19

Люминесценция коллоидных квантовых точек Ag₂S/SiO₂, декорированных малыми наночастицами Au

© И.Г. Гревцева, О.В. Овчинников, М.С. Смирнов, Т.С. Кондратенко, А.С. Перепелица, А.М.Х. Хуссейн

Воронежский государственный университет, 394018 Воронеж, Россия e-mail: grevtseva ig@inbox.ru

Поступила в редакцию 22.10.2021 г. В окончательной редакции 22.11.2021 г. Принята к публикации 22.11.2021 г.

Установлено десятикратное увеличение квантового выхода дефектной люминесценции в области 750 nm при одновременном росте времени ее затухания с 4 до 200 ns, обусловленные декорированием поверхности квантовых точек (KT) Ag₂S/SiO₂ (5.0 ± 1.5 nm) наночастицами (HЧ) Au (2.0 ± 0.5 nm). На основе анализа кинетики люминесценции при температурах 77 и 300 К сделано заключение о том, что такое неспецифичное проявление плазмон-экситонного взаимодействия вызвано влиянием поляризационных эффектов от HЧ Au на свойства мелких ловушек, участвующих в формировании кинетики дефектной люминесценции КТ Ag₂S/SiO₂.

Ключевые слова: ИК люминесценция; кинетика затухания люминесценции; квантовые точки, плазмонные наночастицы, плазмон-экситонное взаимодействие.

DOI: 10.21883/OS.2022.03.52177.2850-21

Введение

Принципиально новые возможности для управления фотопроцессами, обеспечивающими люминесценцию коллоидных квантовых точек (КТ), открывает создание на их основе плазмон-экситонных (плекситонных) наноструктур [1-10]. Установлено, что "гибридные" люминесцентные свойства плекситонных наноструктур чаще всего уникальны. Они находятся в сильной зависимости от особенностей непосредственного взаимодействия компонентов плекситонных наноструктур, расстояния между ними, близости спектральных резонансов и т.д. [1-10]. Этим обеспечивается широта и многообразие эффектов в люминесценции плекситонных наноструктур (эффекты Перселла, Фано, расщепления Раби и т.п.), обеспечивающих значительные изменения не только квантового выхода и временем затухания, но и управление формой спектра свечения КТ. Поэтому плекситонные эффекты в люминесценции наноструктур крайне интересны для применения в телекоммуникационных (однофотонные детекторы и излучатели, системы квантовой криптографии и т.п.) и биомедицинских (люминесцентное биомаркирование, время-разрешенная биовизуализация) технологиях, фотовольтаике и прочее. В случае время-разрешенной биовизуализации крайне важно научиться отделять сигналы люминесценции сенсора от аутфлоуресценции биоматериала [10-13].

Применение плекситонных эффектов в подобного рода приложениях современной нанофотоники требует понимания условий их проявления в люминесцентных свойствах ансамблей КТ. На сегодняшний день плекситонные эффекты в большей степени изучены для случая экситонного режима люминесценции КТ, обладающих значительным структурным совершенством [5-9]. Для КТ, обладающих дефектной люминесценцией ("trap state luminescence"), эффекты плекситонного взаимодействия практически не изучены. В работах [14-17] продемонстрировано управление излучением ловушечных состояний одиночных КТ и их ансамблей за счет взаимодействия с плазмонными НЧ. Найдено усиление экситонной люминесценции за счет подавления дефектной люминесценции. Наряду с проявлением эффекта Перселла установлен существенный вклад в изменение люминесцентных свойств процессов переноса носителей заряда в системе плазмонная наночастица (НЧ)-КТ [18,19]. При этом в процессах плекситонного взаимодействия остается невыясненной роль локализованных состояний КТ, особенно не участвующих в люминесценции непосредственно. Учет подобного рода эффектов может существенно расширить спектр возможностей для управления параметрами люминесценции КТ.

В последние годы возрос интерес к созданию многослойных плекситонных наноструктур за счет инкапсуляции КТ в оболочку из аморфного SiO₂ с последующим химическим нанесением на нее металлических НЧ или металлической нанооболочки (nanoshell) [20–25]. При этом вариация толщиной слоя SiO₂ позволяет регулировать режим связи плекситонного взаимодействия. Ожидается, что формирование металлической нанооболочки обеспечит не только длительную стабильность люминесцентных свойств КТ, минимизирует влияние на них окружающей среды, но и высокий квантовый выход свечения, а также управление мерцанием экситонной люминесценции одиночных КТ.

Для обладающих дефектной люминесценцией КТ формирование и исследование люминесцентных свойств при формировании металлической оболочки ранее не проводилось. В то же время формирование на поверхности КТ мелких НЧ золота (НЧ Au), несмотря на невысокую добротность плазмонных резонансов, вероятно, окажет заметное влияние на параметры люминесценции за счет поляризационных эффектов. В связи с этим целью настоящей работы было установление влияния декорирования мелкими НЧ Au поверхности КТ Ag₂S/SiO₂ на квантовый выход и время затухания их дефектной люминесценции, наблюдаемой вблизи 750 nm.

Материалы и методы исследования

В настоящей работе впервые продемонстрирован подход к направленному декорированию поверхности коллоидных КТ Ag_2S/SiO_2 (со средним размером 5.0 ± 1.5 nm) НЧ Au малых размеров $(2.0 \pm 0.5$ nm) в рамках водной методики синтеза.

Полупроводниковые КТ структуры ядро-оболочка Ag₂S/SiO₂ (далее КТ Ag₂S/SiO₂) синтезировали в рамках коллоидной методики синтеза, где в качестве источника ионов серебра выступал водный раствор нитрата серебра (AgNO₃, Sigma-Aldrich,), а в качестве источника серы сульфид натрия (Na₂S, Sigma-Aldrich). В качестве стабилизирующего агента и одновременно прекурсора диоксида кремния (SiO₂) был использован кремнеземный лиганд (3-меркаптопропил)триметоксисилан (3-MPTMS, Sigma-Aldrich). Данный подход заключался в смешивании водных растворов AgNO₃ (10 ml) и 3-MPTMS (40 ml) в молярных соотношениях 1:2 с последующим доведением уровня рН до 10 при помощи 1 М раствора NaOH (Sigma-Aldrich). Далее в реакционную смесь вносили водный раствор Na₂S (0.6 M, 10 ml). Для достижения однородности коллоидного раствора после смешивания прекурсоров реакционную смесь выдерживали 3 h при температуре 25°C и постоянном перемешивании (300 грт). Концентрационное соотношение прекурсоров AgNO3 и Na2S обеспечивает формирование коллоидных КТ Ag₂S средним размером в диапазоне от 2 до 3 nm [26,27]. Используемая концентрация кремнеземного лиганда оценивалась по размеру молекулы 3-MPTMS (~0.7 nm) [28], что предполагает формирование слоя SiO₂ на поверхности КТ Ag₂S в диапазоне от 3 до 5 nm. Более высокие концентрации способствуют слипанию КТ Ag₂S в агломераты [26-29]. Центрифугирование КТ Ag₂S/SiO₂ и повторное растворение в дистиллированной воде позволяет избавиться от продуктов реакции, а также излишка молекул 3-MPTMS, тем самым останавливая рост оболочки SiO₂. Согласно данным работ [23,30], толщина слоя SiO₂ на поверхности КТ Ag_2S в диапазоне от 3 до 5 nm является минимальной для избежания гашения свечения КТ вблизи поверхности металлической НЧ.

Оригинальность метода формирования КТ ядрооболочка Ag₂S/SiO₂, предложенного в настоящей работе, заключается в его простоте и экономичности, поскольку данный метод позволят формировать структуры ядрооболочка в рамках одного этапа, минуя стадии замены стабилизирующего агента (TGA, 2-MPA и др.) на кремнеземный лиганд с последующим поэтапным формированием слоя SiO₂ с использованием нескольких кремнеземов [26,27,31].

Для декорирования поверхности КТ Ag₂S/SiO₂ плазмонными НЧ Аи осуществляли ее направленную функционализацию аминогруппами за счет внесения 5 ml (600 мМ) этанольного раствора (3аминопропил)триметоксисилана (APTMS, Sigma-Aldrich) в 20 ml коллоидного раствора КТ Ag₂S/SiO₂ постоянном перемешивании. Концентрация при вносимого раствора APTMS рассчитывалась исходя из концентрации и средних размеров КТ Ag₂S/SiO₂. С помощью центрифугирования КТ Ag₂S/SiO₂ отделяли продуктов реакции и повторно растворяли от в 20 ml этанола. Далее 10 ml этанольного раствора, содержащего 10^{16} КТ Ag₂S/SiO₂, вносили в 50 ml коллоидного раствора, содержащего 6 · 10¹⁶ НЧ Аu со средним размером 2.0 ± 0.5 nm. Полученную смесь выдерживали в течение суток при температуре 50°С, центрифугировали и повторно растворяли в 10 ml воды.

Плазмонные НЧ Au среднего размера 2.0 ± 0.5 nm получали путем восстановления золотохлорводородной кислоты (HAuCl₄, Sigma-Aldrich) (100 мМ, 100 µl) боргидридом натрия (NaBH₄, Sigma-Aldrich) (5 мМ, 10 ml) в присутствии поверхностно активного вещества (ПАВ) цетилтриметиламмония бромида (ЦТАБ, Sigma-Aldrich) (20 мМ, 50 ml).

Все используемые в работе химические реагенты соответствуют степени чистоты ОСЧ. Для реализации всех вышеперечисленных методик синтеза использована установка контролируемого синтеза коллоидных нано-кристаллов [32].

Размер КТ Ag₂S/SiO₂, НЧ Au и их смесей устанавливали с помощью просвечивающего электронного микроскопа (ПЭМ) Libra 120 (CarlZeiss, Germany), а также с помощью изображений, полученных на ПЭМ высокого разрешения — JEOL 2000FX (JEOL Ltd., Japan).

Исследование абсорбционных свойств осуществляли с использованием спектрометра USB2000+ (OceanOptics, USA) с источником излучения USB-DT (OceanOptics, USA). Спектры люминесценции и кинетику затухания люминесценции КТ Ag_2S/SiO_2 исследовали с помощью спектрометра USB2000+ и платы времякоррелированного однофотонного счёта TimeHarp 260 Pico (PicoQuant, Germany) с модулем ФЭУ PMC-100-20 (Becker&Hickl, Germany) с временным разрешением, составляющим 0.2 пs. Регистрацию кривых затухания люминесценции осуществляли через дифракционный

монохроматор. Для возбуждения люминесценции использовали пикосекундный лазер Alphalas PLDD-250 с длиной волны 375 nm.

Среднее время затухания люминесценции определяли по экспериментальным кривым затухания люминесценции [33]:

$$\langle \tau \rangle = \frac{\sum_{i=1}^{3} a_i \tau_i}{\sum_{i=1}^{3} a_i},\tag{1}$$

где a_i — амплитуда и τ_i — постоянная времени *i*-компоненты в кривой затухания люминесценции. Данные о величинах a_i и τ_i получали в результате аппроксимации кривых затухания люминесценции суммой трех экспонент:

$$I(t) = \sum_{i=1}^{3} a_i \exp[-t/\tau_i].$$
 (2)

Квантовый выход люминесценции исследуемых образцов определяли относительным методом с использованием выражения

$$QY = QY_R \frac{I}{I_R} \frac{D_R}{D} \frac{n^2}{n_R^2},$$
(3)

где QY_R — квантовый выход люминесценции эталона, I и I_R — интегральные интенсивности в полосе люминесценции образца и эталона, D и D_R — оптические плотности на длине волны возбуждения для образца и эталона (в экспериментах они были ~ 0.1), n и n_R коэффициенты преломления раствора с образцом и эталоном соответственно. Особое внимание было уделено поправке на спектральную чувствительность спектрометра, которую определяли по спектру свечения эталонной вольфрамовой лампы с известной температурой тела накала. В качестве эталона для квантового выхода люминесценции в инфракрасной (ИК) области использован раствор в диметилсульфоксиде (DMSO) красителя индоцианина зеленого (ICG) с квантовым выходом 12% в области 800 nm [34].

Измерение люминесцентных свойств КТ Ag₂S/SiO₂ проводили при температуре 300 и 77 К.

Результаты и обсуждение

Образование структур ядро-оболочка КТ Ag_2S/SiO_2 подтверждено путем сопоставления темнопольных и светлопольных ПЭМ-изображений от одного и того же фрагмента подложки (рис. 1, *a*, *a'*). На темнопольных изображениях наблюдали интенсивную электронную дифракцию от КТ Ag_2S , при этом изображение от аморфного диэлектрика SiO₂ было малоконтрастным. Таким образом, полученные различия в размерах КТ Ag_2S/SiO_2 на темнопольных (1.8 ± 0.5 nm) и светлых изображениях (5.0 ± 1.5 nm) обусловлены формированием оболочки SiO₂ толщиной ~ 3.0 ± 0.8 nm (рис. 1, *a*, *a'*). Дисперсия ансамбля КТ Ag_2S/SiO_2 составляет около 30%.

Рис. 1. Светлопольное (*a*) и темнопольное (*a'*) ПЭМ-изображения КТ Ag₂S/SiO₂. (*b*) ПЭМ-изображения высокого разрешения КТ Ag₂S/SiO₂/Au. Подробности в тексте.

Структурные данные о размерах и морфологии ансамблей коллоидных КТ $Ag_2S/SiO_2/Au$, полученных методом ПЭМ высокого разрешения, подтверждают адсорбцию НЧ Au $(2.0 \pm 0.5 \text{ nm})$ на поверхности КТ Ag_2S/SiO_2 $(5.0 \pm 1.5 \text{ nm})$ (рис. 1, b). Анализ изображений ПЭМ высокого разрешения показал формирование агломератов частиц с межплоскостным расстоянием ~ 2.220 Å, соответствующим кристаллографической плоскости (130) моноклинной решетки Ag_2S , и частиц с межплоскостным расстоянием 2.039 Å, соответствующим кристаллографической плоскости (200) кубической гранецентрированной решетки Au (рис. 1, b).

На рис. 2 представлены закономерности, демонстрирующие изменения спектрально-люминесцентных свойств КТ Ag₂S/SiO₂ при декорировании их поверхности НЧ Au.

В спектре оптического поглощения КТ Ag_2S/SiO_2 наблюдается плечо в области 455-550 nm (рис. 2, *a*, кривая *1*). Его появление является результатом преобладания основного экситонного перехода в оптическом поглощении для носителей заряда, испытывающих конфайнмент в нанокристаллах. Синий сдвиг полосы поглощения относительно края собственного поглощения объемных кристаллов Ag_2S ($E_g^{bulk} \sim 1.0 \text{ eV}$ [35]) является проявлением размерного эффекта. Размытие отчетливого экситонного максимума в спектре оптиче-

Рис. 2. (*a*) Спектры экстинкции КТ Ag_2S/SiO_2 — кривая *I* (врезка: схема энергетических состояний и переходов в КТ Ag_2S); HЧ Au — 2 и гибридных структур на их основе КТ $Ag_2S/SiO_2/Au$ — 3. (*b*) Спектры люминесценции КТ Ag_2S/SiO_2 при *T* = 300 (кривая *I*) и 77 К (2); КТ $Ag_2S/SiO_2/Au$ при *T* = 300 (*I'*) и 77 К (2'). (*c*) Кривые затухания люминесценции КТ Ag_2S/SiO_2 при *T* = 300 (*I*) и 77 К (2); КТ $Ag_2S/SiO_2/Au$ при *T* = 300 (*I'*) и 77 К (2').

Параметры люминесцентных свойств КТ Ag₂S/SiO₂

Образец исследования	QY, % при <i>T</i> = 300 К	au, ns при $T = 300 \mathrm{K}$	QY, % при <i>T</i> = 77 К	au, ns при $T=77{ m K}$
KT Ag ₂ S/SiO ₂	1	4	12	60
KT Ag ₂ S/SiO ₂ /APTMS/Au	10	200	24	170

ского поглощения вызвано дисперсией по размеру КТ Ag₂S/SiO₂ в ансамбле.

458

Максимум в спектре экстинкции света плазмонных НЧ Au при 480 nm обусловлен рассеянием и поглощением света НЧ Au диаметром 2.0 ± 0.5 nm [36] (рис. 2, *a*, кривая 2). Адсорбция НЧ Au и частичное заполнение ими поверхности КТ Ag₂S/SiO₂ приводит к уширению и длинноволновому смещению максимума экстинкции с 480 к 530 nm (рис. 2, *a*, кривая 3) [20,23,24].

Для коллоидных КТ Ag_2S/SiO_2 наблюдали люминесценцию с максимумом полосы на 750 nm (рис. 2, *b*, кривая *I*). Значительная полуширина полосы люминесценции (0.7 eV) и стоксов сдвиг (~ 0.8 eV) указывают на дефектный характер свечения КТ Ag_2S/SiO_2 [37], поскольку для дефектной люминесценции полуширина полосы свечения определяется не только распределением КТ в ансамбле по размеру, но также зависит от положения уровня центра свечения в каждой КТ относительно уровней размерного квантования электронов и дырок. По данным работы [38] наблюдаемое свечение возникает в результате излучательной рекомбинации дырок с локализованными на уровнях структурно-примесных дефектов электронами.

Декорирование поверхности КТ Ag₂S/SiO₂ плазмонными НЧ Au приводит к увеличению квантового выхода дефектной люминесценции КТ с максимумом при 750 nm в 10 раз (таблица).

Такое поведение люминесценции может быть вызвано двумя причинами. Во-первых, при декорировании НЧ Аи

поверхности КТ Ag₂S/SiO₂ может наблюдаться эффект Перселла [25]. Во-вторых, возможна блокировка каналов безызлучательных переходов. Однако десятикратный рост квантового выхода люминесценции сопровождается пятидесятикратным увеличением ее среднего времени затухания с 4 до 200 ns при температуре 300 K (рис. 2, b, c, кривые 1, 2). Это обстоятельство указывает на то, что каждое из обсуждаемых предположений в отдельности не определяет наблюдающуюся экспериментальную картину. Однако усиление люминесценции КТ Ag₂S/SiO₂ при декорировании плазмонными НЧ Au может быть связано с эффектом Перселла, но при этом кинетика затухания люминесценции определяется также переходами с участием локализованных состояний. Дефектный характер свечения, а также дефектная структура поверхности КТ Ag₂S/SiO₂ указывают на вероятное влияние ближнего поля плазмонных НЧ Au на ловушки, участвующие в формировании кинетики затухания люминесценции. Действительно, концентрация и тип локализованных состояний на поверхности КТ, а также их энергетические и оптические свойства являются ключевыми факторами фотопроцессов, определяющих возникновение люминесценции в коллоидных КТ и гибридных структурах на их основе, включая длительность существования электронного возбуждения и квантовый выход их люминесценции. Таким образом, сам характер наблюдаемой люминесценции нарушает простую связь изменения ее квантового выхода и времени затухания при декорировании КТ Ag₂S/SiO₂ мелкими плазмонными НЧ Au.

Для подтверждения предположения о влиянии плазмонных НЧ Аи на динамику фотопроцессов, определяющих люминесценцию КТ Ag₂S/SiO₂, были проанализированы их спектры и кривые затухания люминесценции при температуре 77 К (рис. 2, *b*, *c*, кривые 1' и 2'). Установлено, что понижение температуры до 77 К способствует разгоранию люминесценции КТ Ag₂S/SiO₂ в 12 раз (таблица) и увеличению ее времени затухания с 4 до 60 ns (рис. 2, *b*, *c*, кривые 1 и 1'). Этот результат указывает на участие мелких ловушек в формировании кинетики люминесценции КТ Ag₂S наряду с электронфононным взаимодействием, определяющим температурное тушение центра излучательной рекомбинации. Речь идет о мелких ловушечных состояниях, которые не люминесцируют (в спектрах стационарной люминесценции отсутствуют дополнительные полосы свечения), но способны захватывать на некоторое время носители заряда и тем самым затягивать затухание люминесценции.

При температуре 77 К квантовый выход КТ Ag₂S/SiO₂, поверхность которых декорирована плазмонными НЧ Au, возрастает в 2 раза (рис. 2, b, кривые 1' и 2'). Но увеличение времени затухания люминесценции при температуре 77 К не более, чем трехкратное. Однако тенденция изменения времени затухания люминесценции в результате декорирования КТ Ag₂S/SiO₂ плазмонными НЧ Аи при температурах 300 и 77 К качественно аналогичная (рис. 2, c, кривые 1', 2'). Такое поведение люминесцентных свойств КТ Ag₂S/SiO₂ в условиях плазмон-экситонного взаимодействия может быть обусловлено влиянием ближнего поля плазмонных НЧ Аи на энергетические свойства (изменение глубины, сечения захвата и ионизации) мелких локализованных состояний КТ. Таким образом, наблюдаемое неспецифичное проявление плазмон-экситонного взаимодействия, вероятно, связано с эффектом Перселла, усложненного вкладом мелких ловушек в общую картину фотопроцессов, определяющих люминесценцию КТ Ag₂S/SiO₂.

Вопросы детализации механизмов влияния ближнего поля плазмонных НЧ Аu на энергетические состояния структурно-примесных дефектов коллоидных КТ и их вклад в излучательную рекомбинацию будут рассмотрены в следующих работах.

Заключение

В работе разработан и реализован подход к конструированию плекситонных наноструктур, основанный на декорировании поверхности КТ Ag_2S/SiO_2 (5.0 ± 1.5 nm) плазмонными НЧ Au (2.0 ± 0.5 nm). Обнаружено увеличение квантового выхода люминесценции КТ Ag_2S/SiO_2 до 10% в области 750 nm с одновременным увлечением ее времени затухания с 4 до 200 ns. Понижение температуры до 77 K приводит также к дополнительному

росту квантового выхода и увеличению времени затухания с 4 до 60 ns, что указывает на влияние ближнего поля плазмонных НЧ Au одновременно на скорость рекомбинации и на свойства мелких ловушек, которые в свою очередь определяют динамику затухания люминесценции. Обнаруженные экспериментальные закономерности открывают новые возможности для управления квантовым выходом и временем жизни люминесценции КТ, что важно при создании эффективных систем времяразрешенной ИК люминесцентной визуализации биотканей с подавлением их аутофлуоресценции, имеющей характерные времена порядка десятков наносекунд.

Благодарности

Результаты просвечивающей электронной микроскопии на микроскопе Libra 120 были получены на оборудовании Центра Коллективного Пользования ФГБОУ ВО "Воронежский государственный университет".

Финансирование работы

Работа выполнена при поддержке гранта РНФ № 19-12-00266.

Конфликт интересов

Авторы заявляют, что у них нет известных финансовых конфликтов интересов или личных отношений, которые могли бы повлиять на работу, представленную в этой статье.

Список литературы

- D. Ruiz, B. del Rosal, M. Acebrón, et. al. Adv. Funct. Mater., 27 (6), 1604629 (2017). DOI: 10.1002/adfm.201604629
- [2] R. Guo, S. Derom, A.I. Väkeväinen, R.J.A. van Dijk-Moes, et al. Opt. Express., 23 (22), 28206 (2015). DOI:10.1364/OE.23.028206
- [3] J. Pan, J. Chen, D. Zhao, et al. Opt. Express, **24** (2), A33 (2016). DOI: 10.1364/OE.24.000A33
- [4] S. Hu, Y. Ren, Y. Wang. J. Nanotechnol., 10, 22 (2019). DOI: 10.3762/bjnano.10.3
- [5] V. Krivenkov, V. Krivenkov, P. Samokhvalov, I. Nabiev, Y.P. Rakovich J. Phys. Chem. Lett., 11 (19), 8018 (2018). DOI: 10.1021/acs.jpclett.0c02296
- [6] W.-X. Yang, Ai-Xi Chen, Z. Huang, R.-K. Lee. Opt. Express., 23 (10), 13032 (2015). DOI: 10.1364/OE.23.013032
- [7] K. Tanaka, E. Plum, J.Y. Ou, et al. Phys. Rev. Lett., 105, 227403 (2010). DOI: 10.1103/PhysRevLett.105.227403
- [8] H. Wei, D. Ratchford, X. Li, et. al. Shih. Nano Lett., 9 (12), 4168 (2009). DOI: 10.1021/nl9023897
- [9] G.Y. Chen, Y.N. Chen, D.S. Chuu. Opt. Lett., 33 (19), 2212 (2008). DOI: 10.1364/OL.33.002212
- [10] S.B. Hafiz, M. Scimeca, A. Sahu, et al. Nano Convergence, 6 (7), 1-22 (2019). DOI: 10.1186/s40580-019-0178-1
- [11] A.A. Sergeev, D.V. Pavlov, A.A. Kuchmizhak, et al. Light Sci. Appl., 9 (16), 1-10 (2020). DOI: 10.1038/s41377-020-0247-6

- [12] V. Caponetti, J.W. Trzcinski, A. Cantelli, et al. Front. Chem., 7, 168 (2019). DOI: 10.3389/fchem.2019.00168.
- [13] P. Reineck, B.C. Gibson. Adv. Optical Mater., 5, 1600446 (2017). (DOI: 10.1002/adom.201600446)
- [14] A.M. Flatae, F. Tantussi, G. Messina, et al. J. Phys. Chem. Lett., 10 (11), 2874 (2019). DOI: 10.1021/acs.jpclett.9b01083
- [15] T. Chen, K. Li, H. Mao, et al. J. Elec. Mat., 48, 3497 (2019).
 DOI: 10.1007/s11664-019-07106-9
- J. Huang, O.S. Ojambati, R. Chikkaraddy, et al. Phys. Rev. Lett., **126**, 047402 (2021).
 DOI: 10.1103/PhysRevLett.126.047402
- [17] L. Zhang, Q. Xu, M. Liu, et al. Nanoscale Res. Lett., 12, 222 (2017). DOI: 10.1186/s11671-017-1971-6
- [18] N. Mondal, A. Samanta. J. Phys. Chem. C, **120**, 650 (2016). DOI: 10.1021/acs.jpcc.5b08630.
- [19] P.V. Kamat, B. Shanghavi. J. Phys. Chem. B, 101, 7675 (1997).
 DOI: 10.1021/jp9709464
- [20] K. Chen, L.Y.T. Chou, F. Song, et al. Nano Today, 8 (3), 228 (2013). DOI: 10.1016/j.nantod.2013.04.009
- [21] B. Ji, E. Giovanelli, B. Habert, et al. Nature Nanotechnology, 10, 170 (2015). DOI: 10.1038/NNANO.2014.298
- [22] B.E. Brinson, J.B. Lassiter, C.S. Levin, et al. Langmuir, 24, 14166 (2008). DOI: 10.1021/la802049p
- [23] Y. Jin, X. Gao. Nat. Nanotechnol., 4(9), 571 (2009).
 DOI: 10.1038/NNANO.2009.193
- [24] I.C. Serrano, C. Vazquez-Vazquez, A.M. Adams, et al. RSC Adv., 3, 10691 (2013). DOI: 10.1039/C3RA41685B
- [25] H. Wang, D.W. Brandl, P. Nordlander, N.J. Halas. Acc. Chem. Res., 40, 53 (2007). DOI: 10.1021/ar0401045
- [26] A.S. Perepelitsa, O.V. Ovchinnikov, M.S. Smirnov, et al. J. Lumin., 231, 117805 (2021).
 DOI: 10.1016/j.jlumin.2020.117805
- [27] O.V. Ovchinnikov, A.S. Perepelitsa, M.S. Smirnov, et al. J. Lumin., 220, 117008 (2020).
 DOI: 10.1016/j.jlumin.2019.117008
- [28] I. Piwonskia, J. Grobelnya, M. Cichomskia, et al. Appl. Surface Science, 242 (1–2), 147 (2005).
 DOI: 10.1016/j.apsusc.2004.08.009
- [29] K.W. Shah, Th. Sreethawong, S.-H. Liu, et al. Nanoscale, 6, 11273 (2014). DOI: 10.1039/C4NR03306J
- [30] O. Kulakovich, N. Strekal, A. Yaroshevich, et al. Nano Letters, 2 (12), 1449 (2002). DOI: 10.1021/nl025819k
- [31] M. Liu, Y.-Y. Wang, Yi. Liu, F.-L. Jiang. J. Phys. Chem. C, 124 (8), 4613 (2020). DOI: 10.1021/acs.jpcc.9b11572
- [32] О.В. Овчинников, М.С. Смирнов, Б.И. Шапиро и др. Патент РФ № 2013127444/05, 2013.
- [33] M.S. Smirnov, O.V. Ovchinnikov, T.S. Shatskikh, et al. J. Lumin., 156, 212 (2014).
 DOI: 10.1016/j.jlumin.2014.08.026
- [34] F.W.B. van Leeuwen, B. Cornelissen, F. Caobelli, et al.
 EJNMMI Radiopharm. Chem., 2, 15 (2017).
 DOI: 10.1186/s41181-017-0034-8
- [35] S. Lin, Y. Feng, X. Wen, et al. J. Phys. Chem. C, 119 (1), 867 (2015). DOI: 10.1021/jp511054g
- [36] J. Watt, B.G. Hance, R.S. Anderson, et al. Chem. Mater., 27 (18), 6442 (2015). DOI: 10.1021/acs.chemmater.5b02675.
- [37] O.V. Ovchinnikov, M.S. Smirnov, N.V. Korolev, et al. J. Lumin., 179, 413 (2016). DOI: 10.1016/j.jlumin.2016.07.016
- [38] O. Ovchinnikov, S. Aslanov, M. Smirnov, et al. Opt. Mater. Express, 11, 89 (2021). DOI: 10.1364/OME.411432