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1. Introduction

The dynamics of explosive crystallization (EC) occu-

pies a special place in the kinetics of various fronts of

physical or chemical nature, such as crystal growth faces,

interphase boundaries during phase transitions, magnetic

or ferroelectric domain walls, etc. The study of EC in

amorphous phase crystallization is important, because the

underlying positive feedback between the latent heat release

and the front velocity plays a key role and in many other

phenomena, that are more difficult to describe quantitatively,

for example, in autocatalytic exothermic chemical reactions

or the interaction of competing phase transitions in self-

propagating high-speed synthesis [1–3]. At the same time,

despite the qualitative similarity with some other diffusion-

controlled processes, for example, with rapid directional

solidification of liquid alloys, a more detailed analysis of

EC also indicates the differences in their mathematical

description.

In early theoretical studies, the EC analysis was carried

out under the assumption of a constant front velocity [4–6],
see also review [7]. It was shown that for self-propagating

EC fronts, their velocity is determined by the heat balance

condition, which at certain parameters values allows for a

non-unique solution [5–7]. The discovery of this circum-

stance made it possible to predict the possibility of thermal

hysteresis not only in the constant front velocity approxima-

tion, but also in more general cases, however, fundamentally

limited by the requirement of quasi-stationarity of mode,

see, for example [8].

Experimentally EC was observed in films of a number

of pure elements and chemical compounds belonging to

materials of various classes. At the same time the typical

features of the phenomenon observed on sufficiently large

spatial scales and times were identified: the threshold

character of the occurrence and suppression of EC, its

dependence on the substrate temperature, amorphous film

thickness, the method of its preparation, thermal properties

of the substrate material, etc. It was found that, depending

on the experimental conditions, EC can take place both in

the hardness-retaining material and with the formation of an

intermediate liquid phase. In addition, the process kinetics

can be accompanied by the nucleation of many crystallites

in an amorphous matrix or be realized by the spread of a

single glass-crystal front, see, for example, [9–15].
Special attention was drawn to the experiments, in which

post mortem periodic changes in amorphous films thickness

and specific grain sizes in polycrystalline products EC [16]
were observed. To explain these effects, an assumption was

made, that they are a consequence of periodic oscillations

of the front velocity [6]. The possibility of the occurrence

of such oscillations was demonstrated within the framework

of the analysis of linear stability of the uniform motion of

plane fronts [6,17–19]. In subsequent theoretical studies,

their nonlinear mode of motion was also studied for both

self-propagating EC fronts and under the conditions of weak

support of their motion by a mobile heat source (usually
a scanning laser beam [17,20,21]). It should be noted,

however, that the methods used to derive formulas are

rather complicated, the formulas obtained themselves are

very cumbersome and, moreover, are applicable only in

very narrow ranges of parameter values, that complicates

and greatly restricts their practical application. In its turn,

numerical calculations performed within the framework of

widely used phase field method, see, for example, [22–24]
or by molecular dynamics method [25–27], are effective

only for describing EC features in models of specific glasses,

but do not allow generalizing predictions.

In recent years significant progress has been made in the

experimental possibilities of observing in situ the processes

accompanying EC. It is primarily associated with the

development of a new procedure (dynamic transmission
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electron microscopy), with the help of which it was possible

to achieve a much higher spatial and temporal resolution

of the structure of the crystallizing material [28–30]. In

particular, remarkable experiments in [28–30] have shown

that the transition of the amorphous state into Ge crystal

occurs according to lateral growth mechanism, and not

according to the considered in theoretical studies [5,6,17–21]
normal growth. This means that first a local crystallized

protrusion appears on the front, which then expands and

covers the entire front surface. In this case, there can be

several protrusions, they expand in an independent way,

that clearly indicates the nucleation nature of the process.

On the whole we can be say that the currently accu-

mulated various experimental material about EC exceed

the available theoretical results. There is an urgent

need to develop new methods for quantitative theoretical

calculations both within the framework of traditional general

macrokinetic models with a simple EC front geometry and

for the models operating on nanoscales.

The purpose of this article is to propose, within the

framework of the traditional phenomenological approach,

a new theoretical method for calculating the EC front

dynamics, which is both simpler and at the same time

allowing to describe it in a much wider range of parameters

than it was done in [17,20,21]. In this case the main

attention will be paid to the calculation of the self-oscillating

front dynamics and its transformation into a self-sustaining

mode.

2. Model formulation and initial
equations

In the basic macrokinetic model EC front is considered

as an infinitely thin heat source, which dependence of

the velocity on its temperature contains an exponential

Arrhenius factor. The heat exchange process in the material

volume is described with a standard heat conductivity

equation, and the heat sink from the film to the substrate

is considered in the relaxation or diffusion mode [7,31].
Since in recent years there is a growing interest in EC in

increasingly thin amorphous films, in our article we will

consider the first of these modes. In this case the heat

problem can be solved in the approximation of a one-

dimensional model, in which the heat sink law in the

simplest case is assumed to be Newtonian. When the

substrate temperature TS is not high enough and EC process

is realized with the support of a scanning laser beam, then

the heat conductivity equation contains an additional source.

In the result the model equations are as follows:

∂T
∂t

= D
∂T
∂z 2

− Ŵ(T − TS) + J, (1)

J(z , t) = q0V δ(z − Z(t)) + P(z −VL t), (2)

V (Ti) = V0 exp

(

−E
Ti

)

, (3)

where D — the thermoconductivity coefficient, the co-

efficient Ŵ sets the rate of heat sink to the substrate,

q0 = L/c , L — crystallization heat, c — the heat absorptive

capacity, V = Ż — front velocity, Z(t) — its coordinate,

δ(z − Z(t)) — Dirac delta function, P(z −VLt) function

describes heat component from laser illumination, VL —
set laser beam velocity, Ti — front temperature, V0 — phe-

nomenological parameter, E — effective activation energy.

3. Derivation of front movement equation
in differential form

The dynamics of the front coordinate Z(t) is determined

from the condition of self-consistent equality of the front

temperature Ti(V ), taken from formula (3), rewritten in the

form of

Ti(V ) = − E

ln
(

V
V0

) (4)

and found from the solution of equation (1). Since this

equation is linear, its solution can be written as Green’s

function convolution G(z , t) with the source J(z , t) in (2).
And to obtain the results in an analytical form, it is

convenient to write the Green’s function G(z , t) using its

spatial Fourier transform

G(z , t) =

+∞
∫

−∞

dk
2π

exp
[(

−Dk2 − Ŵ
)

t + ikz
]

, (5)

then use (5) in the equation for solution (1) on the front

in the experimentally significant, stationary at large times,

mode

T (Z(t), t) = TS + I1 + I2,

I1=q0

t
∫

−∞

dt′
+∞
∫

−∞

dz ′G(Z(t) − z ′, t − t′)V (t′)δ(z ′ − Z(t′)),

I2 =

t
∫

−∞

dt′
+∞
∫

−∞

dz ′G(Z(t) − z ′, t − t′)P(z ′ −VLt′)). (6)

The components I1 and I2 in the equation (6), due to

the release of crystallization heat and laser illumination,

should be calculated separately. The first of them can be

represented as the following series:

I1 = q0

t
∫

−∞

dt′V (t′)G(Z(t) − Z(t′))

= q0

t
∫

−∞

dt′
[

V (t) + V̇ (t)(t′ − t) + . . .
]

×
+∞
∫

−∞

dk

[

1− ik
V̇ (t)
2

(t′ − t)2 − ik
V̈ (t)
6

(t′ − t)3 + . . .

]

× exp
[

Dk2 − ikV (t)
]

(t′ − t). (7)
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Since the velocity V (t) and its derivatives are included

in (7) only as parameters, it is possible to explicitly integrate

over the time t′ in all members of the series, although the

front dynamics has not been determined yet. Then the k
integrals are easily taken from the residues, and it is easy to

write down the result in a compact form

I1 = q0

√
B

×
{

1− β

(

1− 3

2
β

)

Z̈(t) + β2

(

3

2
− 5

2
β

)

...

Z(t) + . . .

}

,

(8)
where β(V ) function is determined as

β(V ) ≡ V 2

V 2 + 4ŴD
, βL ≡ β(V = VL). (9)

If the speed of laser beam movement VL is constant, then

the component of illumination I2 into the value Ti can be

written as a source convolution P(z −VLt) with Green’s

function Gs of steady-state heat conductivity equation.

I2 =

+∞
∫

−∞

GS(Z(t) − z ′)P(z ′) dz ′, (10)

GS(Z) =

√
βL

VL
exp

[

−VL

(

z + β
−

1
2

L |z |
)

2D

]

, (11)

In case when the crystallization front is outside the laser

spot, this component exponentially decreases as far as the

distance from front to spot increases.

Equating the temperature values on the front Ti in (4)
and (6), taking into account (8) and (10), we obtain

an equation describing the dynamics of the front coordi-

nate Z(t) in the form of a nonlinear differential equation of

infinite order

TS +q0

√

β

{

1−β
(

1− 3

2
β
)

Z̈(t) + β2
(3

2
− 5

2
β
)...

Z(t) + . . .

}

+ I2(ZS) exp

[

−VL(Z − ZS)

2Dl

]

= − E

ln
(

V
V0

) , (12)

where the length l is defined by the equation

l−1(VL) ≡ 1 + β
−

1
2

L .

In equation (12) Zs = VLt + Z0, where Z0 is the distance

between the laser spot and the front position in case of its

uniform motion with the velocity VL. Accordingly, the value

Z0 is determined by the condition

Ts + q0

√

βL + I2(Zs ) = − E

ln
(

VL
V0

) . (13)

The advantages of writing the left-hand side of equa-

tion (12) in differential form in comparison with the integral

in (6) lie in the possibility of constructing approximate

solutions (12) in an analytical form and their clear physical

interpretation. The next section is devoted to these

questions.

4. Steady-state and self-oscillating
modes of front dynamics

Obviously, the front velocity in stationary modes, the

implementation of which requires laser support, is equal to

VL. In the case of self-propagating EC fronts, it is determined

by the stable solution Vs of the equation (13), in which the

term I2 is omitted. It is more convenient to analyze the

general properties of equations (12), (13) containing several

dimensional parameters, if we go over to dimensionless

variables. Therefore, we introduce new time and length

as

t → 2D

V 2
L

t, Z → 2D
VL

Z. (14)

In addition to the parameter β introduced above, we will

use two more dimensionless parameters, α and R, which

are given by the relations

α ≡ q0

E

√

βL ln
2

(

VL

V0

)

, R ≡ I2
q0l

√
βL

. (15)

Taking into account that even in the case when equa-

tion (13) has a solution with a constant velocity, it may turn

out to be unstable, we also introduce the dimensionless

deviation of the front coordinate from its value in the

stationary mode h(t) = Z(t) − Zs .

We now write the difference between equations (12)
and (13) in the introduced dimensionless variables and

parameters

∞
∑

n=2

Mn
dnh
dtn

+ M1

...

h + M0ḧ + F(ḣ) + g
[

exp
(

−h
l

)

−1
]

=0,

(16)
where

M1(ḣ) =
β

5
2 (ḣ)

(ḣ + 1)6

(

3

2
− 5

2
β(ḣ)

)

, (17)

M0(ḣ) =
β

3
2 (ḣ)

(ḣ + 1)3

(

3

2
β(ḣ) − 1

)

, (18)

F =

√

β(ḣ) −
√

βL

[

1 +
1

α

ln
(

VL
V0

)

ln(ḣ + 1)

ln
(

VL
V0

)

+ ln(ḣ + 1)

]

, (19)

g = Rl
√

βL, (20)

β(ḣ) ≡ (1 + ḣ)2

(1 + ḣ)2 +
(

1
βL

− 1
) . (21)

Hypermasses Mn at n > 1 can be calculated in the same

way as it was done for M0 and M1.

Note that it is useful to interpret the equation (16) as

the fulfillment of a balance of forces, including hyperinertial

forces (arising due to delay, like in the classical setting of

the problem relating to selfretardation of a non-point model

electron), inertial force, nonlinear viscous friction force, and

restoring force.
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Now let us show, that at small values of the dimensionless

parameter g (i.e. at sufficient weak laser support of front

motion), self-oscillatory solutions with good accuracy can

be found by solving the equation for a nonlinear oscillator:

M0(ḣ)ḧ + F(ḣ) + g[exp(−h/l)− 1] = 0. (22)

It is clear from (18) that, in general, any oscillatory

solutions of equation (22) exist only under the condition

β < 2/3 (i. e. in the presence of a sufficiently large heat

removal to the substrate, that is typical of very thin films),
when the sign M0 matches the restoring force sign. Note

that, compared to the similar problem of rapid directional

crystallization (RDS) of [32–34] alloy, this
”
restoring“ force

in (22) is negative, that is a consequence of the typical of

EC process positive feedback due to another in comparison

with the FDC temperature gradient sign.

Whether oscillatory solutions (22) are self-oscillating

depends at g ≪ 1 on the derivative sign of
”
friction force“

F (taken at V = VL). From (19) we find on the plane α − β

the line of sign change dF/dḣ (at V = VL):

1

2

β′

β
VL −

1

α
= 0 (23)

or equivalent

β =
α − 1

α
. (24)

This line with the accuracy up to O(g) coincides with the

Hopf bifurcation line of the stationary front motion

β =
α − 1

α
+

M1

M0

R =
α − 1

α
+

(α − 1)(2α − 5)

α(3 − α)
R. (25)

It is obtained at ḣ linearization of equation (16), in which

the component of the first term (sum) is omitted, which

gives a higher order correction O(g2). This position of the

instability line confirms the usefulness of the above physical

interpretation.

Line crossing (25) towards larger values α results in the

appearance of a stable cycle. Small oval cycles appear in

the immediate vicinity of it, and velocity fluctuations ḣ(t)
are close to harmonic ones, see Fig. 1.

When deepening into the instability zone, the cycles

quickly lose their oval shape, see Fig. 2, and oscillations

acquire a pronounced relaxation character, see Fig. 3.

As we continue to move deeper into this zone, two

possible scenarios arise. In one scenario the periodic front

motion occurs with its stops. Equation (22) makes allows

to establish the fact of only the first stop, see Fig. 4, since

derivation of equation (22) assumes that the average motion

velocity is equal to the velocity VL, and the presence of stops

results in lower average speeds.

Another scenario is associated with a significant non-

linearity of the restoring force in (22), see Fig. 5, and

the appearance of an additional zero in the function F(ḣ).
This situation is illustrated by Fig. 6, which shows that the

point ḣ = 0 corresponding to
”
laser“ mode with V = VL

h

0 0.35 0.70 1.05
–0.0150

0

–0.0075

0.0075

0.0150

d
h

d
t

/

1

2

3

4

Figure 1. Stable oval cycles in the immediate vicinity of the

instability line (25). Values of parameters R = 10−4, β = 0.04,

ln
(VL

V0

)

= −3, line 1 — α = 1.041666, line 2 — α = 1.041668,

line 3 — α = 1.041675, line 4 — α = 1.0416782.

h

0–2 –1

–0.15

0

0.15

0.30

d
h

d
t

/

1

2

3

Figure 2. Cycles of quasi-harmonic (line 2) and relaxation oscil-

lations (line 3). Values of parameters β = 0.55, ln
(VL

V0

)

= −20,

R = 10−4, line 1 — α = 2.222, line 2 — α = 2.223, line 3 —
α = 2.2625.

becomes unstable F ′ > 0 (while additional zero for ḣ > 0

(i. e. V > VL) is stable (F ′ < 0)) and, therefore, the front

runs away from the laser spot, and the EC goes into a self-

sustaining mode.

The table shows the runaway front velocities obtained by

direct numerical solution of equation (22) (left column) and

the positions of function F(ḣ) zeros (right column).

Taking into account that the numerical solution in some

cases might not yet reach the asymptotics, it can be
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Time
0 100 200 300

–3.9

–2.6

–1.3

0

0

F
, 
1
0

–
4

–0.03

0.03

d
h

d
t

/
h

0

–1.14

–0.57

Figure 3. Relaxation oscillation mode. The dependence of

”
viscous force“ F(ḣ) is defined by relation (19). The values of

parameters β = 0.6, ln
(VL

V0

)

= −2, R = 10−4, α = 2.5006.

considered established that the velocity of the self-sustaining

front Vs = 1 + ḣ is set by zero F(ḣ).

Our numerical calculations also show that for the same

values of the problem parameters, but different selection of

Comparison of zeros of function F set by the formula (19) and a

runaway mode of equation (22)

Zeroes
ḣ in runaway mode

βL α =
1.01
1− βL of function F(19)

from solution of

equation (22)

0.02 1.03 3.04 3.03

0.03 1.04 2.25 2.24

0.04 1.05 1.72 1.69

0.05 1.06 1.33 1.29

0.06 1.07 1.03 0.976

0.07 1.09 0.81 0.863

0.08 1.100 0.63 0.66

0.09 1.11 0.49 0.49

0.011 1.02 4.2 4.19

0.012 1.022 4.04 4.03

0.013 1.023 3.89 3.88

h t( )
0– 21. –0.8

–0.10

–0.05

0

0.05

d
h

d
t

/

1

2

3

–0.4

Figure 4. Front stop (ḣ → −1 for line 1). The values

of parameters β = 0.6, ln
(VL
v0

)

= −2, R = 10−4, line 1 —

α = 2.5007, line 2 — α = 2.5006, line 3 — α = 2.5.

Time
0 10000 20000 30000 40000

–1

3

1

2

4

0

d
h

d
t

/

1

2

Time
0 1000 2000 3000 4000

–0.0075

0 0075.

0

d
h

d
t

/

1

2

a

b

Figure 5. Illustration of the importance of restoring force

non-linearity. Values of parameters β = 0.001, R = 0.0001,

ln
(VL

V0

)

= −3, α = 1.01011. Line 1 — equation (22), line 2 —

equation (22) with linear approximation of the restoring force.

a) extended period of time; b) initial period of time.
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dh dt/
10 2–1

–0.4

0

–0.3

– 20.

–0.1

0 1.

F

1

2

3

4

Figure 6. Dependence (19). Values of parameters ln
(VL

V0

)

= −3,

line 1 — β = 0.55, α = 2.22, line 2 — β = 0.55, α = 3,

line 3 — β = 0.65, α = 2.85, line 4 — β = 0.65, α = 3.5.

the initial values h(t = 0), ḣ(t = 0), a change of the dynamic

mode is possible. In this regard, we should note that the

initial value of the front velocity can be set by starting the

experiment with a short laser pulse from I2 = f δ(t), which

will result in a jump in velocityV0 ≈ f
M0

1t, provided that

the pulse duration 1t ≫ M1

M0
. Thus, you can control the

initial selection of the mode or switch it over during the EC

process.

5. Conclusion

The study offers an analytical method of EC front

dynamics calculation using the solution of the derived by

us approximate nonlinear differential equation. The method

is applicable in a much wider range of parameters in

comparison with theoretical results available in the literature.

Thus, the results of [17] are applicable only in the vicinity

of an isolated point with coordinates β = 2/3, α = 3. In

the study [20] the differential equation describing the front

dynamics was derived only for the case of small amplitudes

of velocity oscillations, while proposed by us method is

free from this limitation. In addition, in our study we

numerically studied in detail the special features of front

motion self-oscillating mode transition to the mode of its

self-propagation at constant velocity. Since the method

allows one to reveal the general parametric dependences of

the EC regimes, its results are a useful guideline for studies

aimed at a more detailed description of EC on meso- and

microscopic scales. Note, that the approach used in this

study allows taking into account various laser modes. Due

to the inclusion of Langevin forces in the derived equation

of interphase front motion, this approach can also be used

to describe EC mode, in which the nucleation process plays

the leading role.

Work funding

This study was financially supported by the Russian

Science Foundation (project No. 19-19-00552).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] I. Prigozhin, D. Kondepudi. Sovremennaya termodinamika.

Ot teplovyh dvigatelej do dissipativnyh struktur. (in Russian)
Mir, M. (2002). 461 p.

[2] A.S. Rogachev, S.G. Vadchenko, A.S. Aronin, A.S. Shchukin,

D.Yu. Kovalev, A.A. Nepapushev, S. Rouvimov, A.S. Muka-

syan. J. Alloys Compd. 749, 44 (2018).
[3] V.G. Myagkov, A.A. Ivanenko, L.E. Bykova, V.S. Zhigalov,

M.N. Volochaev, D.A. Velikanov, A.A. Matsynin, G.N. Bon-

darenko. Sci. Rep. 10, 1, 1 (2020).
[4] G.H. Gilmer, H.J. Leamy. In: Laser and Electron-Beam Pro-

cessing of Materials/Eds C.W. White, P.S. Peercy. Academic,

N.Y. (1980). P. 227.
[5] V.A. Shklovsky. ZhETF (in Russian) 82, 2, 536 (1982).
[6] W. van Saarloos, J.D. Weeks. Phys. Rev. Lett. 51, 1046 (1983).
[7] V.A. Shklovsky, V.M. Kuz’menko. UFN (in Russian) 157, 311

(1989).
[8] A.V. Koropov, V.A. Shklovsky. Him. Fizika (in Russian) 7,

338 (1988).
[9] G. Auvert, D. Bensahel, A. Perio, T. Nguyen, G.A. Rozgonyi.

Appl. Phys. Lett. 39, 724 (1981).
[10] H.J. Zeiger, John C.C. Fan, B.J. Palm, R.I. Chapman, R.P. Gale.

Phys. Rev. B 25, 4002 (1982).
[11] D. Bensahel, G. Auvert, A. Perio, J.C. Pfister. J. Appl. Phys.

54, 3485 (1983).
[12] H.-D. Geiler, E. Glaser, Goetz, M. Wagner. J. Appl. Phys. 59,

3091 (1986).
[13] C. Grigoropoulos, M. Rogers, S.H. Ko, A.A. Golovin,

B.J. Matkowsky. Phys. Rev. B 73, 184125 (2006).
[14] B.C. Johnson, P. Gortmaker, J.C. McCallum. Phys. Rev. B 77,

214109 (2008).
[15] K. Ohdaira, H. Matsumura. J. Cryst. Growth 362, 149 (2013).
[16] C.E. Wickersham, G. Bajor, J.E. Greene. Solid State Commun.

27, 17 (1978).
[17] W. van Saarloos, J.D. Weeks. Physica D 12, 29 (1984).
[18] D.A. Kurtze, W. van Saarloos, J.D. Weeks. Phys. Rev. B 30,

1398 (1984).
[19] I. Smagin, A. Nepomnyashchy. Physica D 238, 706 (2009).
[20] D.A. Kurtze. Physica D 20, 303 (1986).
[21] D.A. Kurtze. Phys. Rev. B 40, 11104 (1989).
[22] N. Provatas, M. Grant, K.R. Elder. Phys. Rev. B 53, 6263

(1996).
[23] E.J. Albenze, M.O. Thompson, P. Clancy. Ind. Eng. Chem.

Res. 45, 5628 (2006).
[24] C. Reina, L. Sandoval, J. Marian. Acta Materialia 77, 335

(2014).
[25] V. Turlo, O. Politano, F. Baras. Acta Materialia 120, 189

(2016).

Physics of the Solid State, 2022, Vol. 64, No. 13



Calculation of the dynamics of the amorphous phase-crystal interface during solid-phase explosive... 2185

[26] F. Baras, V. Turlo, O. Politano, S.G. Vadchenko, A.S. Ro-

gachev, A.S. Mukasyan. Adv. Eng. Mater. 20, 8, 1800091

(2018).
[27] S.A. Rogachev, O. Politano, F. Baras, A.S. Rogachev. J. Non-

Cryst. Solids 505, 202 (2019).
[28] L. Nikolova, T. LaGrange, M.J. Stern, J.M. MacLeod,

B.W. Reed, H. Ibrahim, G.H. Campbell, F. Rosei, B.J. Siwick.

Phys. Rev. B 87, 064105 (2013).
[29] G.C. Egan, T.T. Li, J.D. Roehling, J.T. McKeown, G.H. Camp-

bell. Acta Materialia 143, 13 (2018).
[30] G.C. Egan, T.T. Rahn, A.J. Rise, H.Y. Cheng, S. Raoux,

G.H. Campbell, M.K. Santala. J. Appl. Phys. 126, 105110

(2019).
[31] C. Buchner, W. Schneider. J. Appl. Phys. 117, 245301 (2015).
[32] A.L. Korzhenevskii, R. Bausch, R. Schmitz. Phys. Rev. Lett.

108, 046101 (2012).
[33] A.L. Korzhenevskii, R. Bausch, R. Schmitz. Phys. Rev. E 85,

021605 (2012).
[34] A.A. Chevrychkina, N.M. Bessonov, A.L. Korzhenevsky.

Physics of the Solid State 61, 11, 2122 (2019).

Physics of the Solid State, 2022, Vol. 64, No. 13


