апробация её модифицированного варианта на примере регуляризированной молекулярной наноструктуры. Для этого были

Рис. 1. (*a*) Фрагмент слоистой наноструктуры — кластер из близлежащих частиц: плазмонная НЧ Ag, часть слоя молекул стеариновой кислоты и отдельная донор-акцепторная пара молекул красителей. (*b*) Донор-акцепторная пара молекул вблизи сферической НЧ. Ориентация молекулярных диполей донора **p**_D и акцептора **p**_A вблизи металлической НЧ носит случайный характер.

использованы экспериментальные данные, опубликованные в работе [27], где был экспериментально изучен плазмон-усиленный ферстеровский резонансный перенос энергии в донорно-акцепторных парах с различной эффективностью передачи энергии. Для исследования в [27] были приготовлены слоистые пленки красителей, перемежаемые экранирующими слоями молекул стеариновой кислоты по технологии Ленгмюра-Блоджетт (ЛБ-технология) с островковым распределением НЧ серебра на поверхности подложек. Размер НЧ Ад в пленках составлял 80-100 nm. Было показано, что максимальное плазмонное влияние на интенсивность флуоресценции пленки красителя наблюдается при расстоянии около 6 nm до островковой пленки серебра. Плазмонное увеличение безрадиационного переноса энергии оказалось больше для пары с низкой эффективностью передачи энергии в отсутствие НЧ. При этом константа скорости передачи энергии в присутствии НЧ была почти в 4 раза больше для пары флуоресцеин-нильский красный (НК) по сравнению с парой родамин С-НК (НК в качестве акцептора). Наибольшее увеличение скорости переноса энергии в регулярной наноструктуре с плазмонными компонентами было зарегистрировано в случаях, когда монослои молекул донора располагались на расстоянии $h \sim 6 \,\mathrm{nm}$ от поверхности островковой пленки серебра.

Теоретическая модель

В предлагаемой модели учитывается только одна из сферических плазмонных НЧ островковой металлической пленки, наиболее близко расположенная к выделенной молекулярной паре DA. Полученные в работе [27] СЭМ-изображения указывают на достаточно изолированный характер отдельных НЧ (островков). Поэтому в отличие от моделей работ [28–30], в которых рассматривался сплошной однородный металлический слой, в данном случае уместно выделить в отдельный кластер лишь близлежащие частицы: плазмонную глобулу с радиусом R и отделенную от нее несколькими слоями стеариновой кислоты толщиной h одну доноракцепторную молекулярную пару (рис. 1).

Распад электронно-возбужденного состояния молекулы донора $S_1^{\rm D}$ возможен по одному из трех конкурирующих каналов (рис. 1):

1) излучательный распад $S_1^{\rm D} \to \hbar \omega + S_0^{\rm D}$ со скоростью $w_{sp} = (\omega | r_{\rm D} = h)$ с образованием фотона люминесценции с энергией $\hbar \omega$;

2) межмолекулярный безызлучательный перенос энергии электронного возбуждения от донора к акцептору $S_1^D + S_0^A \rightarrow S_0^D + S_1^A$ со скоростью $U_{DA}(\omega|r_{DA}, r_D, r_A)$, где r_{DA}, r_D, r_A — расстояния между молекулами D и A, а также расстояние от центра HЧ до молекулы D или A соответственно;

3) безызлучательный перенос энергии электронного возбуждения со скоростью $U(\omega|r_D)$ от молекулы донора к металлической НЧ $S_1^D \rightarrow S_0^D + \hbar \omega_{res}$, с образованием затухающего локализованного плазмона с энергией $\hbar \omega_{res}$ (прямое тушение люминесценции донора металлической НЧ).

При наличии плазмонной НЧ в ближней зоне молекул донора D и акцептора A скорости всех трех каналов распада изменяются, т.е. становятся плазмонозависимыми. Внесение однородной или композитной НЧ в ближайшую окрестность молекулы с молекулярным диполем **p** изменяет локальное электромагнитное поле в месте ее нахождения, что может быть учтено введением общего дипольного момента $\mathbf{p}' = [\mathbf{I} + \mathbf{G}'(\mathbf{r})\vec{\alpha}'(\omega)]\mathbf{p}$ системы "НЧ-молекула", содержащего вклад от поляризованной НЧ. Здесь \mathbf{I} — единичная диада, $\vec{\alpha}'(\omega)$ тензор дипольной поляризуемости частицы, $\mathbf{G}'(\mathbf{r})$ диадическая функция Грина,

$$\overset{\leftrightarrow}{\mathbf{G}}(\mathbf{r}) = r^{-3} \bigg[\frac{3(\mathbf{r} \otimes \mathbf{r})}{r^2} - \mathbf{I} \bigg],$$

квазистатического поля дипольного источника [23]. Дипольная поляризуемость $\overleftrightarrow{\alpha}(\omega)$ частицы представляет собой тензор второго ранга, если форма частицы отличается от сферической (например, является эллипсоидальной), и/или проводящая частица находится во внешнем магнитном поле [31,32], формирующем анизотропные свойства электронной плазмы металла частицы.

Тогда выражение для скорости спонтанной эмиссии молекулы донора D, расположенной вблизи HЧ на расстоянии r от ее центра, может быть записано в следующем виде [23]:

$$w_{sp}(\omega|\mathbf{r}) = \frac{4}{3} \frac{\omega^2}{\hbar c^2} \Big[\mathbf{p}_{\rm D}^2 + \mathbf{p}_{\rm D} \big| \overset{\leftrightarrow}{\alpha}(\omega) \overset{\leftrightarrow}{\mathbf{G}}(\mathbf{r}) \big|^2 \mathbf{p}_{\rm D} + 2 \operatorname{Re} \mathbf{p}_{\rm D} \big(\overset{\leftrightarrow}{\alpha}(\omega) \overset{\leftrightarrow}{\mathbf{G}}(\mathbf{r}) \big) \mathbf{p}_{\rm D} \Big].$$
(1)

В случае сферической частицы и в отсутствие внешнего магнитного поля тензор $\overleftarrow{\alpha}(\omega)$ дипольной поляризуемости такой частицы редуцируется, $\overleftarrow{\alpha}(\omega) \rightarrow \alpha(\omega)$, к своему скалярному прототипу $\alpha(\omega)$ [31]. Первое слагаемое в (1) отвечает скорости радиационного распада донора в отсутствие НЧ, второе — вкладу в распад поля, отраженного от НЧ. Третье слагаемое представляет собой результат интерференции двух названных каналов распада и может иметь любой знак "+" или "-" в зависимости от фазового соотношения между скоростями распада. На основе (1) может быть выполнен компьютерный расчет частотных зависимостей (спектров) скорости радиационного распада донора, а также зависимости этой скорости от расстояния $r = |\mathbf{r}_{\mathrm{D}}| = h + R$ между донором и НЧ. Даже без выполнения таких расчетов можно сделать некоторые предварительные заключения относительно зависимости эффективности переноса от параметра h. Так, второе слагаемое в (1) имеет зависимость $(h+R)^{-6}$, тогда как третье, интерференционное — $(h+R)^{-3}$. Таким образом, на относительно больших расстояниях h роль этого слагаемого может стать определяющей. Причем, как уже было отмечено, его знак может быть любым.

Напряженность $\mathbf{E}(\mathbf{r}_{\rm A})$ результирующего поля в точке размещения акцептора, т.е. поля донорного источника и отраженного поля НЧ, может быть записана в виде

$$\mathbf{E}(\mathbf{r}_{A}) = \overset{\leftrightarrow}{\mathbf{G}}(\mathbf{r}_{DA})\mathbf{p}_{D} + \overset{\leftrightarrow}{\mathbf{G}}(\mathbf{r}_{A})\overset{\leftrightarrow}{\alpha}(\omega)\overset{\leftrightarrow}{\mathbf{G}}(\mathbf{r}_{D})\mathbf{p}_{D}.$$

Тогда скорость $U_{DA} \sim (\mathbf{p}_D \mathbf{E}(\mathbf{r}_A))^2$ безызлучательного переноса энергии на молекулу акцептора с дипольным моментом перехода \mathbf{p}_A , расположенную в точке \mathbf{r}_A , можем представить как

$$\begin{split} U_{\text{DA}}(\mathbf{r}_{\text{DA}}, \mathbf{r}_{\text{D}}, \mathbf{r}_{\text{A}}) &\sim \left| \mathbf{p}_{\text{D}} \overrightarrow{\mathbf{G}}(\mathbf{r}_{\text{DA}}) \mathbf{p}_{\text{A}} \right|^{2} \\ &+ \left| \mathbf{p}_{\text{D}} \overrightarrow{\mathbf{G}}(\mathbf{r}_{\text{D}}) \overrightarrow{\alpha}(\omega) \overrightarrow{\mathbf{G}}(\mathbf{r}_{\text{A}}) \mathbf{p}_{\text{A}} \right|^{2} \\ &+ 2 \text{Re} \Big\{ \mathbf{p}_{\text{D}} \overrightarrow{\mathbf{G}}(\mathbf{r}_{\text{DA}}) \mathbf{p}_{\text{A}} \big[\mathbf{p}_{\text{D}} \overrightarrow{\mathbf{G}}(\mathbf{r}_{\text{D}}) \overrightarrow{\alpha}(\omega) \overrightarrow{\mathbf{G}}(\mathbf{r}_{\text{A}}) \mathbf{p}_{\text{A}} \big] \Big\}. \quad (2) \end{split}$$

На основании структуры выражения (2) можно сделать вывод о зависимости скорости $U_{DA} \sim (\mathbf{p}_A E(\mathbf{r}_A))^2$ от расстояния $r = |\mathbf{r}_D| = h + R$. Она имеет схожий характер с зависимостью $w_{sp}(|\mathbf{r}_D|)$. Как и для скорости радиационного распада, для третьего (интерференционного) слагаемого в (2) характерна зависимость $w_{sp}^{(3)}(|\mathbf{r}_D|) \sim (h + R)^{-3}$.

Расстояние $r_{\rm DA}$ между молекулами D и A в произвольной планарной конфигурации векторов $\mathbf{p}_{\rm D}$ и $\mathbf{p}_{\rm A}$ дипольного момента и радиусов-векторов $\mathbf{r}_{\rm D}$ и $\mathbf{r}_{\rm A}$ молекул записываем в общем случае как $r_{\rm DA} = \sqrt{r_{\rm D}^2 + r_{\rm A}^2 - 2r_{\rm D}r_{\rm A}\cos\theta}$, а при выстраивании молекул по вертикали к плоскости слоя (рис. 1, *b*) угол $\theta = 0$ и $r_{\rm DA} = r_{\rm A} - r_{\rm D}$.

Результирующее выражение для скорости FRET может быть записано в следующем виде:

$$U(r_{\mathrm{DA}}, r_{\mathrm{D}}, r_{\mathrm{A}}, \theta, \vartheta_{\mathrm{D}}, \vartheta_{\mathrm{A}}) = U_{\mathrm{F}}(r_{\mathrm{DA}}, \theta, \vartheta_{\mathrm{D}}, \vartheta_{\mathrm{A}}) + \frac{32\pi}{\hbar^{2}} \frac{p_{\mathrm{D}}^{2} p_{\mathrm{A}}^{2}}{r_{\mathrm{DA}}^{6}} \cos^{2} \theta \left(\frac{r_{\mathrm{DA}} R}{r_{\mathrm{D}} r_{\mathrm{A}}}\right)^{3} \int \left[|\alpha'(\omega)|^{2} \left(\frac{r_{\mathrm{DA}} R}{r_{\mathrm{D}} r_{\mathrm{A}}}\right)^{3} - \frac{(1 - 3f(\theta, \vartheta_{\mathrm{D}}, \vartheta_{\mathrm{A}}))}{2} \operatorname{Re}[\alpha'(\omega)] \right] G_{\mathrm{D}}(\omega) G_{\mathrm{A}}(\omega) d\omega,$$
(3)

где $G_{\rm D}(\omega), G_{\rm A}(\omega)$ — гауссовы контуры спектральных полос люминесценции донора и поглощения акцептора. Первое слагаемое в (3) представляет собой скорость $U_{\rm F}(r_{\rm DA}, \theta, \vartheta_{\rm D}, \vartheta_{\rm A})$ переноса энергии по Ферстеру:

$$egin{aligned} U_{ ext{F}}(r_{ ext{DA}}, heta,artheta_{ ext{D}},artheta_{ ext{A}}) &= rac{2\pi}{\hbar^2} rac{p_{ ext{D}}^2 p_{ ext{A}}^2}{r^6} \cos^2 hetaig(1\!-\!3f\left(heta,artheta_{ ext{D}},artheta_{ ext{A}}
ight)ig)^2 \ & imes \int G_{ ext{D}}(\omega) G_{ ext{A}}(\omega) d\omega, \ &U_{ ext{F}}(r_{ ext{DA}}, heta,artheta,artheta_{ ext{D}},artheta_{ ext{A}}) &= rac{U_0}{r^6} \cos^2 hetaig(1\!-\!3f\left(heta,artheta_{ ext{D}},artheta_{ ext{A}}
ight)ig)^2, \end{aligned}$$

где угловой фактор

$$f(\theta, \vartheta_{\mathrm{D}}, \vartheta_{\mathrm{A}}) = rac{\cos \vartheta_{\mathrm{D}} \cos \vartheta_{\mathrm{A}}}{\cos \theta}$$

 $r_{\rm DA}^6$

 $(\vartheta_{\rm D}, \vartheta_{\rm A}$ — углы между направлением дипольных моментов переходов в соответствующих молекулах D и A и вектором, соединяющим центры тяжести молекул донора и акцептора), $\alpha'(\omega)$ — удельная поляризуемость сферической НЧ,

$$\alpha'(\omega) = \frac{\alpha(\omega)}{R^3} = \frac{\varepsilon_1(\omega) - \varepsilon_2}{\varepsilon_1(\omega) + 2\varepsilon_2},\tag{4}$$

 $\varepsilon_1(\omega)$ и ε_2 — диэлектрические проницаемости на частоте ω металла НЧ (серебро) и окружающей среды.

В конфигурации рис. 1 в зависимости от направления векторов молекулярных диполей, выстроенных вдоль нормали к слою (m = 0 или m = 1), получаем $f(0, 0, m\pi) = \pm 1$, $1-3f(0, 0, m\pi) = 1 \pm 3$, $U_{\rm F}(r_{\rm DA}, 0, 0, m\pi) = (1 \pm 3)^2 U_0 r_{\rm DA}^{-6}$.

Влияние металлической НЧ в рассматриваемой системе не ограничивается только лишь усилением спонтанных переходов в молекуле. Необходимо также учитывать безызлучательный перенос энергии электронного возбуждения от молекулы донора на плазмонные моды НЧ и последующее затухание этих мод. Скорость U такого процесса в тензорной форме может быть записана в следующем виде [25]:

$$U(\omega|\mathbf{r}) = (2\hbar)^{-1} V \operatorname{Im}[\mathbf{E}^{*}(\omega)\alpha'(\omega)\mathbf{E}(\omega)]$$
$$= (2\hbar)^{-1} V \operatorname{Im}[\mathbf{p}_{\mathrm{D}} \overrightarrow{\mathbf{G}}(\mathbf{r})\alpha'(\omega) \overrightarrow{\mathbf{G}}(\mathbf{r})\mathbf{p}_{\mathrm{D}}].$$
(5)

Здесь V — объем наночастицы.

Результаты и их обсуждение

Согласно предложенной модели, были выполнены расчеты скоростей переноса энергии для указанных выше пар молекул, исследованных в [27]. В программе расчетов все три частицы: две молекулы красителей и металлическая НЧ располагались вдоль одной прямой, все углы в принятой конфигурации принимались равными нулю. Для определения интегралов перекрытия донорноакцепторной пары, а также с плазмонным спектром НЧ Ад были использованы параметры аппроксимации спектров методом Гаусса. Расстояние между молекулами донора и акцептора принималось равным 1.2 nm для пары флуоресцеин-НК и 2.2 nm для пары родамин С-НК, что соответствует геометрическим размерам молекулы донора с учетом их радиусов Ван-дер-Ваальса [33], оцененным при моделировании методами молекулярной механики AM⁺ в пакете HyperChem 8.0. Радиус HЧ Ag взят равным 45 nm, а расстояние между центром молекулы донора и поверхностью НЧ Аg составляло 6 nm [27].

Проведен расчет дистанционной зависимости полной скорости переноса энергии для DA-пар флуоресцеин—НК (рис. 2) и родамин С—НК. На графике по оси абсцисс показано расстояние от центра НЧ Ад до центра молекулы донора. Из рис. 2 видно, что увеличение расстояния от молекулы донора до плазмонной частицы приводит к степенному уменьшению скорости переноса энергии. Для пары родамин С—НК была получена аналогичная зависимость. Значения U_{DA} существенно больше

Рис. 2. Дистанционные зависимости полной скорости безызлучательного переноса энергии U_{DA} в присутствии НЧ Ад для пары флуоресцеин—НК.

Значения дипольных моментов перехода p, скорости флуоресценции молекул красителей w_{sp} и скорости $U(\omega, r)$ безызлучательного переноса энергии от красителя к НЧ Аg

Краситель	<i>p</i> , D	$w_{sp}^{0}, \mathrm{s}^{-1}$	w_{sp} , s ⁻¹	w_{sp}/w_{sp}^0	$U(\omega, r), s^{-1}$
Флуоресцеин Родамин С НК	6.23 9.78 12.06	$\begin{array}{c} 0.8 \cdot 10^8 \\ 1.5 \cdot 10^8 \\ 1.6 \cdot 10^8 \end{array}$	$\begin{array}{c} 1.23 \cdot 10^9 \\ 2.1 \cdot 10^9 \\ 2.0 \cdot 10^9 \end{array}$	15.4 14.0 12.5	$\begin{array}{c} 0.08 \cdot 10^9 \\ 0.15 \cdot 10^9 \\ 0.17 \cdot 10^9 \end{array}$

для пары флуоресцеин—НК. При расстоянии ~ 6 nm значения плазмон-повышенной скорости переноса энергии различаются в 3.6 раза для исследуемых донорноакцепторных пар. Оценка коэффициента увеличения скорости переноса энергии U_{DA}/U_F дала значения 5.9 · 10³ и 29 · 10³ для пар родамин С–НК и флуоресцеин—НК соответственно. Полученные зависимости хорошо коррелируют с данными, приведенными в работе [27], где больший прирост эффективности переноса энергии наблюдается для пар с меньшей эффективностью FRET.

Также были оценены коэффициенты усиления флуоресценции отдельных молекул доноров и акцептора энергии w_{sp} и скорость $U(\omega, r)$ безызлучательного переноса энергии от красителя к НЧ серебра (таблица).

Из таблицы видно, что коэффициент усиления флуоресценции больше для первого донора энергии (флуоресцеин), в то время как значения $U(\omega, r)$ больше для родамина С и НК. Возможно, именно это обстоятельство обусловливает меньший прирост значений U_{DA} при осуществлении FRET между последними красителями. В то же время порядок величины скоростей w_{sp} и $U(\omega, r)$ значительно меньше, чем для U_{DA} , а следовательно, они вносят значительно меньший вклад в общее усиление эффективности переноса энергии в присутствии плазмонных НЧ.

С целью поиска оптимальных условий для повышения эффективности процесса переноса энергии между органическими красителями нами был выполнен расчет

Рис. 3. Зависимость полной скорости переноса энергии U_{DA} (1, 2) в присутствии НЧ Ад различного радиуса для пар флуоресцеин—НК (1) и родамин С-НК (2).

зависимости полной скорости переноса энергии U_{DA} от радиуса НЧ Ag (рис. 3). Это связано с тем, что в работе [27] показано, что после отжига напыленной пленки серебра происходит образование кластеров из частиц серебра почти правильной сферической формы с радиусом 80-100 nm. Промежуточные участки между ними занимают НЧ с меньшим радиусом, равным 20-40 nm.

Для исследуемых донорных и акцепторной молекул скорость переноса энергии сильно зависит от радиуса плазмонных НЧ. При этом зависимость может быть описана степенной функцией. Характерно, что для НЧ с радиусом в диапазоне от 2.5 до 10 nm скорость переноса энергии U_{DA} практически не зависит от размера НЧ. Рост радиуса НЧ Ад до 30 nm приводит почти к двукратному уменьшению плазмон-увеличенной скорости переноса энергии. Для самых больших НЧ Ад было получено уменьшение U_{DA} на 3 порядка величины для пары флуоресцеин–НК и на 2 порядка для пары родамина С–НК. Таким образом, большее увеличение FRET будет наблюдаться при использовании НЧ Ад меньшего диаметра.

Для указанных донорно-акцепторных пар также были рассчитаны угловые зависимости U_{DA} для пары флуоресцеин—НК. Угловая зависимость полной скорости переноса энергии мало изменяется при изменении размера НЧ, однако при этом коэффициент увеличения этой скорости больше для частиц меньшего радиуса.

Заключение

Таким образом, показана применимость предложенной в [23,25] теоретической модели влияния плазмонного резонанса НЧ металлов на безызлучательный перенос энергии электронного возбуждения для описания ряда процессов, получающих развитие в регулярных слоистых наноструктурах [27]. Модифицированная для условий эксперимента [27] модель учитывает влияние НЧ на FRET, излучательный распад молекул донора и акцептора, а также перенос энергии от красителя к плазмонным НЧ.

Результаты расчетов, полученных с помощью модифицированной модели, показывают хорошую корреляцию с экспериментальными данными [27]. В частности, расчет скоростей UDA при наличии плазмонных НЧ в системе для пар молекул с различной эффективностью переноса энергии показал большее увеличение UDA в результате действия плазмонного катализатора для пары флуоресцеин-НК. Также выполнена оценка коэффициента плазмонного усиления флуоресценции молекул доноров и акцептора посредством расчетов скорости w_{sp} спонтанных переходов и скорости переноса энергии от красителя к НЧ серебра $U(\omega, r)$. Для исследованных красителей указанные скорости оказались значительно меньше, чем UDA, а это означает, что данные каналы хотя и являются чувствительными для плазмонного влияния, но они вносят минимальный вклад в общее усиление эффективности переноса энергии в присутствии плазмонных НЧ. Также расчет показал, что эффект увеличения скорости FRET усилится при использовании НЧ Ад меньшего диаметра.

Финансирование работы

Данная работа выполнена в рамках научно-исследовательского гранта AP08856161, финансируемого Министерством образования и науки Республики Казахстан.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- L. Loura. Front. Physiol., 2, 82 (2011). DOI: 10.3389/fphys.2011.00082
- K. Quan, C. Yi, X. Yang, X. He, J. Huang, K. Wang. Trends Anal. Chem., **124**, 115784 (2020).
 DOI: 10.1016/j.trac.2019.115784
- [3] A.K. Kirsch, V. Subramaniam, A. Jenei, T.M. Jovin. J. Microsc., **194**, 448 (1999).
 DOI: 10.1046/j.1365-2818.1999.0
- [4] Y.J. Jang, D. Kawaguchi, S. Yamaguchi, S. Lee, J.W. Lim, H. Kim, K. Tanaka, D.H. Kim. J. Power Sources, 438, 227031 (2019). DOI: 10.1016/j.jpowsour.2019.227031
- [5] N. Ibrayev, E. Seliverstova, A. Aimukhanov, T. Serikov. Mol. Cryst. Liq. Cryst., 589, 202 (2014).
 DOI: 10.1080/15421406.2013.872827
- [6] N. Ibrayev, E. Seliverstova, N. Nuraje, A. Ishchenko. Mat. Sci. Semicond. Processing, **31**, 358 (2015). DOI: 10.1016/j.mssp.2014.12.006
- [7] N. Aissaoui, K. Moth-Poulsen, M. Käll, P. Johansson, L.M. Wilhelmsson, B. Albinsson. Nanoscale, 9, 673 (2017). DOI: 10.1039/C6NR04852H
- [8] C.L. Cortes, Z. Jacob. Opt. Express, 26, 19371 (2018).
 DOI: 10.1364/oe.26.019371

- [9] E.V. Seliverstova, D.A. Temirbayeva, N.Kh. Ibrayev, A.A. Ishchenko. Theor. Exp. Chem., 55, 115 (2019).
 DOI: 10.1007/s11237-019-09602-9
- [10] D. Bouchet, D. Cao, R. Carminati, Y. De Wilde, V. Krachmalnicoff. Phys. Rev. Lett., **116**, 037401 (2016).
 DOI: 10.1103/PhysRevLett.116.037401
- [11] L. Cui, L. Zhang, H. Zeng. Nanomaterials, 11, 2927 (2021).
 DOI: 10.3390/nano11112927
- S. Saini, H. Singh, B. Bagchi. J. Chem. Sci., 118, 23 (2006).
 DOI: 10.1007/bf02708762
- [13] R. Mattew, M.C. Claire, Z. Jie, L. Weiyang, H.M. Christine, Z. Qiang, Q. Dong, X. Younan. Chem. Rev., 111, 3669 (2011). DOI: 10.1021/cr100275d
- Y. Lee, S.H. Lee, S. Park, C. Park, K. SupLee, J. Kim, J. Joo. Synth. Metals, 187, 130 (2014).
 DOI: 10.1016/j.synthmet.2013.11.005
- [15] Z. Sun, S. Liu, Z. Liu, W. Qin, D. Chen, G. Xu, C. Wu. Opt. Lett., 41, 2370 (2016). DOI: 10.1364/ol.41.002370
- [16] D.H. Park, M.S. Kim, J. Joo. Chem. Soc. Rev., 39, 2439 (2010). DOI: 10.1039/b907993a
- [17] J. Zhang, Y. Fu, J.R. Lakowicz. J. Phys. Chem., 111, 50 (2007).
 DOI: 10.1021/jp062665e
- [18] C. Ni, S. Kuo, Z. Li, S. Wu, R. Wu, C. Chen, C. Yang. Opt. Express, 29, 4067 (2021). DOI: 10.1364/OE.415679
- [19] K. Rustomji, M. Dubois, B. Kuhlmey, C.M. Sterke, S. Enoch, R. Abdeddaim, J. Wenger. Phys. Rev. X, 9, 011041 (2019).
 DOI: 10.1103/PhysRevX.9.011041
- [20] A. Konrad, M. Metzger, A.M. Kern, M. Brecht, A.J. Meixner. Nanoscale, 7, 10204 (2015). DOI: 10.1039/c5nr02027a
- [21] L. Zhao, T. Ming, L. Shao, H. Chen, J. Wang. J. Phys. Chem., 116, 8287 (2012). DOI: 10.1021/jp300916a
- [22] X.M. Hua, J.I. Gersten, A. Nitzan, J. Chem. Phys., 83 (7), 3650 (1985). DOI: 10.1063/1.449120
- [23] М.Г. Кучеренко, В.Н. Степанов, Н.Ю. Кручинин. Опт. спектр. 118 (1), 107 (2015) [М.G. Kucherenko, V.N. Stepanov, N.Y. Kruchinin. Opt. Spectrosc., 118 (1), 103 (2015). DOI: 10.1134/S0030400X15010154].
- M.G. Kucherenko, T.M. Chmereva, D.A. Kislov. High Energy Chem., 43 (7), 587 (2009).
 DOI: 10.1134/s0018143909070157
- [25] M.G. Kucherenko, D.A. Kislov. J. Photochem. Photobiol. A, 354, 25 (2018). DOI: 10.1016/j.jphotochem.2017.1
- [26] Т.М. Чмерева, М.Г. Кучеренко. Опт. спектр., 110 (5), 819 (2011).
 [Т.М. Chmereva, M.G. Kucherenko. Opt. Spectrosc., 110 (5), 767 (2011). DOI: 10.1134/s0030400x11040084].
- [27] N. Ibrayev, E. Seliverstova, N. Zhumabay, D. Temirbayeva. J. Lumin., 214, 116594 (2019).
 - DOI: 10.1016/j.jlumin.2019.116594
- [28] N.A. Efremov, S.I. Pokutnii. Phys. Solid State, 35 (5), 575 (1993).
- [29] Д.А. Кислов, М.Г. Кучеренко. Опт. спектр., 117 (5), 809 (2014).
 [D.A. Kislov, М.G. Kucherenko. Opt. Spectrosc., 117 (5), 784 (2014). DOI: 10.1134/s0030400x14090112].
- [30] М.Г. Кучеренко, Т.М. Чмерева, Д.А. Кислов. Вестник ОГУ, 1, 170 (2011).
- [31] М.Г. Кучеренко, В.М. Налбандян. Опт. журн., 85 (9), 3 (2018). [М.G. Kucherenko, V.M. Nalbandyan. J. Opt. Technol., 85 (9), 524 (2018). DOI: 10.1364/jot.85.000524].
- [32] М.Г. Кучеренко, В.М. Налбандян, Т.М. Чмерева. Опт. журн., 89 (9), 9 (2021). [М.G. Kucherenko, V.M. Nalbandyan, Т.М. Chmereva. J. Opt. Technol., 88 (9), 489 (2021). DOI: 10.1364/JOT.88.000489].
- [33] A.I. Kitaygorodsky. Tetrahedron., 9, 183 (1960).
 DOI: 10.1016/0040-4020(60)80007-5