09

Модификация зеемановских состояний в магнитном поле и переход выстраивание—ориентация в излучении триплетных экситонов в селениде галлия

© А.Н. Старухин, Д.К. Нельсон, Б.С. Разбирин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

E-mail: a.starukhin@mail.ioffe.ru

(Поступила в Редакцию 20 июля 2011 г.)

Методом оптической спектроскопии исследован индуцируемый магнитным полем переход оптическое выстраивание—ориентация в системе триплетных связанных экситонов в кристалле GaSe при резонансном возбуждении. Показано, что эффект может быть объяснен изменением свойств зеемановских (спиновых) состояний триплетных экситонов в магнитном поле, которое приводит к изменению оптической активности этих состояний в циркулярно и линейно поляризованном свете. В рамках модели необходимым условием перехода является наличие спин-орбитального взаимодействия в электронной системе кристалла. Примененный подход позволяет адекватно описать экспериментальные данные, а также вычислить эволюцию эффекта в течение времени жизни связанных экситонов.

1. Введение

Исследование различных видов упорядочения угловых моментов экситонов в полупроводниковых кристаллах и структурах на их основе представляет значительный фундаментальный интерес, а также служит эффективным методом изучения свойств электронных состояний в этих материалах [1-5]. Наиболее известными видами упорядочения угловых моментов являются их выстраивание и ориентация. Если при оптическом возбуждении кристалла происходит преимущественное заселение состояний экситона с определенным значением проекции момента J_z (характеризуемым магнитным квантовым числом m), так что в системе экситонов возникает отличный от нуля макроскопический магнитный момент, говорят об оптической ориентации экситонов. Если же в кристалле происходит преимущественное возбуждение состояний с определенным |m| (при этом макроскопический магнитный момент в системе отсутствует), говорят о выстраивании экситонов. Оптическая ориентация экситонов достигается в условиях поглощения кристаллом циркулярно поляризованного света, выстраивание — при поглощении кристаллом света линейной поляризации [6]. Система оптически активных ориентированных экситонов излучает циркулярно поляризованный свет, система выстроенных экситонов свет линейной поляризации. В излучении выстроенных или ориентированных экситонов во внешнем магнитном поле при определенных условиях наблюдается ряд ярких магнитооптических эффектов [1-3]. В частности, внешнее магнитное поле может индуцировать переход выстраивания экситонов в их ориентацию (а также обратный эффект), что проявляется как преобразование в магнитном поле линейной поляризации накачки в циркулярную поляризацию экситонного излучения.

Однако внешнего магнитного поля самого по себе недостаточно для перехода выстраивания моментов в ориентацию — он становится возможным при наличии в атомной системе дополнительных взаимодействий, в частности, спин-орбитального или сверхтонкого взаимодействий [7]. Поэтому исследование перехода выстраивание ↔ ориентация в экситонном излучении кристаллов может представлять интерес для детектирования подобных взаимодействий в системе экситонов и понимания различных механизмов создания и распада выстраивания и ориентации. Теоретически магнитоиндуцированный переход выстраивание ↔ ориентация вполне возможен в системе свободных экситонов (см., например, [8]). Однако экспериментально более благоприятным объектом для наблюдения перехода оказались локализованные экситонные состояния [5,9]. В настоящей работе исследуется магнитоиндуцированный переход выстраивание ↔ ориентация в системе триплетных связанных экситонов в кристалле селенида галлия. Показана роль сверхтонкого взаимодействия в распаде оптического выстраивания в системе связанных экситонов, которое может быть восстановлено приложением внешнего магнитного поля. Рассмотренные магнитооптические эффекты объясняются изменением свойств зеемановских (спиновых) состояний экситонов в магнитном поле, и отмечается важная роль спин-орбитального взаимодействия для перехода выстраивание⇔ориентация.

2. Методика эксперимента

Кристаллы GaSe были выращены методом Бриджмена и специально не легировались. Возбуждение экситонной люминесценции кристаллов осуществлялось поляризованным излучением перестраиваемого по длине волны лазера на красителе (родамин 6G), работающего в непрерывном режиме. Плотность возбуждения составляла $\sim 1 \text{ W/cm}^2$. Возбуждающий свет с энергией фотонов $hv_{\text{exc}} = E_{\text{FE}} = 2.108 \text{ eV}$ (E_{FE} — энергия образования прямого свободного триплетного экситона в состоянии с n = 1 в кристалле GaSe) падал по малым углом к нормали ($\mathbf{n} \parallel z$) к поверхности образца, излучение регистрировалось в направлении нормали, параллельно оптической оси кристалла c (геометрия "на отражение"). Спектральная ширина полосы возбуждения составляла менее 1 meV. Для регистрации спектров использовался дифракционный спектрометр. Магнитное поле создавалось электромагнитом. Во время эксперимента образцы находились в жидком гелии при температуре 2 K.

3. Экспериментальные результаты

Спектр фотолюминесценции кристалла GaSe в области края фундаментального поглощения при межзонном возбуждении приведен на рис. 1. Наиболее коротковолновая линия спектра с максимумом вблизи hv = 2.108 eV обусловлена излучательной аннигиляцией прямых свободных триплетных экситонов, а линии α и β с максимумами при 2.096 eV и 2.089 eV отвечают

α

Рис. 1. Спектр излучения кристалла GaSe. T = 2 K. На вставке: схема энергетических уровней триплетного экситона в GaSe в наклонном магнитном поле при V = 0 (сплошные линии) и $V \neq 0$ (пунктир) (см. текст).

излучению прямых триплетных экситонов, связанных на ионизованных центрах (или изоэлектронных ловушках) [10].

При возбуждении кристалла светом с $hv_{\rm exc} = E_{\rm FE}$ спектр излучения связанных экситонов α и β сохраняет вид, приведенный на рис. 1. При резонансном возбуждении кристалла на частоте перехода в основное состояние прямого триплетного свободного экситона распределение триплетных связанных экситонов α и β по различным спиновым состояниям оказывается близким к тому, что возникает при возбуждении светом в кристалле непосредственно связанных экситонов [10]. Эта особенность связанных экситонов α и β позволяет исследовать эффекты резонансного возбуждения в излучении связанных экситонов при резонансном возбуждении светом нии светом в состояниям сободных экситонов при резонансном возбуждении связанных экситонов при резонансном возбуждении святов непосредствение при резонансном возбуждении святоных экситонов при резонансном возбуждении святом свободных экситонов в состоянии с n = 1.

В условиях стационарного возбуждения кристалла циркулярно поляризованным светом с энергией фотонов $hv_{\rm exc} = E_{\rm FE}$ излучение связанных экситонов оказывается также циркулярно поляризованным, что указывает на оптическую ориентацию в системе связанных экситонов. (Поскольку характер магнитооптических эффектов на линиях α и β аналогичен, в дальнейшем при описании наблюдаемых эффектов мы ограничимся рассмотрением поведения линии β .) Если принять направление распространения света за ось *z*, то состояние циркулярной поляризации излучения можно характеризовать степенью циркулярной поляризации, определяемой как

$$P_{\rm circ}^{\eta} = \frac{I_{\sigma^-} - I_{\sigma^+}}{I_{\sigma^-} + I_{\sigma^+}},\tag{1}$$

где I_{σ^-} и I_{σ^+} соответствуют интенсивностям компонент излучения, поляризованных по левому и правому кругу соответственно, η определяет поляризацию возбуждающего света (например, при возбуждении светом, поляризованным по правому и левому кругу, $\eta = \sigma^+, \sigma^-$, а при возбуждении светом, поляризованным с **E** || *х* или **E** || *y*, $\eta = X, Y$ соответственно). В отсутствие внешнего магнитного поля степень циркулярной поляризации излучения составляла $P_{\text{сirc}}^{\sigma^+} \approx 0.3$. Отметим, что в этих же условиях степень циркулярной поляризации излучения свободных триплетных экситонов в GaSe близка к 1. Поперечное магнитное поле (**B** || $x \perp c$, **B** \perp **k**_{photon} геометрия Фойгта) приводит к распаду ориентации и к деполяризации излучения связанных экситонов (эффект Ханле).

В условиях резонансного возбуждения кристалла линейно поляризованным светом излучение связанных экситонов остается неполяризованным. (Излучение свободного экситона в этих условиях практически полностью линейно поляризовано в той же плоскости, что и возбуждающий свет). Однако приложение поперечного магнитного поля приводит к появлению в излучении экситонов α и β линейной поляризации, соответствующей линейной поляризации возбуждающего света, что указывает на оптическое выстраивание связанных экситонов. Величина эффекта максимальна, когда вектор **E** возбуждающего света составляет угол $\vartheta = 0^{\circ}$ (**E** || *x*) или 90° (**E** $\perp x$) с направлением магнитного поля **B**. В этом случае уже при полях $B \approx 0.2$ Т излучение связанных экситонов α и β оказывается поляризованным в той же плоскости, что и возбуждающий свет, с высокой степенью линейной поляризации $|P_{\text{lin}}^{x,y}| \approx 0.5$ (рис. 2), где величина P_{lin}^{η} определяется выражением

$$P_{\rm lin}^{\eta} = \frac{I_x - I_y}{I_x + I_y}.$$
 (2)

Здесь $I_{x,y}$ — интенсивности компонент излучения, поляризованных вдоль осей *x* и *y* соответственно, η , как указано выше, определяет поляризацию возбуждающего света. При $\vartheta = 45^{\circ}$ эффект оптического выстраивания не наблюдается.

При отклонении направления магнитного поля от оси *x* в плоскости *xz*, **B** = **B**(B_x , 0, B_z) (наклонное магнитное поле) деполяризующее действие магнитного поля на циркулярно поляризованное излучение ориентированных связанных экситонов уменьшается по мере увеличения угла φ между направлениями **B** и *x*. При $\varphi = \pi/2$ (продольное поле) эффект деполяризации отсутствует. Аналогичным образом при изменении φ ведет себя и эффект магнитоиндуцированного оптического

Рис. 2. Зависимости степени линейной поляризации излучения триплетного связанного экситона β от магнитного поля $P_{\text{lin}}^{X}(B)$ (1) и $P_{\text{lin}}^{Y}(B)$ (2) при возбуждении светом с $hv_{\text{exc}} = E_{\text{FE}}$, линейно поляризованным с $\mathbf{E}_{\text{exc}} \parallel x$ и $\mathbf{E}_{\text{exc}} \parallel y$ соответственно. $\phi = 0$ ($\mathbf{B} \perp c$). Точки — экспериментальные данные, штрихпунктирные линии — расчетные зависимости. T = 2 К.

Рис. 3. Зависимость степени циркулярной поляризации излучения триплетного связанного экситона β от магнитного поля $P_{\rm circ}^{Y}(B)$ при возбуждении линейно поляризованным светом ($\mathbf{E}_{\rm exc} \parallel y$) с $hv_{\rm exc} = E_{\rm FE}$. $\phi = \pi/6$. T = 2 К. Точки — экспериментальные данные, штрих-пунктирная линия — расчетная зависимость.

выстраивания связанных экситонов: при $\varphi = \pi/2$ этот эффект не наблюдается. Однако в наклонном магнитном поле $(0 < \phi < \pi/2)$ наблюдается другой магнитооптический эффект, не детектируемый при $\phi = 0, \pi/2$: при резонансном возбуждении кристалла светом, линейно поляризованным вдоль оси х или оси у, излучение связанных экситонов оказывается циркулярно поляризованным (рис. 3). Степень циркулярной поляризации монотонно увеличивается с увеличением поля от 0 до $\sim 0.3 \, \text{T}$ и затем плавно уменьшается. Знак циркулярной поляризации излучения при данном В определяется состоянием поляризации возбуждающего света (Е || х или **E** || y) и меняется при инверсии **B**. Аналогичным образом при резонансном возбуждении кристалла циркулярно поляризованным светом излучение связанных экситонов в наклонном магнитном поле становится линейно поляризованным с Е || х или Е || у в зависимости от знака поляризации возбуждения σ^+ или σ^- (рис. 4).

Как отмечалось выше, резонансное возбуждение кристалла циркулярно поляризованным светом при B = 0 приводит к оптической ориентации связанных экситонов, что проявляется в циркулярной поляризации экситонного излучения. Поскольку степени циркулярной и линейной поляризаций экситонного излучения отражают

Рис. 4. Зависимость степени линейной поляризации излучения триплетного связанного экситона β от магнитного поля $P_{\text{in}}^{\gamma}(B)$ при возбуждении циркулярно поляризованным светом (σ^+) с $hv_{\text{exc}} = E_{\text{FE}}$. $\phi = \pi/6$. T = 2 К. Точки — экспериментальные данные, штрихпунктирная линия — расчетная зависимость. T = 2 К.

соответственно степени ориентации и выстраивания экситонов, наблюдаемый эффект можно интерпретировать как индуцированный наклонным магнитным полем переход оптической ориентации экситонов в выстраивание. Аналогично возникновение в наклонном поле циркулярной поляризации экситонного излучения в условиях линейно поляризованной накачки можно рассматривать как проявление магнитоиндуцированного перехода выстраивание—ориентация в системе экситонов.

4. Обсуждение результатов

Для объяснения описанных магнитооптических эффектов рассмотрим структуру энергетических уровней триплетных связанных экситонов в GaSe. В кристаллах GaSe орбитально-невырожденное состояние экситона, связанного на ионизованном центре (или изоэлектронной ловушке), как и основное состояние прямого свободного экситона, при учете обменного взаимодействия расщепляется на два состояния — синглетное и триплетное [8,11]. Величина расщепления между ними в случае свободного экситона составляет $\Delta_1 \approx 2 \text{ meV}$ [11]. Синглетные экситоны оптически активны в поляризации света **Е** || *с* и в условиях нашего эксперимента (**E** $\perp c$) не проявляются. Триплетные экситоны характеризуются полным спином S = 1 и проекциями спина на ось c: $S_z = 0, \pm 1$. При распространении света вдоль оптической оси кристалла переходы из состояний $c S_z = \pm 1$ разрешены в свете круговой поляризации σ^{\pm} , состояние с $S_z = 0$ оптически неактивно [11]. В силу анизотропии кристалла состояние с $S_z = 0$ отщеплено от состояний с $S_z = \pm 1$ на величину $\Delta \ll \Delta_1$ [10]. В пренебрежении спин-орбитальным взаимодйствием параметр $\Delta = 0$ [8]. Продольное магнитное поле **В** || c приводит к расщеплению уровня с $S_z = \pm 1$ на два подуровня с $S_z = -1$ и $S_z = +1$ [8,11]. Энергии состояний триплетного экситона в продольном поле описываются выражением [8]

$$E_{1,2}^{\parallel} = E_0 \pm 0.5\Omega_{\parallel}, \quad E_3^{\parallel} = E_0 - \Delta,$$
 (3)

где $\Omega_{\parallel} \equiv g_{\parallel} \mu_0 B$, $g_{\parallel} \equiv g_{zz}$ — продольная компонента *g*-фактора экситона, μ_0 — магнетон Бора.

Для анализа линейной поляризации экситонных переходов удобно перейти от базисных волновых функций $|\pm 1\rangle$ и $|0\rangle$ к системе функций $|X\rangle$, $|Y\rangle$, $|0\rangle$, где волновые функции $|X\rangle = i(|+1\rangle + |-1\rangle)/\sqrt{2}$ и $|Y\rangle = (|+1\rangle - |-1\rangle)/\sqrt{2}$ описывают состояния экситона, оптически активные в поляризациях света **E** || x и **E** || y соответственно. В поперечном магнитном поле происходит смешивание состояний $|X\rangle$ и $|0\rangle$, что приводит к возгоранию оптически неактивного состояния $|0\rangle$. В результате линия излучения (поглощения) экситона расщепляется в триплет. Энергии состояний триплетного экситона в поперечном магнитном поле **B** $|| x \perp c$ определяются выражениями [8]

$$E_{1,2}^{\perp} = E_0 - 0.5 \left[\Delta \mp \left(\Delta^2 + \Omega_{\perp}^2 \right)^{0.5} \right], \quad E_3^{\perp} = E_0, \quad (4)$$

где $\Omega_{\perp} \equiv g_{\perp} \mu_0 B$, $g_{\perp} \equiv g_{xx} = g_{yy}$ — поперечная компонента *g*-фактора экситона. Оптические переходы из состояний $E_{1,2}^{\perp}$ разрешены в поляризации света **E** || **B**, из состояния E_3^{\perp} — в поляризации **E** \perp **B**. В наклонном магнитном поле, представляющем геометрию, промежуточную между геометриями Фарадея и Фойгта, линия поглощения триплетного экситона расщепляется в триплет, поляризация и относительная интенсивность компонент которого зависят от угла φ . Схема расщепления уровней энергии триплетного экситона в наклонном магнитном поле приведена на рис. 1 (вставка).

Рассмотренная модель поведения триплетного экситона в магнитном поле полностью подтверждается характером эффекта Зеемана на линиях α и β , наблюдаемого в полях B > 2 Т. Однако анализ экспериментальных данных показывает, что в области более слабых полей этой модели недостаточно, и в эффективный гамильтониан триплетных экситонов в магнитном поле следует включить дополнительные слагаемые, описывающие локальное понижение симметрии системы под влиянием внутренних полей [12]. На наличие статического возмущения V, смешивающего различные спиновые состояния связанных экситонов, указывают наблюдение эффекта

антипересечения спиновых подуровней триплетных связанных экситонов в магнитном поле [13–15], а также эксперименты по магнитному резонансу [16–19]. Возмущение состояний триплетного связанного экситона при B = 0 может быть обусловлено сверхтонким взаимодействием экситонного спина со спином ядер кристаллической решетки в области дефекта [13,16–19]. В упрощенной форме это взаимодействие может быть учтено добавлением к гамильтониану триплетного экситона в магнитном поле [8] слагаемого

$$\hat{V} = \frac{1}{2} \left(\Omega'_x \hat{S}_x + \Omega'_y \hat{S}_y + \Omega'_z \hat{S}_z \right), \qquad (4a)$$

где \hat{S}_i — компоненты оператора экситонного спина \hat{S} (с S = 1), величины Ω'_i (i = x, y, z) характеризуют возмущение энергетического спектра триплетного экситона в локальном эффективном магнитном поле [12]. Например, Ω'_z есть величина расщепления состояний экситона $|\pm 1\rangle$ в нулевом внешнем поле при $\Omega'_x = \Omega'_y = 0$.

В отсутствие внешних полей возмущение V формирует в кристалле вместо состояний $|\pm 1\rangle$, $|0\rangle$ (или эквивалентного набора $|X\rangle$, $|Y\rangle$ и $|0\rangle$) новые состояния a, b и c, представляющие собой суперпозицию исходных состояний. Степень смешивания исходных состояний зависит от матричных элементов $V_{mn} = \langle m|V|n\rangle$, (m, n = +1, -1, 0 или X, Y, 0). Волновые функции $\Psi_{a,b,c}$ состояний a, b и c в магнитном поле могут быть записаны в виде

$$\Psi_{i} = C_{1i}(B)|-1\rangle + C_{2i}(B)|+1\rangle + C_{3i}(B)|0\rangle$$

= $D_{1i}(B)|X\rangle + D_{2i}(B)|Y\rangle + D_{3i}(B)|0\rangle,$ (5)

где i = a, b, c. Энергии состояний a, b и c во внешнем магнитном поле (рис. 1, вставка), а также значения коэффициентов в разложении (5) могут быть вычислены методом теории возмущений. Доля оптически активных состояний $|\pm 1\rangle$ (или $|X\rangle, |Y\rangle$) в волновых функциях (5) определяет излучательные времена жизни экситонов в состояниях a, b и c

$$\tau_{ir}(B) = \left[|C_{1i}(B)|^2 + |C_{2i}(B)|^2 \right]^{-1} \tau_r$$
$$= \left[|D_{1i}(B)|^2 + |D_{2i}(B)|^2 \right]^{-1} \tau_r,$$

а также полные времена жизни экситонов в этих состояниях

$$au_i(B) = \left[au_{ir}^{-1}(B) + au_0^{-1}
ight]^{-1} \quad (i = a, b, c),$$

где τ_r — излучательное время жизни исходных оптически активных состояний $|\pm 1\rangle$ (или $|X\rangle, |Y\rangle$), τ_0 — безызлучательное время жизни экситонов.

Согласно (5), вероятность рождения экситона в состоянии a, b или c существенно зависит от поляризации возбуждающего света. В нашем случае при резонансном возбуждении экситонов циркулярно поляризованным светом σ^+ , вероятность рождения экситонов в состоянии Ψ_i равна $|C_{1i}(B)|^2 \tau_r^{-1}$ (i = a, b, c). При возбуждении экситонов светом, поляризованным с Е || В и $E \perp B$, вероятности рождения экситонов в тех же состояниях равны $|D_{1i}(B)|^2 au_r^{-1}$ и $|D_{2i}(B)|^2 au_r^{-1}$ соответственно. В нашем эксперименте связанные экситоны α и в образуются в результате захвата ионизованными центрами рожденных светом свободных триплетных экситонов, спиновое состояние которых в значительной степени сохраняется в процессе захвата [10]. Здесь мы рассмотрим более общий случай, предполагая, что при захвате свободного экситона, находящегося в определенном зеемановском состоянии, он с вероятностью у переходит в идентичное зеемановское состояние триплетного связанного экситона и с вероятностью $0.5(1-\gamma)$ в два других.

Строго говоря, в условиях резонансного возбуждения светом возбуждается когерентная суперпозиция состояний a, b и c, и интенсивности компонент экситонного излучения $I_{\sigma^{\mp}}(B)$ или $I_{x,v}(B)$ определяются суммой сигналов пересечения и антипересечения соответствующих подуровней [20]. Сигнал пересечения, который может быть вызван интерференцией состояний a, b, c, максимален в области наибольшего сближения соответствующих уровней, определяемого в рассматриваемом случае расщеплением уровней а и b в отсутствие внешнего магнитного поля $E_a - E_b \equiv \hbar \omega_{ab} \approx 0.001 \text{ meV} [12]$ (с увеличением поля расщепление уровней a, b, c увеличивается (рис. 1, вставка)). При временах жизни состояний *a*, *b*, *c* $au_{a,b,c}(B) > 10^{-7} \,\mathrm{s}$ [12] величина $\omega_{ab} au_{a,b}(B) \gg 1$. Таким образом, за время жизни связанных экситонов когерентность состояний a, b, c успевает практически распасться, так что вкладом эффекта пересечения уровней в интенсивность экситонного излучения можно пренебречь. В этом случае рассматриваемые магнитооптические эффекты следует связать с изменением в магнитном поле свойств зеемановских состояний (5), оптическая активность каждого из которых в свете определенной поляризации, вообще говоря, различна и зависит от внешнего магнитного поля. Это позволяет описать наблюдаемые эффекты на языке заселенностей соответствующих зеемановских подуровней, не прибегая к формализму матрицы плотности [10]. Такой подход к магнитолюминесценции связанных экситонов весьма нагляден, дает возможность ясно понять причины влияния магнитного поля на поляризацию экситонного излучения, а также позволяет относительно просто описать не только поведение поляризованной магнитолюминесценции в стационарном случае, но и ее временную эволюцию.

При возбуждении экситонов короткими импульсами света с длительностью τ_p ($\tau_p \ll \tau_{a,b,c}$) в пренебрежении спиновой релаксацией экситонов интенсивности циркулярно поляризованных компонент излучения связанных экситонов в *i*-том зеемановском состоянии (i = a, b, c)

можно записать в виде

$$I_{\sigma^{-}}^{i}(B,t) \sim n_{0i}^{\eta}(B)|C_{1i}(B)|^{2}\tau_{r}^{-1}\exp[-t/\tau_{i}(B)],$$

$$I_{\sigma^{+}}^{i}(B,t) \sim n_{0i}^{\eta}(B)|C_{2i}(B)|^{2}\tau_{r}^{-1}\exp[-t/\tau_{i}(B)], \quad (6)$$

где $n_{0i}^{\eta}(B)$ — начальная заселенность *i*-того состояния (в момент времени t = 0), зависящая от интенсивности и состояния поляризации η накачки. Поскольку оптические переходы из состояний a, b и c при B < 1 T спектрально не разрешаются, экспериментально наблюдается суммарное излучение

$$I_{\sigma^{-}}(B,t) = \sum_{i} I_{\sigma^{-}}^{i}(B,t), \quad I_{\sigma^{+}}(B,t) = \sum_{i} I_{\sigma^{+}}^{i}(B,t)$$
$$(i = a, b, c). \tag{7}$$

Интенсивности циркулярно поляризованных компонент излучения связанных экситонов, измеряемые в условиях непрерывного возбуждения, связаны с величинами (7) соотношением

$$I_{\sigma^{\mp}}(B) = \operatorname{const} \cdot \int_{0}^{\infty} I^{i}_{\sigma^{\mp}}(B, t) dt.$$
(8)

Аналогичные соотношения для интенсивностей компонент излучения, поляризованных с $\mathbf{E} \parallel x$ и $\mathbf{E} \parallel y$, имеют вид

$$I_{x}^{i}(B,t) \sim n_{0i}^{\eta}(B)|D_{1i}(B)|^{2}\tau_{r}^{-1}\exp[-t/\tau_{i}(B)],$$

$$I_{y}^{i}(B,t) \sim n_{0i}^{\eta}(B)|D_{2i}(B)|^{2}\tau_{r}^{-1}\exp[-t/\tau_{i}(B)], \quad (6a)$$

$$I_{x}(B,t) = \sum_{i}I_{x}^{i}(B,t),$$

$$I_{y}(B,t) = \sum_{i}I_{x}^{i}(B,t), \quad (i = a, b, c), \quad (7a)$$

$$I_{x,y}(B) = \operatorname{const} \cdot \int_{0}^{\infty} I_{x,y}^{i}(B,t) dt.$$
 (8a)

В свою очередь, степени поляризации экситонного излучения P_{circ}^{η} и P_{lin}^{η} связаны с (8) и (8a) соотно-шениями (1) и (2). Расчетные зависимости $P_{\text{lin}}^{X,Y}(B)$, $P_{
m circ}^{Y}(B)$ и $P_{
m lin}^{\sigma^{+}}(B)$ показаны на рис. 1–4 линиями. Теоретические кривые на рис. 2–4 получены при значениях параметров $g_{\parallel} = 3.4$ [10], $g_{\perp} = 3.7$ [10], $\tau_r = 110 \cdot 10^{-9} \,\mathrm{s}$ [12,15], $\tau_0 = 7 \cdot 10^{-6} \,\mathrm{s}$ [12, 15], $\Delta = 0.038 \text{ meV} [15], |V_{xy}| = |V_{\pm 1\pm 1}| = 0.0005 \text{ meV}, |V_{x0}| =$ $= |V_{v0}| = |V_{\pm 10}| = 0.003 \text{ meV}$ [12,15], $|V_{xx}| = |V_{vy}| = |V_{00}| =$ $= |V_{+1-1}| = 0$, $\gamma = 0.78$. Как видно из рис. 2-4, имеет место хорошее согласие теории и эксперимента. Расчет теоретических зависимостей выполнен в предположении, что возмущение V обусловлено локальным магнитным полем (ассоциируемым с эффективным сверхтонким магнитным полем \mathbf{B}_N), при этом полученные результаты усреднены в соответствии с условием, что

среднее по ансамблю связанных экситонов значение V_{mn} равно нулю (т. е. среднее значение \mathbf{B}_N для системы связанных экситонов $\langle \mathbf{B}_N \rangle = 0$). Влияние возмущения V на энергии зеемановских подуровней связанных экситонов в магнитном поле показано пунктирными линиями на рис. 1 (вставка). Расчет показывает, что смещения подуровней вследствие возмущения V заметно превышают естественную ширину соответствующих спектральных линий, но гораздо меньше их неоднородной ширины. Тем не менее в рамках модели это влияние существенно, поскольку снимает вырождение экситонных состояний при B = 0.

Предложенная модель позволяет дать простое объяснение наблюдаемым магнитооптическим эффектам. При резонансном возбуждении экситонов линейно поляризованным светом в отсутствие внешнего магнитного поля когерентность состояний a, b, c, обусловленная поглощением линейно поляризованного фотона, успевает распасться за время жизни экситонов вследствие снятия вырождения состояний a и b сверхтонким полем \mathbf{B}_N (рис. 1, вставка). В то же время при B = 0 состояния $|X\rangle$ и $|Y\rangle$ представлены в волновых функциях (5) состояний a, b, c практически с равным весом, поэтому оптические переходы из состояний *a*, *b*, *c* происходят с равной вероятностью в поляризациях $\mathbf{E} \parallel x$ и $\mathbf{E} \parallel y$, и степень линейной поляризации экситонов $P_{\text{lin}}^{\eta}(0)$ оказывается равной нулю. Во внешнем магнитном поле относительные вклады состояний $|X\rangle$ и $|Y\rangle$ в волновые функции (5) существенно меняются. В поперечном магнитном поле $B \gg B_N$ оптические переходы из состояний а и с (характеризуемые проекциями спина на ось $x S_x = \pm 1$) практически полностью поляризованы с $\mathbf{E} \parallel x$, а переходы из состояния b (с проекцией спина на ось $x S_x = 0$) — с **Е** || у. При резонансном возбуждении экситонов светом, линейно поляризованным с Е || x или $\mathbf{E} \parallel y$, будут избирательно возбуждаться состояния a, cили *b* соответственно. В этом случае в пренебрежении спиновой релаксации в системе связанных экситонов их излучение будет линейно поляризованным, так же как и возбуждающий свет: будет наблюдаться явление магнитоиндуцированного оптического выстраивания экситонов (рис. 2).

Состояние циркулярно поляризованного излучения триплетных связанных экситонов удобнее анализировать в базисе $|\pm 1\rangle$, $|0\rangle$. При B = 0 состояния a и b формируются, в основном, оптически активными состояниями $|+1\rangle$ и $|-1\rangle$, которые входят в волновые функции Ψ_a и Ψ_b с существенно разными весами (если, например, $\Psi_a \approx |+1\rangle$, то $\Psi_b \approx |-1\rangle$, при этом $\Psi_c \approx |0\rangle$). В результате оптические переходы из состояний a и b при B = 0 оказываются практически полностью циркулярно поляризованы. Возбуждение связанных экситонов циркулярно поляризованным светом приводит к премущественному заселению (в нашем случае при $\gamma > 1/3$) одного из состояний a или b (в зависимости от знака циркулярной поляризации возбуждения),

которое в условиях слабой спиновой релаксации экситонов сохраняется в течение их времени жизни. Таким образом достигается оптическая ориентация экситонов. Деполяризация излучения ориентированных экситонов в поперечном магнитном поле объясняется формированием в поперечном поле $B \gg \Delta/g_{\perp}\mu_0$, $B \gg B_N$ системы состояний a, b, c, в каждом из которых состояния $|+1\rangle$ и $|-1\rangle$ представлены с одинаковыми относительными весами, т.е. с равными вероятностями излучают свет σ^+ и σ^- поляризаций.

В наклонном магнитном поле **В** $(B_x, 0, B_z)$ в широком интервале полей ($B < 1 \, \text{T}$) относительные вклады состояний |+1
angle и |-1
angle в волновые функции состояний а, b и с при наличии спин-орбитального взаимодействия ($\Delta \neq 0$) оказываются существенно различными. (При $\Delta = 0$ вклады состояний $|-1\rangle$ и $|+1\rangle$ в волновые функции (5) распределяются симметрично: $|C_{1b}(B)|^2 = |C_{2b}(B)|^2$, $|C_{1a}(B)|^2 = |C_{2c}(B)|^2$, $|C_{2a}(B)|^2 = |C_{1c}(B)|^2$, что является следствием симметричного расположения в спектре крайних компонент зеемановского триплета а и с относительно центральной компоненты триплета b. Похожая ситуация $|C_{1c}(B)|^2 \cong |C_{2c}(B)|^2$ имеет место и при $\Delta \neq 0$ в поперечном магнитном поле ($\phi = 0$).) При $B \approx 0.2 \, {
m T}$ (область максимума $P_{\rm circ}^{Y}(B)$, рис. 3) циркулярная поляризация экситонного излучения при возбуждении кристалла светом, поляризованным с Е || у, определяется, в основном, состоянием b. Это состояние наиболее эффективно возбуждается светом линейной поляризации Е || у и в то же время весьма активно в свете σ^- поляризации, поскольку в разложении функции Ψ_b по состояниям 0, $|\pm 1\rangle$ основной вклад дает состояние $|-1\rangle$. При возбуждении экситонов светом с $\mathbf{E} \parallel x$ преимущественно генерируются экситоны в состоянии а, которое наиболее активно излучает свет σ^+ полязирации. В результате при изменении состояния линейной поляризации возбуждения от $\mathbf{E} \parallel y$ к $\mathbf{E} \parallel x$ циркулярная поляризация экситонного излучения меняет знак. При В = 0 каждое из состояний a, b, c с практически равной вероятностью возбуждается светом поляризаций $\mathbf{E} \parallel y$ и $\mathbf{E} \parallel x$, и циркулярная поляризация излучения в этих условиях оказывается равной нулю.

Интересно отметить, что состояние c, основной вклад в формирование которого дает безызлучательное состояние $|0\rangle$, обладает соответственно и наибольшим временем жизни. Поэтому при возбуждении экситонной люминесценции короткими световыми импульсами в спектрах послесвечения, полученных при достаточно больших временах задержки t по отношению к возбуждающему импульсу ($t \gg \tau_a, \tau_b$), независимо от поляризации возбуждающего света основной вклад в излучение будет давать состояние c, описываемое в соответствии с (5) волновой функцией

$$\begin{split} \Psi_c &= C_{1c}(B) |-1\rangle + C_{2c}(B) |+1\rangle + C_{3c}(B) |0\rangle \\ &= D_{1c}(B) |X\rangle + D_{2c}(B) |Y\rangle + D_{3c}(B) |0\rangle. \end{split}$$

Рис. 5. Расчетные зависимости степени циркулярной поляризации триплетного связанного экситона β от магнитного поля $P_{\text{circ}}^{\chi}(B)$ и $P_{\text{circ}}^{\gamma}(B)$ в различные моменты времени жизни экситонов *t* при импульсном возбуждении светом с $hv_{\text{exc}} = E_{\text{FE}}$, линейно поляризованным с $\mathbf{E}_{\text{exc}} \parallel x$ и $\mathbf{E}_{\text{exc}} \parallel y$ соответственно. $\phi = \pi/6. t$: 100 ns (1), 400 ns (2), 1 μ s (3). Зависимость 4 описывает степень циркулярной поляризации при непрерывном возбуждении.

Поскольку в наклонном поле относительный вклад состояния $|-1\rangle$ в волновую функцию состояния c заметно больше, чем вклад состояния $|+1\rangle$ ($|C_{1c}(B)|^2 > |C_{2c}(B)|^2$), при больших временах задержки экситонное излучение будет циркулярно поляризовано по левому кругу (σ^-) независимо от поляризации накачки (например, $\mathbf{E}_{\text{ехс}} \parallel x$ или $\mathbf{E}_{\text{ехс}} \parallel y$, см. рис. 5). При инверсии поля знак поляризации излучения изменится на противоположный. В аналогичной ситуации состояние линейной поляризации экситонного излучения будет определяться соотношением коэффициентов D_{1c} и D_{2c} .

Учитывая, что в наклонном поле $|D_{1c}(B)|^2 > |D_{2c}(B)|^2$, при больших временах задержки экситонное излучение окажется преимущественно поляризованным с **E** || *x*. Отметим, что рассмотренные магнитооптические эффекты не связаны с перераспределением триплетных связанных экситонов между состояниями *a*, *b*, *c* вследствие их термализации.

5. Заключение

Таким образом, проведенное исследование показывает, что наблюдаемый в излучении триплетных связанных экситонов в GaSe эффект магнитоиндуцированного перехода линейной поляризации оптического возбуждения в циркулярную поляризацию излучения (и аналогичный эффект перехода циркулярной поляризации оптического возбуждения в линейную поляризацию излучения) может быть объяснен изменением свойств зеемановских состояний триплетных связанных экситонов в магнитном поле. В рамках рассмотренной модели описанный эффект существенно связан со спин-орбитальным взаимодействием электронов в кристалле, характеризуемым параметром Δ , и отсутствует при $\Delta = 0$. Отсутствие оптического выстраивания триплетных связанных экситонов при B = 0 обусловлено сверхтонким полем, приводящим к снятию вырождения оптически активных состояний триплетных связанных экситонов.

Список литературы

- [1] R. Planel. Solid-State Electron 21, 1437 (1978).
- [2] Excitons / Eds E.I. Rashba, M.D. Sturge, North-Holland, Amsterdam (1982). 865 p.
- [3] E.L. Ivchenko, G.E. Pikus. Superlattices and other heterostructures: Symmetry and optical phenomena, Springer, Berlin, N.Y. (1997). 382 p.
- [4] В.Л. Кочерешко, Е.Л. Ивченко, Д.Р. Яковлев, Ф. Лаваллар. ФТТ 40, 2229 (1998).
- [5] R.Kaji, S. Adachi, T. Shindo, S. Muto. Phys. Rev. B 80, 235 334 (2009).
- [6] E.L. Ivchenko. Pure Appl. Chem. 67, 3, 463 (1995).
- [7] R.C. Hilborn, L.R. Hunter, K. Johnson, S.K. Peck, A. Spencer, J. Watson. Phys. Rev. A 50, 2467 (1994).
- [8] Е.Л. Ивченко, Г.Е. Пикус, Б.С. Разбирин, А.Н. Старухин. ЖЭТФ 72, 2230 (1977).
- [9] Yu.G. Kusrayev. Semicond. Sci. Technol. 23, 114013 (2008).
- [10] Е.М. Гамарц, Е.Л. Ивченко, Г.Е. Пикус, Б.С. Разбирин, В.И. Сафаров, А.Н. Старухин. ФТТ 24, 2325 (1982).
- [11] E. Mooser, M. Schlüter. Nuovo Cimento B 18, 164 (1973).
- [12] A.N. Starukhin, D.K. Nel'son, B.S. Razbirin, E.L. Ivchenko. Phys. Rev. B, 72, 045 206 (2005).
- [13] W.M. Chen, M. Godlewski, B. Monemar, J.P. Bergman. Phys. Rev. B 41, 5746 (1990).
- [14] Mt. Wagner, I.A. Buyanova, N.Q. Thinh, W.M. Chen, B. Monemar. Phys. Rev. B 62, 16 572 (2000).
- [15] A.N. Starukhin, D.K. Nelson, B.S. Razbirin. Phys. Rev. B 65, 193 204 (2002).

- [16] E. Sorman, W.M. Chen, A. Henry, S. Andersson, E. Janzén, B. Monemar. Phys. Rev. B 51, 2132 (1995).
- [17] A.M. Frens, M.T. Bennebroek, J. Schmidt, W.M. Chen, B. Monemar. Phys. Rev. B 46, 12 316 (1992).
- [18] W.M. Chen, B. Monemar. Phys. Rev. B 40, 1365 (1989).
- [19] W.M. Chen, B. Monemar, M. Godlewski. Phys. Rev. B 37, 2564 (1988).
- [20] Е.Б. Александров, Г.И. Хвостенко, М.П. Чайка. Интерференция атомных состояний. Наука, М. (1991). [Engl. transl. E.B. Alexandrov, М.Р. Chaika, G.I. Khvostenko, Interference of Atomic States, 1993, Springer Verlag, New York.]