# 06.5;09.1;15.2

# Синтез и оценка распределения диаметров углеродных нанотрубок в вертикально ориентированном массиве

© Н.В. Лянгузов, Е.В. Никитина, В.С. Сим

Южный федеральный университет, Ростов-на-Дону, Россия E-mail: n.lianguzov@mail.ru

Поступило в Редакцию 30 августа 2021 г. В окончательной редакции 13 декабря 2021 г. Принято к публикации 24 января 2022 г.

Для синтеза вертикально ориентированного массива углеродных нанотрубок использована методика каталитического химического осаждения из газовой фазы. Показана возможность снижения концентрации прекурсора углерода — ацетилена — до 0.2%. Предложен альтернативный прекурсор катализатора — ацетат железа трехвалентного. Диаметры углеродных нанотрубок в массивах оценены на основе их спектров комбинационного рассеяния света. С учетом того, что радиальные дыхательные моды имеют резонансный характер, а их частоты существенно зависят от окружения, для выявления характеристик распределения диаметров нанотрубок рассмотрен способ анализа формы профиля *G*-полосы.

Ключевые слова: углеродные нанотрубки, химическое осаждение из газовой фазы, спектроскопия комбинационного рассеяния света, радиальные дыхательные моды, *G*-полоса.

DOI: 10.21883/PJTF.2022.07.52288.19008

Вертикально ориентированные массивы углеродных нанотрубок (ВО-УНТ, англ. VA-CNT) являются перспективным материалом для использования в холодных катодах [1], электрохимических элементах питания [2] и в качестве частотно-селективных поверхностей [3]. Для синтеза ВО-УНТ наиболее распространен метод каталитического химического осаждения из газовой фазы (англ. CCVD) с определенной последовательностью технологических операций [4-7]. В качестве подложек обычно применяются пластины поверхностно оксидированного кремния. На них различными методами вакуумного распыления наносится буферный слой Al<sub>2</sub>O<sub>3</sub>, препятствующий агломерации частиц каталитического агента (КА). Далее наносится слой КА, в качестве которого применяется железо, а также другие 3*d*-элементы. Во время синтеза реакционная газовая смесь (РГС) из газаносителя (Ar или He), восстановителя (H<sub>2</sub> или NH<sub>3</sub>) и источника углерода (C<sub>2</sub>H<sub>4</sub> или C<sub>2</sub>H<sub>2</sub>) подается в реактор. Оптимальная температура роста лежит в диапазоне 700-800°С. Так, установлено, что увеличение времени отжига КА [4] до 15 min способствует более высокому выходу ВО-УНТ. Повышение содержания Н2 в реакционной среде до 30% [5] снижает образование аморфного углерода, увеличивает активность КА, что приводит к росту высококачественных ВО-УНТ высотой до 4 mm. На примере Со как КА показано, что предварительный его отжиг в вакууме способствует увеличению выхода УНТ по сравнению с выходом в случае отжига в насыщенной восстановительной среде (NH<sub>3</sub>) [6]. Достижение максимальной активности КА возможно также при добавлении в РГС небольших контролируемых количеств паров воды [7].

Целью настоящей работы является оптимизация процессов синтеза массивов ВО-УНТ, а также анализ распределения диаметров нанотрубок в массивах на основе полученных спектров комбинационного рассеяния света (КРС).

В качестве подложек были использованы пластины Si (111) с тонким ( $\sim 30 \text{ nm}$ ) слоем SiO<sub>2</sub> на их поверхности. На них наносился тонкий (10 nm) слой Al<sub>2</sub>O<sub>3</sub>. Этот процесс осуществлялся посредством центрифугирования при скорости вращения 1500 грт капли раствора в деионизованной воде оксалата алюминия (концентрация 0.1 mol/l) и последующего отжига на воздухе при температуре 800°С в течение 5 min. Далее прекурсор КА — ацетат железа трехвалентного — наносился обмакиванием подложек в его раствор (концентрация 0.01 mol/l) в этаноле и высушиванием на воздухе. В состав РГС внесены следующие газы в соответствующих долях объемного расхода:  $H_2 - 25\%$ ,  $C_2H_2 - x\%$ , Ar — (75 - x)%. Значение x варьировалось: 10, 5, 1 и 0.2%. Общий максимальный поток составлял 1000 sccm. Проток осуществлялся свободно, при атмосферном давлении. Подготовленные подложки загружались в реактор синтеза, производились его герметизация и эвакуация остаточной атмосферы. Далее при протоке смеси Ar с Н2 подложки быстро перемещались в разогретую до температуры 800°C зону реакционного объема с помощью манипулятора и выдерживались там в течение 5 min. После этого в состав РГС вводился C2H2, и синтез ВО-УНТ продолжался в течение 10 min. Синтез прекращался при остановке подачи C<sub>2</sub>H<sub>2</sub> и H<sub>2</sub> и быстром извлечении образца из разогретой зоны реактора.

Морфология синтезированных образцов изучена методом сканирующей электронной микроскопии (СЭМ) на приборе FE-SEM Zeiss SUPRA 25 и методом просвечивающей электронной микроскопии (ПЭМ) на приборе JEOL JEM-200F. В образцах, синтезированных с

Рис. 1. *а* — СЭМ-изображение торца скола массива ВО-УНТ. На вставке — более детальное СЭМ-изображение. *b* — ПЭМ-изображение отдельного агломерата ОУНТ. На вставке в увеличенном виде представлена отдельная ОУНТ. *с* — ПЭМ-изображение трехстенной УНТ. ПЭМ-изображения для отдельных УНТ зарегистрированы с разрешением 0.2 nm.

содержанием  $C_2H_2$  10 и 5%, продукты представлены волокнами и частицами субмикронного масштаба, а также небольшим количеством хаотично ориентированных УНТ. При содержании  $C_2H_2$  1 и 0.2% удалось синтезировать ВО-УНТ. Каждая отдельная УНТ ориентирована не строго перпендикулярно поверхности. Они склонны к изгибанию, закручиванию, образованию пучков и их разветвлению (вставка на рис. 1, *a*), формируя сложную пространственную конфигурацию. Пучки образуют столбчатые агломераты микрометрового масштаба, и тенденция вертикального направления роста массива УНТ как общего целого вполне очевидна. Величина возвышения массива ВО-УНТ над поверхностью подложек определена по микрофотографиям сколов образцов и составляет ~ 200  $\mu$ m (рис. 1, *a*). При содержании  $C_2H_2$  0.2% скорость увеличения толщины слоя ВО-УНТ составляет ~ 20  $\mu$ m/min. Оценка значения скорости роста отдельных УНТ затруднена ввиду их сложной конфигурации в пространстве. Более 90% УНТ по данным ПЭМ являются одностенными (рис. 1, *b*) и образуют пучки, хорошо заметные на рис. 1, *a*. Наблюдается также незначительное количество (менее 10%) двух- и трехстенных нанотрубок (рис. 1, *c*), а многостенные УНТ встречаются крайне редко.

Спектры КРС ВО-УНТ зарегистрированы на спектрометре Renishaw in Via при возбуждении на длинах волн 514 nm (Ar<sup>+</sup>-лазер) и 633 nm (He–Ne-лазер) со спектральным разрешением  $\sim 1.5 \,\mathrm{cm^{-1}}$ . Наблюдались характерные для УНТ радиальные дыхательные моды (РДМ, англ. RBM) и расщепленная на ТО- и LO-компоненты *G*-полоса. Присутствуют также обусловленные дефектами или наличием частиц аморфного углерода *D*- и *D'*-компоненты. Их относительная интенсивность резко уменьшается при снижении содержания  $C_2H_2$  до 0.2% при синтезе.

В спектральном диапазоне до 300 сm<sup>-1</sup> (рис. 2) наблюдались характерные для УНТ линии РДМ. В соответствии с обобщенной моделью [8] частота РДМ связана с диаметром одностенных УНТ (ОУНТ) соотношением

$$\omega_{\rm RBM} = A(1 + C_e d^2)^{1/2} / d, \qquad (1)$$

Data

Cummulative fit

а

где коэффициент A определяет упругие свойства ОУНТ, а  $C_e$  — взаимодействие с окружением. Для изолированных ОУНТ наилучшее соответствие  $\omega_{\text{RBM}}$  и d наблюдается при  $A = 227 \text{ cm}^{-1} \cdot \text{nm}$ . Адсорбция молекул воды из атмосферы [9] дает при стандартных условиях значение



**Рис. 2.** Спектры КРС массива ВО-УНТ в РДМ-области при возбуждении на длине волны 633 (*a*) и 514 nm (*b*). Приведены результаты аппроксимации разложением на отдельные контуры функцией Лоренца.



*Wavenumber*, cm<sup>-1</sup>

1500

1600

1400

**Рис. 3.** *D*- и *G*-области спектра КРС массива ВО-УНТ при возбуждении на длине волны 514 nm. Для аппроксимации *D*-, G(LO)и *D'*-компонент использованы единичные линии функции Лоренца с параметрами FWHM = 41, 24 и 25 cm<sup>-1</sup> соответственно. Аппроксимация G(TO)-компоненты проведена при FWHM = 29 cm<sup>-1</sup> в предположении логнормального распределения УНТ по диаметрам. На вставке приведена гистограмма распределения УНТ по диаметрам на основе данных ПЭМ. Шаг дискретизации гистограммы в 0.25 nm превышает величину разрешения использованных при статистическом анализе ПЭМ-изображений. Диаметр незначительного количества двух- и трехстенных УНТ определялся по диаметру внешнего слоя. Линиями показаны функции логнормального и гауссова распределения с параметрами, полученными при аппроксимации. Отрезок соответствует значениям диаметров УНТ, рассчитанным на основе FWHM при аппроксимации G(TO)-компоненты функцией БВФ.

 $C_e \approx 0.65 \,\mathrm{nm}^{-2}$ . Для двух- и многостенных УНТ (ДУНТ и МУНТ соответственно) также наблюдается приращение частоты РДМ за счет взаимодействия между слоями (например, для ДУНТ с диаметром ~ 1.5 nm вплоть до 20 cm<sup>-1</sup>) [10] или за счет адсорбции атмосферной влаги [11]. Такие взаимодействия существенно сказываются и на энергетическом спектре МУНТ [12]. Также подчеркнем, что ввиду резонансного характера возбуждения отсутствие РДМ-линий на той или иной частоте не означает отсутствия соответствующих УНТ в массиве. В табл. 1 приведены оценки диаметров в синтезированных ВО-УНТ. Разброс полученных значений лежит в диапазоне 0.8–2.05 nm.

1300

Далее мы проанализировали *G*-моды УНТ, имеющие гораздо меньшую чувствительность к окружению и менее резонансный характер возбуждения, нежели РДМ [10,11]. На рис. 3 представлен экспериментальный КРС-спектр *G*-области ВО-УНТ и результат его разложения на составляющие контуры. Для аппроксимации G(LO)-компоненты использована единичная линия функции Лоренца с полной шириной на середине высоты (FWHM), равной 24 сm<sup>-1</sup>. Хорошее воспроизведение

Intensity, a. u.

экспериментального спектра здесь согласуется с наличием подавляющего большинства ОУНТ. Наличие существенной доли МУНТ, вероятно, привело бы к сложной, несимметричной форме профиля G(LO)-компоненты, обусловленной сдвигом частот при взаимодействии между слоями [13]. G(TO)-компонента имеет асимметричный характер. Для массива УНТ ее можно рассмотреть как суперпозицию соответствующих мод отдельных УНТ с разными диаметрами на различных частотах. Поэтому профиль G(TO)-компоненты должен представлять собой свертку спектрального отклика каждой УНТ со статистической функцией их распределения по диаметру. Зависимость спектрального положения G(TO)-моды от диаметра УНТ [10] определяется соотношением [14]:

$$\omega_{\rm TO}(d) = A - B/d^2, \tag{2}$$

1700

где  $A = 1582 \text{ cm}^{-1}$ ,  $B = 27.5 \text{ nm}^{-2}$ . Из (2) следует, что для массива УНТ некоторое их количество с бо́льшим диаметром вносит больший вклад в интенсивность профиля G(TO) на большей частоте, чем то же количество с меньшим диаметром на меньшей частоте. Это и приводит, по нашему мнению, к асимметричному растягива-

| $\omega_{\rm RBM},{ m cm}^{-1}$ | $d_1$ , nm | $d_2$ , nm | $d_3$ , nm |  |
|---------------------------------|------------|------------|------------|--|
| $\lambda_l = 514 \mathrm{nm}$   |            |            |            |  |
| 143                             | 1.587      | 1.736      | 1.846      |  |
| 153                             | 1.484      | 1.603      | 1.707      |  |
| 169                             | 1.343      | 1.430      | 1.523      |  |
| 177                             | 1.282      | 1.357      | 1.446      |  |
| 185                             | 1.227      | 1.292      | 1.376      |  |
| 190                             | 1.195      | 1.254      | 1.335      |  |
| 222                             | 1.023      | 1.059      | 1.124      |  |
| 247                             | 0.919      | 0.945      | 1.000      |  |
| 262                             | 0.866      | 0.888      | 0.938      |  |
| 268                             | 0.847      | 0.867      | 0.915      |  |
| $\lambda_l = 633  \mathrm{nm}$  |            |            |            |  |
| 131                             | 1.733      | 1.932      | 2.045      |  |
| 176                             | 1.290      | 1.366      | 1.455      |  |
| 183                             | 1.240      | 1.308      | 1.393      |  |
| 190                             | 1.195      | 1.254      | 1.335      |  |
| 214                             | 1.061      | 1.102      | 1.170      |  |
| 248                             | 0.915      | 0.941      | 0.996      |  |
| 261                             | 0.870      | 0.892      | 0.942      |  |
| 282                             | 0.805      | 0.822      | 0.866      |  |

**Таблица 1.** Результаты расчета диаметров УНТ по частотному положению РДМ-линий при возбуждении на двух различных длинах волн ( $\lambda_l$ ).

Примечание. Для столбцов  $d_1$  и  $d_2$  расчет проведен по соотношению (1) при  $C_e = 0$  и 0.65 nm<sup>-2</sup> соответственно. В столбце  $d_3$  представлен расчет для случая ДУНТ с межслоевым вза-имодействием, ведущим к приращению частоты РДМ на 20 сm<sup>-1</sup>:  $\omega_{\text{RBM}} = 227 \text{ cm}^{-1} \cdot \text{nm}/d + 20 \text{ cm}^{-1}$ .

**Таблица 2.** Параметры распределения УНТ по диаметрам, полученные при аппроксимации G(TO)-компоненты различными функциями ( $d_0$  — положение максимума функции распределения)

| Функция       | $d_0$ , nm | FWHM(d), nm |
|---------------|------------|-------------|
| Логнормальная | 1.41       | 1.24        |
| Гаусса        | 1.42       | 0.93        |
| БВФ           | 1.40       | 1.36        |

нию профиля G(TO) в низкочастотную сторону спектра. Для аппроксимации G(TO)-компоненты можно применить асимметричную функцию Брейта–Вигнера–Фано (БВФ, англ. BWF). Это дает хорошее сходство с наблюдаемым спектром со стороны низких частот [15], но не имеет явного физического смысла. Косвенная оценка по соотношению (2) для положения максимума аппроксимированной G(TO)-компоненты при 1568 сm<sup>-1</sup> дает значение 1.4 nm для максимума функции распределения УНТ по диаметрам. Пересечения срединного уровня профиля БВФ при 1554 и 1578 сm<sup>-1</sup> дают значения 0.99 и 2.35 nm, что соответствует ширине функции распределения УНТ по диаметрам в явном виде мы исходя из формулы (2) представили диаметр как функцию частоты

$$d(\omega_{\rm TO}) = \left(B/(A - \omega_{\rm TO})\right)^{1/2}.$$
 (3)

Далее мы использовали выражение (3) в качестве аргумента функции распределения. Мы рассмотрели функции нормального (гауссова) и логнормального распределения, записав на их основе с использованием (3) выражения для аппроксимации G(TO)-компоненты. Значения основных параметров аппроксимации представлены в табл. 2 и на рис. 3. Далее с использованием этих значений построены функции распределения УНТ по диаметрам и проведено их сравнение с гистограммой статистического распределения (вставка на рис. 3). Функция логнормального распределения по сравнению с функцией Гаусса дает лучшее воспроизведение статистических данных со стороны больших значений диаметров УНТ.

Таким образом, в работе показано, что жидкофазный метод подготовки каталитически активированных подложек позволяет синтезировать массивы ВО-УНТ с преимущественной долей одностенных УНТ, а продолжительности отжига КА в восстановительной среде в течение 5 min и содержания газа прекурсора углерода 0.2% вполне достаточно для достижения их роста. Выявление распределения УНТ по диаметрам более корректно, с нашей точки зрения, проводить на основе анализа не РДМ-области спектров КРС, а *G*-области. Применение здесь функции логнормального распределения УНТ по диаметрам дает наилучшее воспроизведение прямых статистических данных.

## Благодарности

Авторы признательны С.Б. Рошалю (ЮФУ) за стимулирующую дискуссию.

#### Финансирование работы

Работа выполнена при поддержке Российского фонда фундаментальных исследований в рамках проекта № 18-29-19043 мк.

## Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

# Список литературы

- A. Thapa, Y.R. Poudel, R. Guo, K.L. Jungjohann, X. Wang, W. Li, Carbon, **171**, 188 (2021). DOI: 10.1016/j.carbon.2020.08.081
- [2] D.T. Welna, L. Qu, B.E. Taylor, L. Dai, M.F. Durstock, J. Power Sources, **196**, 1455 (2011).
   DOI: 10.1016/j.jpowsour.2010.08.003
- [3] L. Sun, M. Zhu, C. Zhao, P. Song, Y. Wang, D. Xiao, H. Liu, S.H. Tsang, E.H.T. Teo, F. Hu, L. Tu, Carbon, **154**, 503 (2019). DOI: 10.1016/j.carbon.2019.08.001

- M.M. Rahman, H. Younes, G. Ni, T. Zhang, A.A. Ghaferi, Mater. Res. Bull., 77, 243 (2016).
   DOI: 10.1016/j.materresbull.2016.01.050
- [5] Y. Luo, X. Wang, M. He, X. Li, H. Chen, J. Nanomater., 2012, 542582 (2012). DOI: 10.1155/2012/542582
- [6] M. Fouquet, B.C. Bayer, S. Esconjauregui, C. Thomsen, S. Hofmann, J. Robertson, J. Phys. Chem., 118, 5773 (2014). DOI: 10.1021/jp4085348
- [7] D.N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, S. Iijima, J. Phys. Chem., **110**, 8035 (2006). DOI: 10.1021/jp060080e
- [8] P.T. Araujo, I.O. Maciel, P.B.C. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Phys. Rev. B, 77, 241403 (2008). DOI: 10.1103/PhysRevB.77.241403
- [9] S. Chiashi, K. Kono, D. Matsumoto, J. Shitaba, N. Homma,
   A. Beniya, T. Yamamoto, Y. Homma, Phys. Rev. B, 91, 155415 (2015). DOI: 10.1103/PhysRevB.91.155415
- [10] D.I. Levshov, H.N. Tran, M. Paillet, R. Arenal, X.T. Than, A.A. Zahab, Y.I. Yuzyuk, J.-L. Sauvajol, T. Michel, Carbon, 114, 141 (2016). DOI: 10.1016/j.carbon.2016.11.076
- [11] S. Rochal, D. Levshov, M. Avramenko, R. Arenal, T.T. Cao, V.C. Nguyen, J.-L. Sauvajol, M. Paillet, Nanoscale, 11, 16092 (2019). DOI: 10.1039/C9NR03853A
- [12] D.V. Chalin, S.B. Rochal, Phys. Rev. B, 102, 115426 (2020).
   DOI: 10.1103/PhysRevB.102.115426
- G.M. do Nascimento, T. Hou, Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo, N. Akuzawa, M.S. Dresselhaus, Carbon, 49, 3585 (2011). DOI: 10.1016/j.carbon.2011.04.061
- [14] H. Telg, J.G. Duque, M. Staiger, X. Tu, F. Hennrich, M.M. Kappes, M. Zheng, J. Maultzsch, C. Thomsen, S.K. Doorn, ACS Nano, 6, 904 (2012). DOI: 10.1021/nn2044356
- [15] А.Г. Редина, М.В. Авраменко, Н.В. Лянгузов, ЖТФ, 91
  (3), 459 (2021). DOI: 10.21883/JTF.2021.03.50524.193-20
  [A.G. Redina, M.V. Avramenko, N.V. Lyanguzov, Tech. Phys., 66 (3), 445 (2021). DOI: 10.1134/S106378422103021X].