07

Плазмохимическое травление в постростовой технологии фотоэлектрических преобразователей

© А.В. Малевская, Ю.М. Задиранов, Н.Д. Ильинская, Д.А. Малевский, П.В. Покровский

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: amalevskaya@mail.ioffe.ru

Поступило в Редакцию 28 октября 2021 г. В окончательной редакции 25 января 2022 г. Принято к публикации 25 января 2022 г.

> Проведены исследования плазмохимической технологии травления гетероструктур при формировании каскадных фотоэлектрических преобразователей. Рассмотрен этап формирования разделительной мезаструктуры при различных режимах травления и последующего удаления нарушенного слоя методом жидкостной химической обработки гетероструктуры. Проведено исследование влияния методов травления мезы на электрические характеристики элементов. Разработана технология формирования фотоэлектрических преобразователей с низкими значениями токов утечки менее 10⁻⁹ А при напряжении менее 1 V с высокой стойкостью элементов к деградации.

> Ключевые слова: фотоэлектрический преобразователь, гетероструктура, плазмохимическое травление, мезаструктура.

DOI: 10.21883/JTF.2022.04.52248.282-21

Введение

Концентраторные каскадные фотоэлектрические преобразователи (ФЭП) имеют наивысшую эффективность преобразования солнечного излучения [1–4]. Рекордные значения КПД для 6-каскадных ФЭП составляют 47% при кратности концентрирования солнечного излучения 140х (AM 1.5) [2].

Наиболее распространенными являются ФЭП на основе гетероструктуры трехкаскадные GaInP/Ga(In)As/Ge, включающей в состав более 20 разных по физическим и химическим свойствам слоев [3-6]. Проведение постростовой обработки данных гетероструктур при изготовлении ФЭП является весьма трудозатратной задачей. Исследования и разработки в области постростовой технологии изготовления ФЭП позволяют снизить омические и оптические потери путем оптимизации режимов формирования омических контактов и антиотражающих покрытий, а также снизить токи утечек при создании разделительной мезаструктуры [7].

В настоящей работе проведены исследования формирования разделительной мезы при изготовлении ФЭП на основе гетероструктуры GaInP/Ga(In)As/Ge методом плазмохимического травления на установке STE ICP 200е (SemiTEq). Оптимизированы режимы проведения процесса травления и обработки гетероструктур. Проведены оценки влияния параметров процесса на электрические характеристики ФЭП.

1. Параметры плазмохимического травления

Одним из этапов постростовой обработки гетероструктур при изготовлении ФЭП является разделение пластины на чипы. Для снижения токов утечки по периметру чипа предлагается проводить травление слоев гетероструктуры GaInP/Ga(In)As и германиевой подложки на глубину 10–15 μ m, в 2 раза превышающую толщину слоев гетероструктуры, для защиты торца p-n-переходов от механического воздействия при резке гетероструктур. Широко используемым методом формирования мезаструктуры является плазмохимическое травление в комбинированной плазме индуктивного и емкостного разряда (ICP/RIE) в потоке рабочего газа BCl₃ [8,9].

Процесс плазмохимического травления включает набор технологических параметров, оказывающих влияние на скорость травления отдельных слоев гетероструктуры, на стойкость маски фоторезиста, используемой для защиты фоточувствительной области элементов, и на качество поверхности мезаструктуры в целом. Для оптимизации режимов выполнен ряд исследований при варьировании различных технологических параметров плазмохимического травления.

Основными параметрами процесса являются: давление (P) в камере, мощность индуктивно связанной плазмы (ICP), мощность смещения (RIE), напряжение смещения (U), температура столика (T), на котором располагается гетероструктура. Изменение этих параметров оказывает влияние на скорость травления

Рис. 1. Зависимость скорости травления структуры (V_{3j}, V_{Ge}) , напряжения смещения (U) и селективности (S) от давления в камере.

слоев гетероструктуры GaInP/Ga(In)As (V_{3j}) , скорость травления германиевой подложки (V_{Ge}) , селективность травления структуры по отношению к защитной маске (S). Параметр селективности травления определяет различие скоростей травления слоев структуры и маски, и соответственно характеризует степень защиты структуры в процессе формирования мезы.

Для оценки влияния большого набора параметров на протекание технологического процесса было проведено несколько независимых экспериментов при фиксированном значении ряда параметров и варьировании одного параметра попеременно. Для оценки влияния давления в камере на процесс травления заданы фиксированные значения: ICP = 600 W, RIE = 100 W (рис. 1). Величина напряжения смещения электрода подложкодержателя является характеристикой процесса плазмохимического травления и определяет энергию и поток ионов на поверхность гетероструктуры. Температура столика задается постоянной $\sim 10^{\circ}$ С, что обеспечивает охлаждение обрабатываемой гетероструктуры и увеличивает стойкость маски фоторезиста.

Эксперимент показал, что при давлении в камере ~ 1.8 Ра наблюдается выравнивание скоростей травления слоев гетероструктуры и германиевой подложки, что позволяет формировать ровную боковую поверхность мезы. Селективность травления структуры по отношению к защитной маске варьируется от 2.5 до 3.5, что обеспечивает стойкость маски, достаточную для формирования разделительной мезы глубиной $10-15\,\mu$ m.

Для оценки влияния мощности индуктивно связанной плазмы (ICP) на процесс травления заданы фиксированные значения: RIE = 100 W, P = 1.8 Pa (рис. 2). Выравнивание скоростей травления наблюдается при ICP = 600 W.

Для оценки влияния мощности смещения (RIE) на процесс травления заданы фиксированные значения: ICP = 800 W, P = 1.8 Pa (рис. 3). Выравнивание скоростей травления наблюдается при RIE = 100 W.

В результате проведенного исследования были определены оптимальные параметры плазмохимического травления гетероструктуры GaInP/Ga(In)As/Ge в потоке рабочего газа BCl₃: мощность индуктивно связанной плазмы ICP = 600 W, мощность смещения RIE = 100 W, напряжение смещения U = 290 V, давление в камере P = 1.8 Pa, температура столика $T = 10^{\circ}$ C. Данные параметры процесса обеспечивают формирование разделительной мезаструктуры с ровной боковой поверхностью за счет выравнивания скоростей травления разных по физико-химическим свойствам слоев гетероструктуры GaInP/Ga(In)As и германиевой подложки. При этом формируется поверхность травления высокого качества,

Рис. 2. Зависимость скорости травления структуры (V_{3j}, V_{Ge}) , напряжения смещения (U) и селективности (S) от мощности индуктивно связанной плазмы (ICP).

Рис. 3. Зависимость скорости травления структуры (V_{3j}, V_{Ge}) , напряжения смещения (U) и селективности (S) от мощности смещения (RIE).

Рис. 4. Фотография скола мезаструктуры, выполненная на растровом электронном микроскопе, после плазмохимического травления (*a*), после удаления нарушенного слоя при травлении в H₂SO₄:H₂O₂:H₂O на 100 nm (*b*). *1* — гетероструктура GaInP/Ga(In)As, *2* — германиевая подложка, *3* — боковая поверхность мезаструктуры.

без дефектов, что обеспечивает снижение токов утечки по боковой поверхности мезы в местах выхода p-nпереходов (рис. 4, a). Селективность травления слоев структуры и защитной маски фоторезиста (S > 2.5) обеспечивает надежную защиту фоточувствительной области ФЭП и снижает вероятность возникновения дефектов и протравов структуры.

2. Удаление нарушенного слоя

При плазмохимическом травлении слоев гетероструктуры образуется нарушенный слой, который может привести к деградации элементов при работе в агрессивных условиях окружающей среды, а именно при перепадах температур и высокой влажности. Для удаления нарушенного слоя в настоящей работе осуществлялась обработка поверхности мезаструктуры методом жидкостного химического травления на глубину 30–100 nm.

Проведено исследование способов травления мезы с использованием ряда сильноразбавленных травителей на основе ортофосфорной или серной кислоты с добавлением перекиси водорода. В результате обработки в жидкостных химических травителях наблюдается ухудшение морфологии боковой поверхности мезы, что связано с различием скоростей травления разных по химическим свойствам слоев гетероструктуры (рис. 4, b), однако искажение профиля незначительно, протравов по отдельным слоям гетероструктуры не наблюдается, а проведение анализа влияния методов обработки поверхности на электрические характеристики ФЭП показало снижение токов утечки на темновых вольт-амперных характеристиках (рис. 5). Результаты исследования показали, что удаление нарушенного слоя в жидкостных травителях на основе ортофосфорной или серной кислот с добавлением перекиси водорода при травлении на глубину ~ 30 nm привело к небольшому снижению токов утечки. Наилучший результат достигнут при обработке

Рис. 5. Темновые вольт-амперные характеристики ФЭП после создания разделительной мезаструктуры методами плазмохимического травления: 1 — без обработки, 2 — травление в $H_2SO_4:H_2O_2:H_2O$ на 30 nm, 3 — травление в $H_2SO_4:H_2O_2:H_2O$ на 100 nm.

в травителе на основе серной кислоты и перекиси водорода при травлении на глубину $\sim 100\,\rm nm$, токи утечки составили менее $10^{-9}\,\rm A$ при напряжении менее 1 V.

Уменьшение деградации ФЭП при термоциклировании

Для анализа качества поверхности мезы и стойкости готовых ФЭП к деградации проведено термоциклирование элементов с разными вариантами обработки поверхности. Количество исследуемых ФЭП составило порядка 100 элементов. Было выполнено 10 циклов, состоящих из нагрева ФЭП до $+85^{\circ}$ С, выдержки их при заданной температуре и 85% влажности в течение 20 h и охлаждения до -40° С. Этот тип испытаний определяет способность ФЭП противостоять воздействию высокой температуры и высокой влажности с последующим охлаждением до температуры ниже температуры замерзания.

Результаты исследования показали, что при формировании мезаструктуры методом плазмохимического травления без проведения дополнительной обработки поверхности и удаления нарушенного слоя деградируют ~ 20% ФЭП после проведения термоциклирования. Удаление нарушенного слоя в сильноразбавленных травителях на основе ортофосфорной или серной кислоты с добавлением перекиси водорода при травлении на глубину 30 nm снизило процент деградированных ФЭП до 10–15%, а при травлении на глубину 100 nm процент дергадированных ФЭП уменьшился до величины ~ 6%. Деградация ФЭП заключалась в проявлении каналов утечки на темновых вольт-амперных характеристиках, при этом происходило увеличение токов утечки до величин более 10⁻⁷ А при напряжении менее 1 V.

Заключение

В работе проведен анализ темновых вольт-амперных характеристик ФЭП, который показал, что состояние боковой поверхности разделительной мезы (в местах выхода *p*-*n*-переходов) после проведения плазмохимического травления и дополнительной обработки поверхности оказывает существенное влияние на электрические параметры ФЭП. Наличие нарушенного слоя, составляющего всего единицы-десятки нанометров на боковой поверхности мезы, в котором образуются каналы проводимости, ведет к увеличению паразитных токов утечки. А нарушение поверхностной кристаллической структуры приводит к снижению стойкости ФЭП к воздействию окружающей среды: к перепадам температуры и влажности, что приводит к ускоренной деградации ФЭП, заключающейся в проявлении каналов утечки, и соответственно в ухудшении фотоэлектрических характеристик, таких, как КПД и максимальная генерируемая мощность.

Выполнен анализ влияния параметров плазмохимического травления на ход протекания процесса. Важным аспектом является нелинейные зависимости скорости травления слоев гетероструктуры GaInP/Ga(In)As/Ge от давления в камере, мощности индуктивно связанной плазмы (ICP) и мощности смещения (RIE), что может быть обусловлено физическими особенностями протекания процесса, такими, как баланс скорости подвода реагентов в область травления и отвода продуктов реакции.

Проведена разработка и оптимизация параметров плазмохимического травления слоев трехкаскадной гетероструктуры GaInP/Ga(In)As/Ge ФЭП для формирования разделительной мезаструктуры. Проведены исследования методов удаления нарушенного слоя на боковой поверхности мезы, и достигнуто снижение количества деградирующих ФЭП в 3 раза (до величины 6%) путем оптимизации процесса плазмохимического травления с последующей обработкой поверхности методом жидкостного химического травления. При этом величина токов утечки уменьшена до величины менее 10^{-9} А при напряжении менее 1 V. Результаты исследования показали высокую стабильность и воспроизводимость параметров ФЭП, изготавливаемых с использованием разработанной постростовой технологии.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 Zh.I. Alferov, V.M. Andreev, V.D. Rumyantsev. JII-V Hetestructures in Photovoltaics" in "Concentrator Photovoltaics", ed. by A. Luque, V. Andreev. Springer Ser. in Optical Sciences (Springer, Berlin-Heidelberg, 2007), v. 130, p. 25–50. DOI: 10.1007/978-3-540-68798-6_2

- M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao. *Solar Cell Efficiency Tables* (Version 58). Prog. Photovolt.: Res. Appl., **29** (1), 657 (2021). DOI: 10.1002/pip.3444
- Zh.I. Alferov, V.M. Andreev, M.Z. Shvarts. JII-V Solar Cells and Concentrator Arrays" in *High Efficient Low-Cos Photovoltaics*", ed. by V. Petrova-Koch, R. Hezel, A. Goetzberger (Springer Ser. in Optical Sciences, 2020), v. 140, p. 133–174. DOI: 10.1007/978-3-030-22864-4_8
- [4] Handbook of Concentrator Photovoltaic Technology, ed. by Carlos Algora, Rey-Stole Ignacio (John Willey&Sons, Ltd, 2016)
- [5] Е.В. Слыщенко, А.А. Наумова, А.А. Лебедев, М.А. Генали, Н.Т. Вагапова, Б.В. Жалнин. Сибирский журнал науки и техники, 19 (2), 308 (2018).
- [6] M.E. Levinshtein, Semiconductor Technology (Wiley-Interscience Publication, USA, 1997)
- [7] А.В. Малевская, Д.А. Малевский, П.В. Покровский, В.М. Андреев. Письма в ЖТФ, 46 (19), 35 (2020). DOI: 10.21883/PJTF.2020.19.50043.18375
- [8] M. de Lafontaine, E. Pargon, C. Petit-Etienne, G. Gay, A. Jaouad, M.-J. Gour, M. Volatier, S. Fafard, V. Aimez, M. Darnon. Solar Energy Materials and Solar Cells, 195, 49 (2019). DOI: 10.1016/j.solmat.2019.01.048
- [9] А.В. Малевская, Ю.М. Задиранов, Д.А. Малевский, П.В. Покровский, Н.Д. Ильинская, В.М. Андреев. Письма в ЖТФ, 47 (3), 14 (2021). DOI: 10.21883/PJTF.2021.03.50568.18446