03,07,18

Упругость 3D- и 2D-соединений *XC* (*X* = Si, Ge, Sn): модели Китинга и Харрисона

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

Поступила в Редакцию 28 февраля 2022 г. В окончательной редакции 28 февраля 2022 г. Принята к публикации 1 марта 2022 г.

Для объемных и монослойных карбидов элементов IV группы в рамках моделей Китинга и/или Харрисона получены аналитические выражения: для упругих постоянных второго порядка c_{ij} ; скоростей звука v; упругих постоянных третьего порядка c_{ijk} ; зависимостей c_{ij} и v от давления; постоянной Грюнайзена; коэффициента теплового расширения и зависимости модуля сжатия от температуры. Показано, что в ряду SiC–GeC–SnC величины всех рассмотренных характеристик убывают, а коэффициент теплового расширения растет. Полученные модельные оценки сопоставлены с данными эксперимента и результатами численных расчетов других авторов.

Ключевые слова: силовые константы, упругие постоянные, скорости звука, ангармонические характеристики.

DOI: 10.21883/FTT.2022.06.52387.300

1. Введение

Карбид кремния, в отличии от карбидов германия и олова, давно и интенсивно изучается [1], тогда как сведения о GeC и SnC отсутствуют даже в популярном справочнике [2] по перспективным полупроводниковым материалам. Теоретический интерес к свойствам и самой возможности существования объемных (3D) монокристаллов этих соединений возник только в начале текущего века [3-8]. Основное внимание уделялось стабильности тех или иных кристаллических структур, зонному спектру и упругости. После появления графеновой тематики и возникшего затем поиска новых монослойных материалов появились работы по двумерным (2D) соединениям XC, где X = Si, Ge и Sn [9–12]. Все цитированные работы являются численными расчетами. Здесь мы рассмотрим упругие свойства 3D- и 2D-соединений XC, используя модели Китинга [13–15] и Харрисона [16,17], хорошо зарекомендовавшие себя при описании полупроводников.

2. Модель силовых констант Китинга

2.1. 3D-структуры

Для описания упругих постоянных объемных кристаллов со структурой алмаза Китингом была предложена простая модель [13], содержащая две "силовых константы" α и β .¹ Первая константа описывает центральное взаимодействие ближайших соседей, вторая — нецентральное взаимодействие вторых соседей. Упругие постоянные второго порядка имеют вид

$$c_{11} = \frac{\alpha + 3\beta}{4}, \quad c_{12} = \frac{\alpha - \beta}{4}, \quad c_{44} = \frac{\alpha\beta}{\alpha + \beta}.$$
 (1)

Из выражений (1) следует тождество

$$R = \frac{c_{44}(c_{11} + c_{12})}{c_s(c_{11} + 3c_{12})} = 1,$$
(2)

где $c_s = (c_{11}-c_{12})/2$ — модуль сдвига. Параметр внутренних смещений Клейнмана равен $\xi = (\alpha - \beta)/(\alpha + \beta)$. В работе Мартина [15] модель [13] была обобщена на структуру сфалерита и применена к описанию упругости кристаллов $A_N B_{8-N}$. При этом в модели появляются эффективные заряды атомов A и B и соответствующие межатомные кулоновские силы, которые мы здесь игнорируем вследствие малой полярности связей X-C(см. раздел 3.1). Таким образом, формулы (1) и (2) могут быть применены к расчетам упругости кубических (3C) соединений XC.

Соотношения между упругими постоянными структур сфалерита и вюрцита были предложены в работе [18] и применены к модели Китинга в работе [19], согласно которой для вюрцита имеем

$$c_{11} = \frac{\alpha + \beta}{4} + \frac{\alpha\beta}{\alpha + \beta} - D, \ c_{33} = \frac{3\alpha + \beta}{12} + \frac{4\alpha\beta}{3(\alpha + \beta)},$$
$$c_{44} = \beta \frac{2\alpha + \beta}{3(\alpha + \beta)} - \beta \frac{(\alpha - \beta)^2}{3(\alpha + \beta)(5\alpha + \beta)},$$
$$c_{66} = \beta \frac{5\alpha + \beta}{6(\alpha + \beta)} - D,$$

 $^{^1}$ Мы здесь употребили кавычки, так как в настоящей работе константы α и β приводятся в ед. GPa, тогда как обычно используются ед. N/m.

$$c_{12} = \frac{3\alpha - \beta}{12} - \frac{\alpha\beta}{3(\alpha + \beta)} + D, \ c_{13} = \frac{3\alpha + \beta}{12} - \frac{2\alpha\beta}{3(\alpha + \beta)}$$

$$D = \beta \frac{(\alpha - \beta)^2}{6(\alpha + \beta)(2\alpha + \beta)}.$$
 (3)

Отметим, что $c_{66} = (c_{11}-c_{12})/2$. В дальнейшем для определения констант α и β мы будем использовать экспериментально измеренные или численно рассчитанные другими авторами упругие постоянные c_{11} и c_{12} кубических кристаллов, так что $\alpha = c_{11} + 3c_{12}$ и $\beta = c_{11}-c_{12}$. Определенные таким способом значения "силовых констант" и упругих постоянных кубических кристаллов *XC* сведены в табл. 1. Там же приведены величины объемных модулей сжатия $B = (c_{11} + 2c_{12})/3$ и факторов

Таблица 1. Модель Китинга, структура сфалерита: значения "упругих констант" α и β , параметра Клейнмана ξ , упругих постоянных c_{ij} , отношения R, объемного модуля сжатия B и факторов анизотропии A' и A (α, β, c_{ij} и B приведены в ед. GPa). Верхний ряд значений — исходные значения c_{ij} из указанных в крайнем левом столбце работ, нижний ряд — результаты расчетов по Китингу, приведены только значения, отличающиеся от исходных

Вариант расчета	3D <i>XC</i>	<i>c</i> ₁₁	<i>c</i> ₁₂	С 44	R	В	A'	Α
1 [8]	$SiC \alpha = 700 \beta = 300 \xi = 0.40$	400	100	250 210	1.19 1	200	1.50	0.60 0.71
	$\begin{aligned} & \text{GeC} \\ & \alpha = 600 \\ & \beta = 200 \\ & \xi = 0.50 \end{aligned}$	300	100	200 150	1.33 1	166	1.67	0.50 0.67
	SnC $\alpha = 440$ $\beta = 120$ $\xi = 0.57$	200	80	120 94	1.17 1	120	1.80	0.50 0.64
2 [5]	SiC $\alpha = 824$ $\beta = 164$ $\xi = 0.67$	329	165	163 133	1.19 1	220	2.00	0.50 0.60
	GeC $\alpha = 669$ $\beta = 173$ $\xi = 0.35$	297	124	141 137	1.03 1	188	1.84	0.61 0.63
3 [20,21]	$SiC \alpha = 790 \beta = 250 \xi = 0.52$	385	135	257 190	1.35 1	218	1.69	0.49 0.66
4 [22,21]	$SiC \alpha = 903 \beta = 247 \xi = 0.57$	411	164	194	1.00 1	246	1.80	0.64

Таблица 2. Модель Китинга, структура вюрцита: значения параметра D и упругих постоянных c_{ij} (в ед. GPa). Верхний ряд значений — результаты расчета по формулам модели Китинга, в скобках — результаты расчета работы [8] для варианта 1 и работы [20] для варианта 2

Вариант расчета	3D <i>XC</i>	<i>c</i> ₁₁	C 33	С44	C 66	C ₁₂	<i>c</i> ₁₃
1 [8]	SiC D = 5	456 (523)	481 (558)	166 (156)	185 (215)	85 (93)	60 (44)
	$\begin{array}{c} \text{GeC} \\ D = 5 \end{array}$	343 (441)	365 (488)	113 (137)	132 (181)	89 (79)	65 (37)
	SnC D = 4	229	245	68	79	73	58
2 [5]	$SiC \\ D = 7$	378	403	88	111	153	128
	$\begin{array}{c} \text{GeC} \\ D = 6 \end{array}$	343	366	85	123	112	90
3 [20,21]	SiC D = 6	446	474	141	162	119	91
4 [22,21]	SiC D = 9	471	502	141	163	149	118

анизотропии $A' = (c_{11} + 2c_{12})/c_{11}$ [7] и $A = c_s/c_{44}$ [22].² Значения упругих постоянных соединений *XC* со структурой вюрцита (2*H*) представлены в табл. 2.

Анализ полученных результатов показывает, что в ряду SiC \rightarrow GeC \rightarrow SnC все упругие постоянные уменьшаются. Исключением является значение c₁₃ для 2H-GeC при расчете по варианту 1 с использованием результатов работы [8] (см. табл. 2). Отметим, что для этого случая значение *R* = 1.33, что является большим отклонением от значения R = 1 модели Китинга. Странным представляется результат $c_{12} > c_{44}$, полученный для 3C-SiC в [5] (табл. 1, вариант 2), так как во всех остальных рассмотренных случаях c₁₂ < c₄₄. Необходимо также указать на значительный разброс упругих характеристик для сравнительно хорошо изученного карбида кремния (помимо значений с_{іі}, представленных в табл. 1 и 2, см., например, [2,23]). Несмотря на отмеченный разброс абсолютных величин с_{іі}, их относительные значения $c_{ij}^* = c_{ij}/c_{11}$, представленные на рис. 1 и 2, демонстрируют общие черты для всех соединений ХС и всех вариантов расчета. Исключения вновь связаны с вариантом расчета 2. Вариации факторов анизотропии А' и А незначительны для всех вариантов расчета. От-

620

² Все значения упругих постоянных и модулей сжатия (в том числе и взятых из работ других авторов) округлялись нами до целочисленных значений. Для упругой постоянной c_{11} работы [8] мы (достаточно произвольно) приняли значение 300 GPa (табл. 1). Дело в том, что согласно [8] имеет место приближенное равенство $c_{11} \approx c_{44} \approx 200$ GPa. Этот результат представляется нам ошибочным, так как равенство этих упругих постоянных (насколько нам известно) нигде больше не встречается.

метим, что экспериментальные значения c_{ij} для 3*C*-SiC, использованные в варианте 4 и приведенные в табл. 4.6 работы [22], практически точно описывается моделью Китинга.

В работе [15] (см. также [22]) Мартин показал, что в кубических кристаллах соединений $A_N B_{8-N}$ отношение

Рис. 1. Модель Китинга, структура сфалерита, или цинковой обманки (ZB): значения относительных упругих постоянных $c_{ij}^* = c_{ij}/c_{11}$, рассчитанные по формулам (1). Обозначения приведены на рисунке, цифра рядом с химической формулой отвечает варианту расчета в табл. 1. Тонкие прямые линии использованы для наглядности.

Рис. 2. Модель Китинга, структура вюрцита (W): значения относительных упругих постоянных $c_{ij}^* = c_{ij}/c_{11}$, рассчитанные по формулам (3). Обозначения те же, что на рис. 1. Тонкие прямые линии использованы для наглядности.

 $x = \beta/\alpha$ имеет тенденцию убывать с ростом ионности f_i по Филлипсу [24]. Из расчета по варианту 1 для SiC, GeC и SnC получаем соответственно x = 0.42, 0.33 и 0.27; при расчете по варианту 2 для SiC и GeC имеем x = 0.20 и 0.26, что вызывает сомнения относительно результатов работы [5]. Вопрос об ионности соединений *XC* мы рассмотрим в разделе 3.1.

Рассмотрим теперь зависимости упругих постоянных от давления *p*, заменив, как и в [21], α и β на $\tilde{\alpha} = \alpha + ap$ и $\tilde{\beta} = \beta + bp$, где *a* и *b* — безразмерные коэффициенты (здесь и далее тильда указывает, что соответствующая величина зависит от давления). Тогда вместо (1) получим

$$\tilde{c}_{11} = c_{11} + [(a+3b)/4]p, \ \tilde{c}_{12} = c_{12} + [(a-b)/4]p,$$

 $\tilde{c}_{44} \approx c_{44} + \frac{\alpha b + a\beta - \alpha\beta(a+b)/(\alpha+\beta)}{\alpha+\beta}p,$ (4)

где выражение для \tilde{c}_{44} (в отличие от [21]) линеаризовано по *р*. Из (4) для объемного модуля сжатия находим $\tilde{B} = B + (a + b)p/6$. Аналогичным образом можно преобразовать выражения (3).

По данным [3] для кубических кристаллов SiC. GeC и SnC имеем B = 206, 181, 119 GPa и $\tilde{B}' \equiv \partial \tilde{B}/\partial p = 5.3$, 4.2 и 4.3. По данным [5] для 3C-SiC и 3C-GeC имеем соответственно B' = 3.90 и 3.45. Анализ зависимостей \tilde{c}_{ij} от p, представленных на рис. 4–6 работы [7], для 3C-XC дает $\tilde{c}'_{11} \sim \tilde{c}'_{12} \sim 4$, $\tilde{B}' \sim 4$ и $\tilde{c}'_{44} \sim 1$, где $\tilde{c}'_{ij} \equiv \partial \tilde{c}_{ij}/\partial p$, так что $a \sim 5b \sim 10$. Исходя из результатов работы [20], для 3C-SiC в [21] имеем $\tilde{c}'_{11} = 3.49$, $\tilde{c}'_{12} = 4.06$, откуда B' = 3.87, a = 15.7, b = -0.6. Для получения порядковых оценок положим a = 16 и b = 0. Тогда

$$\tilde{c}'_{11} \approx 4\left(1 + \frac{4x}{1+x}\right), \quad \tilde{c}'_{33} \approx 4\left(1 + \frac{16x}{3(1+x)}\right),$$

 $\tilde{c}'_{12} \approx 4\left(1 - \frac{4x}{3(1+x)}\right), \quad \tilde{c}'_{13} \approx 4\left(1 - \frac{8x}{3(1+x)}\right),$

 $\tilde{c}'_{44} \approx 0, \quad \tilde{c}'_{66} \approx 0,$

где, как и выше, $x = \beta/\alpha$. Легко видеть, что все производные \tilde{c}'_{ij} являются плавными функциями параметра x. Результаты порядковых оценок \tilde{c}'_{ij} приведены в табл. 3.

Перейдем к оценкам скоростей звука $v_{\sigma}(\mathbf{q}) = \sqrt{C_i(\mathbf{q})/\rho_{AB}}$, где индекс σ отвечает поляризации акустической волны, распространяющейся в направлении \mathbf{q} в кристалле *AB* с плотностью ρ_{AB} , $C_{\sigma}(\mathbf{q})$ — комбинация соответствующих упругих постоянных. В случае кубических кристаллов имеем [20,21]: для трех продольных акустических волн (LA)

$$C_{[100]}([100]) = c_{11}, \ C_{[110]}([110]) = (c_{11} + 2c_{12} + 2c_{44})/2,$$

 $C_{[111]}([111]) = (c_{11} + 2c_{12} + 4c_{44})/3;$ (6)

Вариант расчета	3D XC	\tilde{c}'_{11}	\tilde{c}'_{33}	\tilde{c}'_{12}	\tilde{c}'_{13}
1 [8]	SiC x = 0.43	9.1	10.8	2.3	0.6
	$\begin{array}{c} \text{GeC} \\ x = 0.33 \end{array}$	8.0	9.3	2.6	1.35
	SnC $x = 0.27$	7.4	8.5	2.9	1.7
2 [5]	SiC x = 0.20	6.7	7.6	3.1	2.2
	0.0				
	x = 0.26	7.3	8.4	2.9	1.8
3 [20,21]	x = 0.26 SiC $x = 0.32$	7.3	8.4 9.2	2.9 2.7	1.8 1.4

Таблица 3. Модель Китинга, структура вюрцита: порядковые оценки зависимости упругих постоянных от давления $(\tilde{c}'_{ij} = \partial \tilde{c}_{ij}/\partial p)$

Таблица 4. Модель Китинга, структура сфалерита: скорости звука $v_{L(T)A}^{[ijk]}$ (в ед. km/s)

Вариант расчета	3D <i>XC</i>	$v_{\scriptscriptstyle L\!A}^{[100]}$	$v_{\scriptscriptstyle L\!A}^{[110]}$	$v_{\scriptscriptstyle L\!A}^{[111]}$	$v_{\scriptscriptstyle TA}^{[100]}$	$v_{\scriptscriptstyle TA}^{\scriptscriptstyle [110]}$	$v_{\scriptscriptstyle TA}^{[111]}$
1	SiC	11.2	12.6	12.2	8.1	6.8	7.3
[8]	GeC	7.2	8.3	8.0	5.1	4.2	4.5
	SnC	5.6	6.5	6.2	3.8	3.0	3.3
2	SiC	10.1	11.8	11.6	6.4	5.1	5.6
[5]	GeC	7.2	8.4	7.9	4.9	3.9	4.2

Таблица 5. Модель Китинга, структура сфалерита: порядковые оценки параметра $\eta_{\sigma}(\mathbf{q})$ (в ед. GPa^{-1})

Вариант расчета	3D <i>XC</i>	$\eta^{[100]}_{LA}$	$\eta^{[110]}_{LA}$	$\eta^{[111]}_{L\!A}$	$\eta^{[100]}_{TA}$	$\eta^{[110]}_{TA}$	$\eta_{TA}^{[111]}$
[5,7]	SiC	4	5	4	1	-2	-2
	GeC	4	5	4	0	-3	$^{-2}$

для трех поперечных акустических волн (ТА)

$$C_{[010]}([100]) = C_{[001]}([100]) = C_{[001]}([110]) = c_{44},$$

$$C_{[1\bar{1}0]}([110]) = c_s,$$

$$C_{[1\bar{1}0]}([111]) = C_{[11\bar{2}]}([111]) = (2c_s + c_{44})/3,$$
(7)

где, как и выше, модуль сдвига $c_s = (c_{11} - c_{12})/2$. Учитывая, что постоянные кубических решеток SiC, GeC и

Рис. 3. Модель Китинга, структура сфалерита, или цинковой обманки (ZB): значения относительных упругих постоянных $(v_{L(T)A}^{[ijk]})^* = v_{L(T)A}^{[ijk]}/v_{LA}^{[100]}$, рассчитанные по формулам (6) и (7). Обозначения те же, что на рис. 1. Тонкие прямые линии использованы для наглядности.

SnC равны соответственно 4.36, 4.59 и 5.11 Å [7], так что $\rho_{\rm SiC} = 3.21 \, {\rm g/cm}^3$, $\rho_{\rm GeC} = 5.77 \, {\rm g/cm}^3$ и $\rho_{\rm SnC} = 6.47 \, {\rm g/cm}^3$, и используя вычисленные нами значения c_{ij} (табл. 1), получим результаты, представленные в табл. 4, достаточно удовлетворительно согласующиеся с имеющимися экспериментальными данными [2]. Очевидно, что скорость звука убывает при переходе от 3*C*-SiC к 3*C*-SnC. На рис. 3 представлены относительные скорости звука $(v_{L(T)A}^{[ijk]})^* = v_{L(T)A}^{[ijk]}/v_{LA}^{[100]}$. Как и в случае упругих постоянных (рис. 1 и 2), значения $(v_{L(T)A}^{[ijk]})^*$ демонстрируют сравнительно слабую зависимость от элемента *X* и метода расчета.

Влияние давления на скорость звука $\eta_{\sigma}(\mathbf{q}) = = \partial v_{\sigma}(\mathbf{q}) / \partial p$ может быть представлено в виде

$$\frac{\partial v_{\sigma}(\mathbf{q})}{\partial p} = v_{\sigma}(\mathbf{q})\eta_{\sigma}(\mathbf{q}), \ \eta_{\sigma}(\mathbf{q}) = \frac{1}{2} \left(\frac{C'_{\sigma}(\mathbf{q})}{C_{\sigma}(\mathbf{q})} - \frac{1}{B} \right), \quad (8)$$

где $C'_{\sigma}(\mathbf{q}) = \partial C_{\sigma}(\mathbf{q})/\partial p$ [20]. Для кубических карбидов кремния и германия значения параметра $\eta_{\sigma}(\mathbf{q})$ приведены в табл. 5. Так как при этом c_{ij} брались из обработки данных [5], а c'_{ij} — из обработки данных [7], приведенные значения $\eta_{\sigma}(\mathbf{q})$ следует считать порядковыми оценками.

2.2. 2D-структуры

Для графена выражения для упругих постоянных второго \bar{c}_{ij} и третьего \bar{c}_{ijk} порядков, а также зависимости

Таблица 6. Модель Китинга, 2D: значения упругих постоянных второго \bar{c}_{ij} и третьего \bar{c}_{ijk} порядков (в ед. N/m), скоростей звука (в ед. km/s) и производных упругих постоянных второго порядка по давлению \bar{c}'_{ij}

2D <i>XC</i>	\bar{c}_{11}	\bar{c}_{12}	$-\bar{c}_{111}$	$-\bar{c}_{222}$	$-\bar{c}_{112}$	v_p	v_s	$\tilde{\bar{c}}_{11}'$	$\tilde{\bar{c}}_{22}'$	$\tilde{\bar{c}}_{12}'$
SiC GeC SnC [27]	184 158 117	53 53 48	1748 929 628	1827 971 657	331 176 119	16.5 15.6 10.7	8.1 5.8 4.9	8.7 5.2 4.5	7.6 4.6 4.0	1.4 0.8 0.7
SiC [11] GeC [10]	177 156	56 44	1391 1413	1181 1186	392 155	16.6 13.9	8.3 5.3	7.6 7.8	5.1 5.9	1.68 0.8

 \tilde{c}_{ij} от двумерного давления \bar{p} были получены соответственно в работах [25–27] и имеют следующий вид:

$$\bar{c}_{11} = \frac{1}{\sqrt{3}} \left(4\bar{\alpha} + \bar{\beta} + 18 \frac{\bar{\alpha}\bar{\beta}}{4\bar{\alpha} + \bar{\beta}} \right),$$
$$\bar{c}_{12} = \frac{1}{\sqrt{3}} \left(4\bar{\alpha} + \bar{\beta} - 18 \frac{\bar{\alpha}\bar{\beta}}{4\bar{\alpha} + \bar{\beta}} \right), \tag{9}$$
$$\bar{c}_{111} = (16\bar{\gamma}/\sqrt{3})[(1.5 - \bar{\xi})^3 + 4\bar{\xi}^3],$$

$$\bar{c}_{222} = (16\bar{\gamma}/\sqrt{3})[(0.5+\bar{\xi})^3+4(1-\bar{\xi})^3],$$

$$\bar{c}_{112} = (16\bar{\gamma}/3\sqrt{3})[(1.5-\bar{\xi})^2(0.5+\bar{\xi})+4\bar{\xi}^2(1-\bar{\xi})],$$

(10)

$$\tilde{\bar{c}}_{11} = \bar{c}_{11} - (\bar{c}_{111} + \bar{c}_{112}) \frac{1 - \sigma}{\bar{E}} \bar{p},$$
$$\tilde{\bar{c}}_{22} = \bar{c}_{11} - \bar{c}_{222} \frac{1 - \bar{\sigma}}{\bar{E}} \bar{p}, \quad \tilde{\bar{c}}_{12} = \bar{c}_{12} - \bar{c}_{112} \frac{1 - \bar{\sigma}}{\bar{E}} \bar{p}.$$
(11)

Здесь $\bar{\alpha}$ и $\bar{\beta}$ — гармонические силовые константы центрального и нецентрального взаимодействия, $\bar{\gamma}$ — ангармоническая константа центрального взаимодействия, $\bar{\xi} = (2\bar{\alpha} - \bar{\beta})/(4\bar{\alpha} + \bar{\beta})$ — параметр внутренних смещений Клейнмана, $\bar{\sigma} = \bar{c}_{12}/\bar{c}_{11}$ — коэффициент Пуассона, $\bar{E} = (\bar{c}_{11}^2 - \bar{c}_{12}^2)/\bar{c}_{11}$ — модуль Юнга. Черта поверх символа означает, что имеется в виду 2D-структура, для которой все упругие постоянные и силовые константы имеют размерность N/m. В работе [27] выражения (9)-(11) были применены к графеноподобным соединениям А_NB_{8-N}. Для рассматриваемых нами 2D-соединений XC получены следующие значения параметров: $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$ (в ед. N/m), $\bar{x} = \bar{\alpha}/\bar{\beta}$ и $\bar{\xi}$: 44, 29, 63, 0.67 и 0.28 для SiC; 40, 23, 44, 0.59 и 0.31 для GeC; 32, 15, 30, 0.47 и 0.34 для SnC. Результаты расчета упругих постоянных второго и третьего порядков и зависимости упругих постоянных второго порядка от давления $\bar{c}_{ij} = \partial \bar{c}_{ij} / \partial \bar{p}$ представлены в табл. 6. При этом, определяя силовые константы $\bar{\alpha}$ и $\bar{\beta}$, мы исходили из численных расчетов [9], тогда как для оценки $\bar{\gamma}$ использовали данные по графену и скэйлинг В табл. 6 приведены также результаты численных расчетов [10,11]. Наибольшие расхождения с нашими результатами имеют место для упругих постоянных \bar{c}_{ijk} . Это не удивительно, так как мы определяли значения $\bar{\gamma}$ достаточно приближенно. Более того, для описания структуры алмаза Китинг использовал 3 ангармонических силовых константы — одну центральную и две нецентральных [14], тогда как мы использовали лишь центральную силовую константу. Именно поэтому мы получаем $|\bar{c}_{111}| < |\bar{c}_{222}|$.

Скорости звука в графеноподобных соединениях определяются выражениями

$$v_p = \sqrt{\frac{\bar{E}(1-\bar{\sigma})}{\bar{\rho}(1+\bar{\sigma})(1-2\bar{\sigma})}}, \quad v_s = \sqrt{\frac{\bar{c}_{12}}{\bar{\rho}}}, \quad (12)$$

где v_p — скорость компрессионной волны, вызывающей двухосную деформацию, v_s — скорость сдвиговой волны, $\bar{\rho} = 2\bar{M}_{cell}/3\sqrt{3}\bar{d}^2$ — плотность 2D-структуры, \bar{M}_{cell} — масса атомов элементарной ячейки, \bar{d} — расстояние между ближайшими соседями, равная для SiC, GeC и SnC соответственно 1.77, 1.86 и 2.05 Å [9]. Отсюда имеем: $\bar{E} = 169$ GPa, $\bar{\sigma} = 0.29$, $\bar{\rho} = 0.82 \cdot 10^{-6}$ kg/m² для SiC; $\bar{E} = 140$ GPa, $\bar{\sigma} = 0.335$, $\bar{\rho} = 1.55 \cdot 10^{-6}$ kg/m² для SnC, что хорошо согласуется с результатами работ [10,11]. Результаты расчета скоростей звука, приведенные в табл. 6, демонстрируют уменьшение значений v_p и v_s в ряду SiC — SnC. Подчеркнем, что наши модельные оценки хорошо согласуются с результатами численных расчетов [19,11].

Модель связывающих орбиталей Харрисона

3.1. 3D-структуры

Модель Харрисона для тетраэдрических полупроводников [16,17,28] представляет собой упрощенный вариант метода ЛКАО, где все необходимые матричные элементы задаются простыми и физически прозрачными аналитическими выражениями. Согласно [16,29], для кубических кристаллов упругие постоянные имеют вид

$$c_{11} = \frac{2\sqrt{3}(1+\lambda)}{2} w, \quad c_{12} = \frac{\sqrt{3}(2-\lambda)}{3} w,$$
$$c_{44} = \frac{3\sqrt{3}\lambda}{3+2\lambda} w.$$
(13)

Здесь $w = \alpha_c^3 V_2/d^3$, $V_2 = 3.22(\hbar^2/md^2)$ — ковалентная энергия σ -связи sp^3 -орбиталей атомов X и C, \hbar — приведенная постоянная Планка, m — масса свободного электрона, $d = a_0\sqrt{3}/4$ — расстояние меж-

Таблица 7. Модель Харрисона, структура сфалерита: значения ковалентной V_2 и полярной V_3 энергий (в eV), ковалентности связей α_c , упругих постоянных c_{ij} , объемного модуля сжатия *B* и модуля сдвига c_x (все упругие характеристики приведены в ед. GPa). Верхний ряд значений соответствует использованию таблиц атомных термов Манна [29], нижний ряд — использованию таблиц атомных термов Хермана–Скиллмана [16]

3D <i>XC</i>	V_2	V_3	$lpha_c$	<i>c</i> ₁₁	<i>c</i> ₁₂	C 44	В	Cs
SiC	6.87	1.88 1.42	0.96 0.98	308 328	96 102	135 144	166 177	106 113
GeC	6.20	1.93 1.37	0.95 0.98	229 253	71 79	101 111	124 137	79 87
SnC	5.02	2.41 1.77	0.90 0.94	116 133	36 41	51 59	64 72	40 46

ду ближайшими соседями, a_0 — постоянная решетки, $\lambda = 0.85$ — константа, описывающая изменение энергии V_2 при разориентации sp^3 -орбиталей, образующих σ -связь, $\alpha_c = V_2/\sqrt{V_2^2 + V_3^2}$ — ковалентность связи X-C, $V_3 = |\varepsilon_h^X - \varepsilon_h^C|/2$ — полярная энергия связи, $\varepsilon_h^{X(C)} = (\varepsilon_s^{X(C)} + 3\varepsilon_p^{X(C)})/4$ — энергии sp^3 -орбиталей и $\varepsilon_{s(p)}^{X(C)}$ — энергия s(p)-состояния атома X(C). Из выражений (13) находим:

$$c_{22}/c_{11} = (2 - \lambda)/2(1 + \lambda) = 0.31,$$

$$c_{44}/c_{11} = 9\lambda/2(1 + \lambda)(3 + 2\lambda) = 0.44,$$

$$R = (4 + \lambda)/(8 - \lambda) = 0.68,$$

$$\xi = (1 - \lambda/3)/(1 + 2\lambda/3) = 0.47,$$

$$A' = 3/(1 + \lambda) = 1.62, \quad A = (3 + 2\lambda)/6 = 0.78.$$

Результаты расчета упругих характеристик представлены в табл. 7, где мы положили a = 4.36, 4.59 и 5.11 Å соответственно для 3D SiC, GeC [7] и SnC и использовали таблицы атомных термов Манна [28] и Хермана-Скилманна [16]. Отметим, прежде всего, высокую степень ковалентности связей Х-С. Именно это позволяет применять модель Китинга [13,14], игнорируя поправки [15], связанные с наличием заряда у атомов Х и С. Во-вторых, ковалентность связей α_c уменьшается в ряду SiC \rightarrow SnC, а их полярность $\alpha_p = (1-\alpha_c^2)^{1.2}$ и ионность по Филлипсу $f_i = 1 - \alpha_c^3$ возрастают. И, наконец, все упругие характеристики убывают с ростом полярности в ряду SiC -> SnC. Сопоставление полученных здесь значений c_{ij} для 3C-SiC с результатами расчета по Китингу (табл. 1) показывает хорошее численное согласие для с11 и с44, полученных с использованием таблиц Хермана-Скиллмана в варианте 2 расчета, тогда как значения с12 различаются в полтора раза (см. табл. 1). Тут вновь следует высказать сомнение относительно результата работы [5]. Дополнительным аргументом в пользу таких сомнений является то обстоятельство, что полученное по Харрисону универсальное отношение $c_{11}: c_{12}: c_{44} = 1: 0.31: 0.44$, качественно соответствует всем вариантам расчета по Китингу. Единственное исключение — график SiC-2, отмеченный на рис. 1 черными квадратами и основанный на использовании данных [5]. Далее, по Харрисону имеем A' = 1.62 и A = 0.78, тогда как по Китингу средние по табл. 1 значения A' = 1.76 и A = 0.65. Это также свидетельствует о близости результатов, даваемых двумя рассматриваемыми моделями.

Перейдем к гексагональным соединениям. Согласно [18,30], упругие постоянные имеют следующий вид:

$$c_{11}^{W} = \bar{c}_{11}^{W} - \Delta^{2}/\bar{c}_{44}^{W}, \quad c_{33}^{W} = \bar{c}_{33}^{W},$$

$$c_{44}^{W} = \bar{c}_{44}^{W} - \Delta^{2}/\bar{c}_{66}^{W}, \quad c_{66}^{W} = \bar{c}_{66}^{W} - \Delta^{2}/\bar{c}_{44}^{W},$$

$$c_{12}^{W} = \bar{c}_{12}^{W} + \Delta^{2}/\bar{c}_{44}^{W}, \quad c_{13}^{W} = \bar{c}_{13}^{W},$$
(14)

где $\Delta = (1/3\sqrt{2})(c_{11} - c_{12} - 2c_{44})^{\mathrm{ZB}}$ и

$$\bar{c}_{11}^{W} = (c_{11} + c_{12} + 2c_{44})^{ZB}/2,$$

$$\bar{c}_{33}^{W} = (c_{11} + 2c_{12} + 4c_{44})^{ZB}/3,$$

$$\bar{c}_{44}^{W} = (c_{11} - c_{12} + c_{44})^{ZB}/3,$$

$$\bar{c}_{66}^{W} = (c_{11} - c_{12} + 4c_{44})^{ZB}/6,$$

$$\bar{c}_{12}^{W} = (c_{11} + 5c_{12} - 2c_{44})^{ZB}/6,$$

$$\bar{c}_{13}^{W} = (c_{11} + 2c_{12} - 2c_{44})^{ZB}/3.$$
(15)

Отметим, что поправка на внутренние напряжения Δ^2/\bar{c}_{44}^W является аналогом поправки D в формулах (3), а поправка Δ^2/\bar{c}_{66}^W соответствует второму слагаемому в выражении для c_{44} в (3). Результаты расчета представлены в табл. 8, откуда, во-первых, следует, что

Таблица 8. Модель Харрисона, структура вюрцита: значения упругих постоянных c_{ij}^W (в ед. GPa) и относительных упругих постоянных c_{ij}^W/c_{11}^W . Верхний ряд значений соответствует использованию таблиц атомных термов Манна [29], нижний ряд — использованию таблиц атомных термов Хермана–Скиллмана [16]

3D XC	c_{11}^{W}	c_{33}^{W}	c_{44}^{W}	c_{66}^{W}	c_{12}^{W}	c_{13}^{W}
SiC	337	347	116	125	86	77
	359	369	123	134	92	81
GeC	251	258	86	94	64	56
	277	285	95	103	71	63
SnC	127	131	44	47	35	29
	146	150	50	55	37	32
c_{ij}^{W}/c_{11}^{W}	1	1.03	0.34	0.37	0.26	0.23

все упругие постоянные убывают в ряду $SiC \rightarrow SnC$, как и у кубических соединений. Во-вторых, отношения c_{ii}^{W}/c_{11}^{W} является универсальными, т.е. независящими от конкретного соединения и использованных таблиц атомных термов (что следует из формул (13)-(15)). Более того, полученные значения c_{ii}^W/c_{11}^W количественно согласуются с результатами расчета по Китингу (рис. 2). Вновь единственное отклонение — результаты расчета по варианту 2. К сожалению, прямое сравнение с экспериментальными значениями c_{ij}^W исключено даже для карбида кремния, так как, насколько известно автору, монокристаллы 2H-SiC пока еще не получены. В этой связи могут оказаться полезными инварианты — комбинации упругих постоянных, величина которых не меняется при переходе от сфалерита к вюрциту, оставаясь постоянной для всех гексагональных политипов NH, где N равно, например, 2, 4, 6, 8 [30]:

$$(c_{11} + c_{12})^{NH} = 2(c_{11} + 2c_{12} + c_{44})^{ZB}/3,$$

$$c_{33}^{NH} = (c_{11} + 2c_{12} + 4c_{44})^{ZB}/3,$$

$$c_{13}^{NB} = (c_{12} + 2c_{12} - 2c_{44})/3.$$
 (16)

Так, например, взяв экспериментальные значения $c_{11}^{ZB} = 390$, $c_{12}^{ZB} = 142$ и $c_{44}^{ZB} = 256$ GPa [23], получим $(c_{11} + c_{12})^{NH} = 620$, $c_{33}^{NH} = 566$ и $c_{13}^{NH} = 54$ GPa. Инвариантов (16), однако, недостаточно для определения полного набора значений c_{ij}^W .

Скорости звука $v_{L(T)A}^{[ijk]}$ и их относительные значения $v_{L(T)A}^{[ijk]}/v_{LA}^{[100]}$, вычисленные по формулам (6) и (7) для кубических кристаллов, представлены в табл. 9. Сравнение с расчетами по Китингу (см. табл. 4 и рис. 3) демонстрирует практическую идентичность полученных результатов.

Обратимся теперь к оценкам ангармонических свойств кубических кристаллов XC. Как показано в [31], зависимости объемного модуля сжатия от давления \tilde{B}'

Таблица 9. Модель Харрисона, структура сфалерита: скорости звука $v_{L(T)A}^{[ijk]}$ (в ед. km/s) и относительные скорости $(v_{L(T)A}^{[ijk]})^* = v_{L(T)A}^{[ijk]}/v_{LA}^{[100]}$. Верхний ряд соответствует использованию таблиц атомных термов Манна [29], нижний ряд — использованию таблиц атомных термов Хермана–Скиллмана [16]

3D XC	$v_{L\!A}^{[100]}$	$v_{L\!A}^{\left[110 ight] }$	$v_{L\!A}^{\left[111 ight] }$	$v_{\scriptscriptstyle TA}^{[100]}$	$v_{\scriptscriptstyle T\!A}^{[110]}$	$v_{\scriptscriptstyle T\!A}^{[111]}$
SiC	9.8	11.0	10.4	6.5	5.7	6.0
	10.1	11.3	10.7	6.7	5.9	6.2
GeC	6.3	7.0	6.7	4.2	3.7	3.9
	6.6	7.4	7.0	4.4	3.9	4.1
SnC	4.2	4.7	4.5	2.8	2.5	2.6
	4.5	5.1	4.8	3.0	2.7	2.8
$(v_{L(T)A}^{[ijk]})^{st}$	1	1.12	1.06	0.67	0.59	0.61

Таблица 10. Модель Харрисона, структура сфалерита: постоянная Грюнайзена γ^* , зависимости модуля сжатия от давления $\tilde{B}' = \partial \tilde{B}/\partial p$, линейный коэффициент теплового расширения α_T (в ед. 10^{-6} K^{-1}) и зависимость объемного модуля сжатия температуры $\partial B(T)/\partial T$ и $B^{-1}\partial B(T)/\partial T$ (в ед. 10^{-4} GPa/K и 10^{-4} K^{-1})

3D XC	γ^*	\tilde{B}'	α_T	$-\partial B(T)/\partial T$	$-B^{-1}\partial B(T)/\partial T$
SiC	1.58	3.16	6.3	110	0.66
	1.54	3.08	5.8	103	0.58
GeC	1.60	3.20	7.3	97	0.78
	1.54	3.08	6.4	88	0.64
SnC	1.69	3.37	11.2	81	1.27
	1.62	3.23	9.4	73	1.01

и температуры T и коэффициент теплового расширения α_T даются следующими выражениями:

$$\tilde{B}' = 2\gamma^*, \quad \partial B(T)/\partial T = -3\sqrt{3}k_{\rm B}Q/32d^3,$$
$$\alpha_T = 9k_{\rm B}\gamma^*/32V_2\alpha_c^3, \tag{17}$$

где $k_{\rm B}$ — постоянная Больцмана, $\gamma^* = (3 - \alpha_p^2) - 2\alpha_p^4)/2\alpha_c^2$ — постоянная Грюнайзена и $Q = (29 - 6\alpha_p^2) - 71\alpha_p^4 + 44\alpha_p^6 + 4\alpha_p^8)/\alpha_c^4$. Отметим, что выражения для $\partial B(T)/\partial T$ и $\dot{\alpha}_T$ получены в пределе высоких температур. Результаты расчета сведены в табл. 10. Для 3C-SiC оценки [32,33] дают $\gamma^* \approx 1$, что в полтора раза ниже нашего результата. С другой стороны, экспериментальные значения B' = 3.57 [34] и 2.9-4.0 [33,35] для 3C-SiC хорошо согласуются с нашей оценкой. То же относится и к тепловому расширению: для высоких температур эксперимент дает $\alpha_T \sim 5 \cdot 10^{-6} \,\mathrm{K}^{-1}$ [2,35–37]. Согласно [32] и [38], для 3C-SiC имеем соответственно $\partial B(T)/\partial T \sim -250$ и ~ -290 (в ед. 10^{-4} GPa/K), что значительно превышает полученное нами значение. Эта ситуация может быть исправлена введением в модель Харрисона межатомного короткодействующего отталкивания [39,40]. При этом, однако, исчезают универсальные зависимости и все формулы несколько усложняются. Поэтому здесь мы этой поправкой пренебрегли, как пренебрегли учетом металличности межатомных связей [16,17].

3.2. 2D-структуры

Описание упругих свойств графеноподобных соединений в модели Харрисона приведено в работе [27]. Помимо кристаллографии, 3D-и 2D-соединения отличаются гибридизацией связей: в первом случае используются sp^3 -орбитали, во втором — sp^2 -орбитали. Для sp^2 -гибридизации ковалентная энергия равна $\bar{V}_2 = 3.26(\hbar^2/m\bar{d}^2)$ [17], где $\bar{d} = 1.77$, 1.86 и 2.05 Å для 2D SiC, GeC и SnC [9], а полярная энергия $\bar{V}_3 = |\bar{\varepsilon}_h^X - \bar{\varepsilon}_h^C|/2$, где $\bar{\varepsilon}_h^{X(C)} = (\varepsilon_s^{X(C)} + 2\varepsilon_p^{X(C)})/3$ (как и

Таблица 11. Модель Харрисона, 2D: ковалентная \bar{V}_2 и полярная \bar{V}_3 энергии (в ед. eV), ковалентность связи $\bar{\alpha}_c$, \bar{k}_0 — силовая константа центрального взаимодействия (в ед. eV/Å²), линейный коэффициент теплового расширения α_T (в ед. 10^{-6} K⁻¹) и зависимость модуля сжатия от температуры $\partial B(T)/\partial T$ (в ед. 10^{-4} GPa/K)

3D XC	\bar{V}_2	\bar{V}_2	ā.	- <i>k</i> o	\bar{k}_0	$\bar{\alpha}_T$	$-\partial \bar{B}(T)/\partial T$
JD AC	• 2	• 3	u _c	πu		α_c	= 1
SiC	7.93	1.93	0.97	8.66	10.12	11	0.66
		1.48	0.99	9.62			
GeC	7.18	1.95	0.97	7.10	8.30	12	0.72
		1.39	0.99	7.89			
SnC	5.91	2.24	0.93	3.92	5.63	15	0.90
		1.85	0.95	4.30			

в пункте 2.2, все 2D-характеристики будем снабжать чертой сверху). Численные значения энергий \bar{V}_2 , \bar{V}_3 и ковалентностей связей $\bar{\alpha}_c$ приведены в табл. 11. Пренебрегая в [27,41] металличностью связей, получим силовые константы центрального \bar{k}_0 и нецентрального \bar{k}_1 взаимодействий в $\bar{k}_0 = 4\bar{\alpha}_c \bar{V}_2(2\alpha_c^2-1)/d^2$, $\bar{k}_1 = \bar{\lambda}\bar{k}_0/3$, где константа $\bar{\lambda} = 0.66$ является 2D-аналогом 3D-константы λ [42]. Значения \bar{k}_0 , убывающие в ряду SiC \rightarrow SnC, приведены в табл. 11.

Переходя к оценкам ангармонических характеристик, положим для всех соединений $\bar{\alpha}_c = 1$. Такое упрощение аналогично использованию модели Китинга [13] вместо модели Мартина [15]. Согласно [41], получим $\bar{p}^* = 2$ и $\tilde{B'} = 2\bar{p}^* = 4$ для всех графеноподобных соединений. Далее имеем:

$$\bar{\alpha}_T = 4k_{\rm B}/\bar{V}_2, \quad \bar{B}^{-1}(\partial\bar{B}(T)/\partial T) = -24k_{\rm B}/\bar{V}_2.$$
 (18)

Численные значения $\bar{\alpha}_T$ и $\bar{B}^{-1}(\partial \bar{B}(T)/\partial T)$ представлены в табл. 11. Таким образом, для 2D-структуры $\bar{\alpha}_T$ в два раза больше, чем у 3D. Согласно нашим оценкам [41], основанным на результатах [43], в температурном интервале 900–2100 К для графена среднее значение $\bar{B}^{-1}(\partial \bar{B}(T)/\partial T) \sim -0.5 \cdot 10^{-4} \text{ K}^{-1}$, что отлично согласуется с нашими результатами. Величина $|\bar{B}^{-1}(\partial \bar{B}(T)/\partial T)|$ растет при переходе от SiC к SnC. Та же зависимость имеет место для 3D-соединений (см. табл. 10). Отметим также близость значений $\bar{B}^{-1}(\partial \bar{B}(T)/\partial T)$ для 2D- и 3D-структур.

4. Заключительные замечания

Модель Китинга вполне адекватно описывает упругие свойства тетраэдрических кристаллов, о чем свидетельствует приближенное выполнение условия (2) для целого ряда полупроводниковых соединений $A_N B_{8-N}$. Слабой стороной этой модели является необходимость определения величины силовых констант по экспериментальным значениям c_{ij} (что относится ко всем моделям с силовыми константами). Модель Харрисона несколько хуже описывает упругость $A_N B_{8-N}$, но содержит лишь три параметра (постоянную решетки и энергетические термы *s*- и *p*-состояний атомов *A* и *B*), ни один из которых не является подгоночным. К тому же, модель Харрисона позволяет оценить влияние температуры на упругость. В настоящей работе показано, что обе модели вполне пригодны для описания упругости соединений *XC*.

Принципиальное отличие подходов Китинга и Харрисона связано с моделированием нецентральных сил. В модели Китинга силовая константа β отвечает реакции кристалла на изменение угла между двумя соседними σ -связями (угловая жесткость), принадлежащими одному атому. В модели Харрисона углы между соседними sp^k -орбиталями, центрированными на одном и том же атоме, считаются фиксированными (жесткий тетраэдр), а сдвиговой деформации соответствует разориентация sp^k -орбиталей соседних атомов, образующих σ -связь.

В настоящей работе мы прибегли к ряду упрощений. Так, для гетерополярных соединений использовалась модель Китинга, а не Мартина. В модели Харрисона игнорировалась металличность связей и короткодействующее отталкивание. Такие упрощения позволили нам получить простые аналитические выражения для упругих и термоупругих характеристик, удобные для использования экспериментаторами и технологами. Воспользовавшись полученными результатами, легко, в принципе, оценить характеристики тройных полупроводниковых соединений Si_{1-x}Ge_xC [44].

Рассмотренные нами 3D- и 2D-соединения SnC и, главное, GeC вызывают как теоретический, так и прикладной интерес. Помимо упругости, изучаются электронный спектр [3,4,6–9,44,45], магнитные свойства при допировании хромом [46], теплопроводность [8], создаются сверхрешетки GeC/SiC, SnC/SiC, SnC/GeC [47] и GeC/GaN [48], рассматривается применение 2D GeC в литиевых батареях [49,50].

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- А.А. Лебедев, П.А. Иванов, М.Е. Левинштейн, Е.Н. Мохов, С.С. Нагалюк, А.Н. Анисимов, П.Г. Баранов. УФН 189, 803 (2019).
- [2] M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. Wilay, N.Y. (2001).
- [3] R. Pandey, M.C. Darrigan, M. Causá. J. Appl. Phys. 88, 6462 (2000).
- [4] A. Benzair, H. Aourag. Phys. Status Solidi B 231, 411 (2002).
- [5] W Sekkal, A Zaoui. New J. Phys. 4, 9, 1 (2002).

- [6] A. Mahmood, L.E. Sansores. J. Mater. Res. 20, 1101 (2005).
- [7] A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, R. Liu. J. Appl. Phys. 108, 063531 (2010).
- [8] R. Muthaiah, J. Garg. arXiv: 2107.04596.
- [9] H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci. Phys. Rev. B 80, 155453 (2009).
- [10] Q. Peng, C.W. Ji, S. De. Mechan. Mater. 64, 135 (2013).
- [11] Q. Peng. Mechan. Mater. 148, 103473 (2020).
- [12] W. Zhang, C. Chai, Q. Fan, M. Sun, Y. Song, Y. Yang, U. Schwingenschlög. ACS Appl. Mater. Interfaces 13, 14489 (2021).
- [13] P.N. Keating. Phys. Rev. 145, 637 (1966).
- [14] P.N. Keating. Phys. Rev. 149, 674 (1966).
- [15] R.M. Martin. Phys. Rev. B 1, 4005 (1970).
- [16] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983).
- [17] W.A. Harrison. Phys. Rev. B 27, 3592 (1983).
- [18] R.M. Martin. Phys. Rev. B 6, 4546 (1972).
- [19] С.Ю. Давыдов, А.В. Соломонов. Письма в ЖТФ 25, 15, 23 (1999).
- [20] M. Prikhodko, M.S. Miao, W.R.L. Lambrecht. Phys. Rev. B 66, 125201 (2002).
- [21] С.Ю. Давыдов. ФТТ 46, 1169 (2004).
- [22] С.П. Никаноров, Б.К. Кардашов. Упругость и дислокационная неупругость кристаллов. Наука, М. (1985).
- [23] M. Jiang, J.W. Zheng, H.Y. Xiao, Z.J. Liu, X.T. Zu. Sci. Rep. 7, 9344 (2017).
- [24] J.C. Phillips. Rev. Mod. Phys. 42, 317 (1970).
- [25] С.Ю. Давыдов. ФТТ 52, 756 (2010).
- [26] С.Ю. Давыдов. ФТТ 53, 617 (2011).
- [27] С.Ю. Давыдов, О.В. Посредник. ФТТ 63, 304 (2021).
- [28] W.A. Harrison. Phys. Rev. B 31, 2121 (1985).
- [29] С.Ю. Давыдов. ФТП 54, 1177 (2021).
- [30] С.Ю. Давыдов, С.К. Тихонов. ФТТ 37, 2221 (1995).
- [31] С.Ю. Давыдов, С.К. Тихонов. ФТТ 30, 968 (1996).
- [32] D. Varshni, S. Shriya, M. Varshni, N. Singh, R. Khemata. J. Theor. Appl. Phys. 9, 221 (2015).
- [33] C. Nisr, Y. Meng, A.A. MacDowell, J. Yan, V. Prakapenka, S.-H. Shim. J. Geophys. Res. Planets 122, 124 (2017).
- [34] И.В. Александров, А.Ф. Гончаров, С.М. Стишов, Е.В. Яковенко. Письма в ЖЭТФ 50, 116 (1989).
- [35] K. Daviau, K.K.M. Lee. Crystals 8, 217 (2018).
- [36] D.N. Talwar, J.C. Sherbondy. Appl. Phys. Lett. 67, 3301 (1995).
- [37] Z. Li, R.C. Dradt. J. Mater. Sci. 21, 4366 (1985).
- [38] D. Leisen, R. Rusanov, F. Rohlfing, T. Fuchs, C. Eberl, H. Riesch-Oppermann, O. Kraft. Rev. Sci. Instruments 86, 055104 (2015).
- [39] W.A. Harrison, E.A. Kraut. Phys. Rev. B 37, 8244 (1988).
- [40] F. Bechstedt, W.A. Harrison. Phys. Rev. B 39, 5041 (1989).
- [41] С.Ю. Давыдов, О.В. Посредник. ФТТ 57, 819 (2015).
- [42] С.Ю. Давыдов. ФТТ 51, 2041 (2009).
- [43] KV. Zakharchenko, M.I. Katsnelson, A. Fasolino. Phys. Rev. Lett. 102, 046808 (2009).
- M. Manikandan, A. Amudhavalli, R. Rajeswarapalanichamy, K. Iyakutti. Phil. Mag. (2019).
 DOI: 10.1080/14786435.2018.1563310
- [45] T.-Y. Lü, X.-X. Liao, H.-Q. Wang, J.-C. Zheng. J. Mater. Chem., 22, 10062 (2012).

- [46] N. Mediane, F. Goumrhar, L.B. Drissi, K. Htoutou, R. Ahl Laamara. J. Supercond. Novel Magn. (2020). DOI: https://doi.org/10.1007/s10948-019-05397-x
- [47] Ю.М. Басалаев, Е.Н. Малышева. ФТП 51, 647 (2017).
- [48] P. Lou, J.Y. Lee. ACS Appl. Mater. Interfaces 12, 14289 (2020).
- [49] Y. Ji, H. Dong, T. Hou, Y. Li. J. Mater. Chem. A. Issue 5. 2018. DOI: 10.1039/C7TA10118J
- [50] N. Khossossi, A. Banerjee, I. Essaoudi, A. Ainane, P. Jena, R. Ahuja. J. Power Sources 485, 229318 (2021).
- Редактор Т.Н. Василевская