^{06,11} Особенности индуцированного фазового перехода в монокристаллических твердых растворах Na_{1/2}Bi_{1/2}TiO₃-5%BaTiO₃

© Л.С. Камзина

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: ASKam@mail.ioffe.ru

Поступила в Редакцию 13 февраля 2022 г. В окончательной редакции 13 февраля 2022 г. Принята к публикации 16 февраля 2022 г.

Исследованы диэлектрические и оптические свойства, а также временные зависимости диэлектрической проницаемости в электрическом поле, приложенном вдоль направления [001], в монокристаллах $Na_{1/2}Bi_{1/2}TiO_3 - 5\%BaTiO_3$, расположенных по составу вблизи морфотропной фазовой границы. Показано, что даже в отсутствие электрического поля в широком диапазоне температур наблюдаются диэлектрический и оптический гистерезисы, связанные с сосуществованием тетрагональной и ромбоэдрической фаз, причем относительные объемные доли двух фаз в значительной степени зависят от температуры. Обнаружено, что при температурах ниже температуры морфотропного фазового перехода индуцирование сегнетоэлектрической фазы происходит без времени задержки, что отличает исследуемые образцы от твердых растворов $PbMg_{1/3}Nb_{2/3}O_3 - x\%PbTiO_3$. Полученные результаты объясняются разными размерами полярных нанообластей в низкотемпературной фазе.

Ключевые слова: сегнетоэлектричество, релаксоры, индуцированный фазовый переход.

DOI: 10.21883/FTT.2022.06.52409.288

1. Введение

Пьезоэлектрические материалы незаменимы для многочисленных устройств, преобразующих механическую энергию в электрическую и наоборот [1]. Недавние усилия по разработке бессвинцовых пьезоэлектрических материалов открыли новую возможность замены материалов на основе свинца на экологически чистые материалы, хотя пьезоэлектрические характеристики бессвинцовых материалов в целом уступают системам на основе свинца [2]. Интерес к бессвинцовым материалам, широко исследуемым в последнее время, является ответом на законодательные принудительные меры, в частности, европейские правила RoHS/WEEE, касающиеся требований по ограничению вредных веществ (например, свинца) в различной продукции и не допускающие их на внутренний рынок Европейского Союза без проведения процедуры испытаний (исследование, тестирование).

Na_{1/2}Bi_{1/2}TiO₃-x%BaTiO₃ Твердые растворы NBT-x%BT), (сокращенно относящиеся к релаксорам, являются потенциально важными бессвинцовыми пьезоэлектрическими системами с точки зрения защиты окружающей среды. Свинцовосодержащие релаксорные сегнетоэлектрики, такие как $PbMg_{1/3}Nb_{2/3}O_3 - x\%PbTiO_3$ (PMN-x%PT) И $PbZn_{1/3}Nb_{2/3}O_3 - x\%PbTiO_3$ (PZN-x%PT), обладают ультравысокими пьезоэлектрическими свойствами вблизи морфотропной фазовой границы (МФГ). В бессвинцовых твердых растворах обнаружено много свойств, присущих свинцовосодержащим системам [3]. Исходя

из того, что добавление PbTiO₃ (PT) к PMN приводит к ультравысоким пьезоэлектрическим свойствам в твердом растворе (PMN-x%PT), к Na_{1/2}Bi_{1/2}TiO₃ (NBT) добавили BaTiO₃ (BT), что привело к образованию аналогичного твердого раствора между релаксором (NBT) и нормальным сегнетоэлектриком (BT) с МФГ между ромбоэдрической (R) и тетрагональной (T) фазами.

Морфотропная фазовая граница (МФГ) в NBT-x%BT существует при концентрациях Ва 6-8 mol%. В монокристаллах NBT-6%BT, ориентированных вдоль [001], наблюдается максимальная величина продольного пьезоэлектрического коэффициента $d_{33} \sim 500$ pC/N [4]. На температурной зависимости диэлектрической проницаемости в чистом NBT обнаружены две аномалии: одна при температуре ~ 600 K (T_{max}), где наблюдается частотно-зависимый максимум, и вторая при температуре ~ 520 K (T_{RF}), ниже которой NBT становится релаксором [5,6]. Релаксорное поведение остается и при допировании BT, т.е. в NBT-x%BT [4-7].

Несмотря на наличие двух аномалий и сосуществование полярных нанообластей ромбоэдрической (R3c) и тетрагональной (P4bm) симметрий, твердые растворы NBT—xBT, расположенные вблизи МФГ, подобно PMN и твердым растворам PMN—x%PT, остаются кубическими при всех температурах в отсутствие электрического поля, но фаза R3c является доминирующей [4,8,9]. Аномалия при T_{RF} на температурной зависимости диэлектрической проницаемости связана со смешанным вкладом от перехода $R3c \rightarrow P4bm$ и тепловой эволюцией полярных P4bm нанообластей.

В то же время авторы работы [10] считают, что средняя структура монокристаллов NBT не согласуется

моноклинной пространственной группой. По поводу фазовых переходов в NBT-x%BT существуют различные точки зрения. Так, авторы работ [11,12] рассматривают низкотемпературный переход как переход в антисегнетоэлектрическую (AFE) фазу, а максимум диэлектрической проницаемости как переход из антисегнетоэлектрической в параэлектрическую фазу. Хотя результаты работы [11] о наличии перехода в АFE-фазу были приняты многими исследователями, однако никаких подтверждающих доказательств этому не последовало. Авторы других работ [6,9,13-15], ссылаясь на отсутствие каких-либо структурных изменений ниже T_{RF}, единогласно заявляют, что перетяжки, возникающие в петлях гистерезиса, рассматриваемые ранее как конкретное доказательство перехода в AFE, являются просто следствием индуцированного электрическим полем перехода релаксор-сегнетоэлектрик.

с ромбоэдрической системой, а ее лучше описывать

Общей чертой всех релаксорных твердых растворов, к которым относятся исследуемые в настоящей работе кристаллы, является случайное расположение ионов в эквивалентных положениях кристаллической решетки. Во всех ранее исследованных релаксорах, таких как PMN, PZN и другие, а также твердых растворах на их основе, случайное расположение ионов наблюдалось в положении В кислородного октаэдра АВО3, в отличие от исследованных в настоящей работе твердых растворов, в которых в положении А находятся два разных иона. Несмотря на ряд общих черт, такие релаксоры проявляют и существенные различия, связанные с природой возникающей сегнетоэлектрической фазы [16,17]. Так в ряде соединений, таких как PMN-x%PT и других [18-21], размеры полярных нанообластей (PNR) ниже температуры морфотропного фазового перехода (МФП) остаются неизменными, а изменяется только направление их дипольных моментов, что приводит к возникновению неэргодической стекольной фазы. В то же время в других релаксорах, таких как PZN, PZN-x%PT, даже ниже температуры МФП продолжается рост PNR без изменения направления их дипольных моментов и неэргодическая стекольная фаза, по-видимому, не возникает [16,17,22].

Природа релаксорного состояния в исследуемых в настоящей работе соединениях, в которых релаксорные свойства связаны с беспорядком в положении A кислородного октаэдра ABO_3 , не изучена. В связи с этим представлялось интересным изучить процесс индуцирования сегнетоэлектрической фазы, а также кинетику зарождения упорядоченных сегнетоэлектрических фаз. Будут исследованы диэлектрические и оптические свойства, а также временные зависимости диэлектрической проницаемости в электрическом поле в монокристалле NBT-5%BT с составом вблизи МФГ.

2. Исследуемые образцы и методика эксперимента

В качестве объектов исследования были выбраны монокристаллы NBT-5BT. Хотя твердые растворы с содержанием BaTiO₃ 6 и 7% демонстрируют лучшие пьезоэлектрические и диэлектрические свойства, однако из-за сосуществования двух фаз их свойства очень сложно контролировать [23,24]. По этой причине мы выбрали для исследований монокристаллы с составом 95%(Na_{1/2}Bi_{1/2})TiO₃-5%BaTiO₃ (NBT-5%BT), имеющие в основном ромбоэдрическую структуру, расположенные по составу в непосредственной близости от морфотропной фазовой границы, у которых можно ожидать высоких пьезоэлектрических характеристик.

Выращивание монокристаллов NBT–5%ВТ подробно описано в работе [4]. Концентрация Ва в исходном состоянии определялась с помощью атомно-эмиссионной спектрометрии. Диэлектрические измерения проводились на частоте 1 kHz. Электрическое поле прикладывалось в направлении [001]. Для оптических измерений использовался He–Ne-лазер ($\lambda = 0.63 \, \mu$ m, непрерывный режим).

Для устранения эффектов памяти, связанных с приложением электрического поля, образцы перед каждым измерением нагревались без поля до температур, превышающих температуру $T_{\rm max}$ на ~ 50 K и выдерживались при этой температуре ~ 30 min. При измерении временных зависимостей диэлектрической проницаемости отожженные образцы охлаждались без поля до комнатной температуры, лежащей ниже температуры МФП, при которой к ним прикладывалось постоянное электрическое поле. После приложения электрического поля начинался отсчет времени и осуществлялась регистрация изменения диэлектрической проницаемости. Измерения проводились непосредственно после отжига образца.

3. Экспериментальные результаты и их обсуждение

На рис. 1 представлены температурные зависимости диэлектрической проницаемости ε (кривая I') для ориентированных вдоль оси [001] неполяризованных кристаллов NBT-5%BT, измеренные в режиме нагревания (ZFH) (кривые I и I') и охлаждения (ZFC) (кривая 2). Кроме основного максимума при температуре ~ 555-558 К (температура Кюри T_c), которая соответствует переходу из тетрагональной сегнетоэлектрической фазы в тетрагональную параэлектрическую фазу, наблюдается небольшой перегиб в режиме ZFH при температуре ~ 433-443 К, особенно заметный при охлаждении (ZFC) при температуре ~ 423 К (кривая 2). Эта температура соответствует фазовому переходу из сегнетоэлектрической в релаксорную фазу (T_{RF}). Здесь

Рис. 1. Температурные зависимости ε (кривые l, 2) и tan δ (кривая l') для неполяризованных кристаллов NBT-5%BT, ориентированных вдоль оси [001], полученные при нагревании (кривые l, l') и охлаждении (кривая 2).

Рис. 2. Температурные зависимости ε (кривая I) и tan δ (кривая 2) для ориентированного вдоль оси [001] кристалла, предварительно поляризованного в поле 12 kV/cm, полученные при нагревании.

необходимо уточнить, что при дальнейшем обсуждении экспериментальных данных мы будем придерживаться выводов работ [13,6,14,15], в которых этот переход рассматривается как переход релаксор-сегнетоэлектрик, а не сегнетоэлектрик-антисегнетоэлектрик [11,12]. Как видно из рисунка, тепловой гистерезис наблюдается в широком диапазоне температур вплоть до температуры T_c , но наиболее существенный — в области фазового перехода T_{RF} . Наличие диэлектрического гистерезиса можно объяснить сосуществованием тетрагональной и ромбоэдрической фаз в широком диапазоне температур, где относительные объемные доли двух фаз в значительной степени зависят от температуры.

На рис. 2 представлены температурные зависимости ε (кривая 1) и tan δ (кривая 2) для ориентированного вдоль оси [001] кристалла, предварительно поляризованного в поле 12 kV/cm, измеренные при нагревании. На кривой є кроме основного максимума є видны еще две аномалии: температура деполяризации $(T_d \approx 395 \,\mathrm{K})$, при которой наблюдается наибольшее изменение наклона на кривой ε , a tan δ имеет небольшой максимум. Кроме этой аномалии на кривой є еще наблюдается небольшой перегиб при температуре T_{RF} , приблизительно равной 438-443 К. Здесь необходимо заметить, что температура деполяризации Т_d примерно на 40 К ниже температуры T_{RF}. Это согласуется с литературными данными, полученными для других соединений, содержащих NBT [25-27]. Разные температуры деполяризации T_d и перехода сегнетоэлектрик-релаксор T_{RF} в релаксорных сегнетоэлектриках на основе NBT отличают их от свинец-содержащих релаксоров, в которых эти температуры совпадают. Это означает, что процесс деполяризации в NBT-содержащих твердых растворах имеет другое происхождение. Можно предположить, что сегнетоэлектрические макродомены, возникшие в процессе поляризации образца в электрическом поле, при нагревании при температуре T_d теряют свою сегнетоэлектрическую природу и распадаются на нанодомены. В области температур между T_d и T_{RF} наблюдается релаксорное состояние. Это может быть связано с тем, что сегнетоэлектрическое полярное состояние, образовавшееся во время поляризации образца, является метастабильным с большой упругой энергией. При повышении температуры величина потенциального барьера уменьшается, и система пытается минимизировать упругую энергию за счет обратного переключения в случайное состояние. Этим можно объяснить тот факт, что температура деполяризации T_d всегда ниже, чем T_{RF} . В работе [28] авторы предлагают другое объяснение. Разницу в температурах они связывают с тем, что нагрев выше T_d разрушает только макроскопическую поляризацию. Домены начинают колебаться за счет термической активации, но взаимосвязь локальных диполей внутри доменов не теряется. Домены распадаются на PNR только тогда, когда материал нагревается до температуры T_{RF} и выше.

Вопрос о существовании в электрическом поле промежуточной моноклинной фазы, предполагающей непрерывное вращение между псевдокубическими направлениями [111] (ромбоэдрическая фаза) и [100] (тетрагональная фаза), подобно свинцовосодержащим твердым растворам, до сих пор является предметом дискуссий. Сложность определения моноклинной фазы связана с большим беспорядком в подрешетке *A*, вызванным сосуществованием ионов разного заряда (Na⁺, Bi³⁺ и Ba²⁺) [29].

Оптические измерения являются более чувствительными по сравнению с диэлектрическими. Они помогают

Рис. 3. Температурные зависимости оптического пропускания для неполяризованного образца в режиме нагревания (1) и охлаждения (2), $(I_0$ — величина в нулевом поле).

получить дополнительную информацию о физических свойствах вещества, особенно при изучении изменения размеров неоднородностей при фазовых переходах. На рис. 3 представлены температурные зависимости оптического пропускания для неполяризованного образца, полученные в режиме нагревания (кривая 1) и охлаждения(кривая 2). Из рисунка видно, что при нагревании образца оптическое пропускание резко уменьшается вблизи T_{RF}, что свидетельствует об увеличении размеров полярных областей. Это согласуется с результатами работы [26], в которой обнаружено, что фракция объема с нанодоменами увеличивается по мере приближения температуры к T_{RF}. Наблюдаемый гистерезис свидетельствует о том, что этот переход является переходом первого рода. Однако, в работе [29] авторы выражают сомнение по поводу того, что этот переход является переходом первого рода и предполагают, что он имеет черты фазового перехода второго рода.

Для изучения процесса индуцирования сегнетоэлектрической фазы в наших кристаллах, в которых релаксорные свойства связаны с беспорядком в положении Aкислородного октаэдра ABO_3 , были проведены измерения временных зависимостей диэлектрической проницаемости в разных электрических полях. Результаты измерений представлены на рис. 4 (кривые I, 2), где ε_0 диэлектрическая проницаемость до приложения поля, ε — диэлектрическая проницаемость в присутствии поля в разные моменты времени. Видно, что в полях, значительно меньших коэрцитивного поля (кривая I), практически никаких изменений величины $\varepsilon/\varepsilon_0$ не обнаружено. В полях, близких к коэрцитивному полю, сразу после включения поля наблюдается сначала резкое увеличение величины $\varepsilon/\varepsilon_0$, а затем ее уменьшение (кривая 2).

Как видно из рисунка, временные зависимости $\varepsilon/\varepsilon_0$ имеют ряд особенностей. Первой особенностью наблюдаемых зависимостей на рис. 4 является возрастание величины $\varepsilon/\varepsilon_0$ и появление максимума спустя некоторое время после включения поля в случае, если поле превышает коэрцитивное поле Ес. Образование этого максимума и наблюдаемое возрастание $\varepsilon/\varepsilon_0$ может быть связано с активизацией процессов переключения тетрагональных доменов, наблюдаемых при $E > E_c$, а также с повышением мобильности доменных стенок в ходе процесса поляризации образца. В ходе поляризации возможно образование макроскопических тетрагональных доменов. После максимума наблюдается резкое уменьшение величины $\varepsilon/\varepsilon_0$, что свидетельствует о начале перехода в сегнетоэлектрическую фазу (предположительно, тетрагональную) с макроскопической доменной структурой. К сожалению, наблюдать полный переход в тетрагональную фазу не удалось, т.к. значительные диэлектрические потери в образце не позволили приложить большие электрические поля.

Второй особенностью является то, что изменение величины $\varepsilon/\varepsilon_0$ происходит сразу же после включения поля, без времени задержки. Отсутствие инкубационного периода наблюдалось ранее в кристаллических твердых растворах PbZn_{1/3}Nb_{2/3}O₃-9%PbTiO₃ (PZN-9%PT) [30]. Это может быть связано с продолжающимся ростом размеров PNR и доменов и ниже температуры МФП, в отличие от кристаллов PMN и твердых растворах на его основе, в которых размеры PNR не меняются. Действительно, в работе [27] было обнаружено, что при комнатной температуре, которая ниже температуры МФП, в исследуемых кристаллах раз-

Рис. 4. Временные зависимости величины $\varepsilon/\varepsilon_0$ при комнатной температуре для кристаллов NBT-5%BT в электрическом поле 10 kV/ст (кривая *I*) и 13.8 (kV/ст) (кривая *2*), где ε — диэлектрическая проницаемость в присутствии поля в разные моменты времени, ε_0 — диэлектрическая проницаемость в нулевом поле.

меры сегнетоэлектрических доменов ~ 100 nm, что значительно больше, чем в кристаллах PMN (20-30 nm), в которых индуцированный фазовый переход возникает после некоторого времени задержки. Можно предположить, что отсутствие инкубационного периода связано с разной степенью размытия фазового перехода в доминирующем компоненте твердого раствора. В кристаллах PMN сегнетоэлектрическое состояние возникает только в присутствии электрического поля, в то время как в PZN наблюдается размытый фазовый переход в сегнетоэлектрическое состояние даже без электрического поля. В исследуемых кристаллах в доминирующем компоненте NBT в отсутствие электрического поля наблюдается размытый фазовый переход в сегнетоэлектрическое состояние [31]. Это означает, что степень размытия фазового перехода меньше, чем для кристаллов, содержащих PMN, а следовательно, и концентрация PNR меньше. Это приводит к увеличению расстояния между PNR, что дает возможность увеличения размеров PNR даже ниже температуры МФП. В кристаллах, содержащих PMN, такая возможность отсутствует, т.к. количество полярных областей велико вследствие большого размытия фазового перехода. С понижением температуры в PMN размеры PNR увеличиваются, расстояние между ними уменьшается вплоть до температуры МФП, ниже которой размеры PNR остаются практически неизменными, а изменяется только направление их дипольных моментов. Только спустя некоторое время после приложения электрического поля PNR начинают укрупняться, и индуцируется сегнетоэлектрический переход в фазу с дальним порядком. Наличие инкубационного периода при индуцировании сегнетоэлектрического перехода с дальним порядком в электрическом поле является одним из прямых доказательств неэргодичности релаксорной (стекольной) фазы. Отсутствие времени задержки при индуцированном фазовом переходе, как следует из рис. 4, позволяет предположить, что в твердых растворах NBT-5%BT фаза ниже температуры МФП не является неэргодической стекольной фазой.

4. Заключение

В настоящей работе изучено влияние электрического поля на фазовые переходы в бессвинцовых сегнетоэлектрических кристаллах NBT-5%BT, лежащих по составу вблизи МФГ. В широком диапазоне температур обнаружено наличие диэлектрического и оптического гистерезисов, связанных с сосуществованием фаз.

На временных зависимостях диэлектрической проницаемости сразу после включения поля, превышающего коэрцитивное поле, сначала происходит резкий рост величины $\varepsilon/\varepsilon_0$. Спустя некоторое время наблюдается максимум, после чего происходит уменьшение $\varepsilon/\varepsilon_0$. Наблюдаемый максимум, скорее всего, связан с активизацией процессов переключения тетрагональных доменов и повышением мобильности доменных стенок. По-

сле активизации процессов переключения обнаружено резкое уменьшение величины $\varepsilon/\varepsilon_0$, свидетельствующее об индуцированном переходе в тетрагональную сегнетоэлектрическую фазу с макроскопической доменной структурой. Индуцирование сегнетоэлектрической фазы происходит без времени задержки.

Высказано предположение, что отсутствие времени задержки связано с меньшей степенью размытия фазового перехода в кристаллах NBT-5%BT по сравнению с релаксором PMN и продолжающимся ростом PNR в фазе ниже температуры МФП без изменения направления их дипольных моментов.

Из полученных результатов сделан вывод, что в релаксорах NBT–5%BT, в которых даже в отсутствие электрического поля наблюдается размытый фазовый переход в сегнетоэлектрическую фазу, фаза ниже температуры МФП не является неэргодической. Это подтверждают также результаты, полученные ранее для твердых растворов PZN–x%PT.

Благодарности

Автор благодарен проф. Н. Luo из Шанхайского института керамики за предоставление образцов.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- [1] S.E. Park, T.R. Shrout. J. Appl. Phys. 82, 1804 (1997).
- [2] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura. Nature 432, 84 (2004).
- [3] H. You, Q.M. Zhang. Phys. Rev. Lett. 79, 3950 (1997).
- [4] Q.H. Zhang, Y.Y. Zhang, F.F. Wang, Y.J. Wang, D. Lin, X.Y. Zhao, H.S. Luo, W.W. Ge, D. Viehland. Appl. Phys. Lett. 95, 102904 (2009).
- [5] P. Pronin, P.P. Syrnikov, V.A. Isupov, V.M. Egorov, N.V. Zaitseva. Ferroelectrics 25, 395 (1980).
- [6] B. Vakhrushev, V.A. Isupov, B.E. Kvyatkovsky, N.M. Okuneva, I.P. Pronin, G.A. Smolensky, P.P. Syrnikov. Ferroelectrics 63, 153 (1985).
- [7] T. Takenaka, H. Nagata, Y. Hiruma. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1595 (2009).
- [8] W. Ge, C. Luo, Q. Zhang, C.P. Devreugd, Y. Ren, J. Li, H. Luo, D. Viehland. J. Appl. Phys. **111**, 093508 (2012).
- [9] W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rödel. J. Appl. Phys. **110**, 074106 (2011).
- [10] S. Gorfman, P.A. Thomas. J. Appl. Crystallogr. 43, 1409 (2010).
- [11] K. Sakata, Y. Masuda. Ferroelectrics 7, 347 (1974).
- [12] J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic. J. Am. Ceram. Soc. 92, 1153 (2009).
- [13] B. Wylie-van Eerd, D. Damjanovic, N. Klein, N. Setter, J. Trodahl. Phys. Rev. B 82, 104112 (2010).
- [14] M.-S. Zhang, J.F. Scott, J.A. Zvirgzds. Ferroelectrics Lett. 6, 147 (1986).
- [15] J. Suchanicz, J. Kwapulinski. Ferroelectrics 165, 249 (1995).

- [16] Y.-H. Bing, A.A. Bokov, Z.-G. Ye, B. Noheda, G. Shirane. J. Phys.: Condens. Matter 17, 2493 (2005).
- [17] Y.-H. Bing, A.A. Bokov, Z.-G. Ye. Current Appl. Phys. 11, 14 (2011).
- [18] E.V. Colla, E.Y. Koroleva, N.M. Okuneva, S.B. Vakhrushev. Phys. Rev. Lett. 74, 1681 (1995).
- [19] E.V. Colla, N. Jurik, Y. Liu, M.E.X. Delgado, M.B. Weissman, D.D. Vieland, Z.-G. Ye. J. Appl. Phys. **113**, 184104 (2013).
- [20] Л.С. Камзина, Л.А. Кулакова. ФТТ 59, 10, 1945 (2017).
- [21] Л.С. Камзина, Л.А. Кулакова. ФТТ 60, 5, 955 (2018).
- [22] Л.С. Камзина. ФТТ 63, 11, 1880 (2021).
- [23] W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rödel. J. Appl. Phys. **109**, 014110 (2011).
- [24] R. Zhang, B. Jiang, W. Jiang, W. Cao. Mater. Lett. 57, 1305 (2003).
- [25] L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, W. Cao. Appl. Phys. Lett. 103, 122905 (2013).
- [26] C. Ma, X. Tan, E. Dul'kin, M. Roth. J. Appl. Phys. 108, 104105 (2010).
- [27] R. Sun, Q. Zhang, B. Fang, J. Jiao, X. Li, X. Zhao, D. Lin, D. Wang, H. Luo. Appl. Phys. A 103, 199 (2011).
- [28] E. Sapper, S. Schaab, W. Jo, T. Granzow, J. Rödel. J. Appl. Phys. 111, 014105 (2012).
- [29] W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, J. Rödel. Appl. Phys. Lett. **102**, 192903 (2013).
- [30] Л.С. Камзина. ФТТ **63**, *11*, 1880 (2021).
- [31] P.B. Groszewicz, M. Gröting, H. Breitzkel, W. Jo, K. Albe, G. Buntkowsky, J. Rödel. Sci. Rep. 6, 1 (2016).

Редактор Е.Ю. Флегонтова