05

Сверхизлучение и синтез наночастиц металла в полистирольном композите с многоспиновыми комплексами Eu при быстром одноосном сдавливании

© А.И. Александров,¹ В.Г. Шевченко,¹ С.С. Абрамчук,² С.Б. Зезин,³ С.В. Фокин,⁴ В.И. Овчаренко⁴

¹Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН,

117393 Москва, Россия

² Институт элементоорганических соединений им. А.Н. Несмеянова РАН,

119991 Москва, Россия

³ Московский государственный университет им. М.В. Ломоносова,

119991 Москва, Россия

⁴ Международный томографический центр СО РАН,

630090 Новосибирск, Россия

e-mail: alivaleksandr@mail.ru

Поступило в Редакцию 25 июня 2021 г. В окончательной редакции 27 октября 2021 г. Принято к публикации 3 ноября 2021 г.

Синтезированы композиты гетероспинового молекулярного магнетика [Eu^{III}(SQ)₃bipy] в полистирольной (PS) матрице. Комплекс [Eu^{III}(SQ)₃bipy] содержит четыре парамагнитных центра — ион Eu³⁺ и три лиганда SQ (анион-радикалы SQ-3,6-ди-трет-бутилбензохинона); bipy (бипиридил) — диамагнитен. Установлено, что интенсивная механическая активация образцов [Eu^{III}(SQ)₃bipy]/PS приводит к реологическому взрыву, в результате которого наблюдается радиочастотное сверхизлучение, возникновение свободных электронов и образование металлических наночастиц Eu. Длительность данного процесса — 10 ns.

Ключевые слова: излучение, импульс, упругая волна, европий.

DOI: 10.21883/JTF.2022.02.52015.194-21

Введение

Эффект механической активации радиочастотного сверхизлучения (СИ) (эффект МАРСИ) был обнаружен в полимерных композитах, содержащих элементоорганические биядерные комплексы кобальта или марганца, которые проявляли эффект Дзялошинского-Мориа [1-5]. Механическая активация заключалась в воздействии импульса упругих волн от реологического взрыва исследуемого композита при быстром одноосном сжатии [1-3], или в параметрическом режиме при воздействии внешним реологическим взрывом, когда импульс упругих волн вводился в образец по стальному волноводу [4,5]. Представляет научный и практический интерес поиск новых классов твердофазных объектов, реализующих этот эффект, а также развитие новых методов обнаружения эффекта МАРСИ. Отметим, что явления СИ [6], реологического взрыва [7], эффект Дзялошинского-Мориа [8,9] были обнаружены достаточно давно и привлекают внимание исследователей до настоящего времени.

Сравнительно недавно было установлено, что:

а) при реологическом взрыве полистирола (PS) в нем возникают свободные нанообъемы (нанополости) с подвижными стенками [10];

б) в композите $[Eu^{III}(SQ)_3 bipy]/PS$ при реологическом взрыве фиксируется радиочастотное сверхизлучение [11];

в) комплекс [Eu^{III}(SQ)₃bipy] является молекулярным магнетиком [12].

Здесь и далее $[Eu^{III}(SQ)_3 bipy]$ — комплекс, содержащий положительно заряженный парамагнитный Eu^{3+} с парамагнитными лигандами SQ (SQ — анион-радикал 3,6-ди-трет-бутилбензохинона) и диамагнитным bipy (бипиридил).

Высокоспиновые элементоорганические магнетики можно использовать для создания электрических проводников, магнитных переключателей, для элементов памяти квантовых компьютеров, для спинтронных устройств [13-18]. Комплексы трехвалентного европия проявляют эффект усиления магнитного дипольного излучения для видимого и ультрафиолетового диапазонов [19]. Использование их в качестве усилителя в радиочастотном диапазоне расширило бы спектр их практического применения. Именно поэтому отработка проведения процесса СИ в новом режиме, а именно в режиме "СИ при реологическом взрыве разгрузки" (режим RSI при RVR), т.е. при резком сбросе давления, действующего на образец композита, и выяснения, какие физико-химические процессы протекают в полимерной матрице при этом — актуальная задача. Следует отметить, что проведение экспериментов в данном режиме обеспечивает более широкие экспериментальные возможности для исследования механической активации различных твердофазных объектов, в том числе по-

Рис. 1. *а* — структура комплекса Eu(III)(SQ)₃bipy; *b* — схема ячейки высокого давления. *1* — образец; 2 — прессовое оборудование; *3* — стальная обойма; *4* — пуансоны; *5* — сопротивление нагрузки; *6* — изоляция; *7* — пьезодатчик; *8* — цифровой осциллограф.

лимерных композитов. Эти исследования закладывают основу создания нового метода синтеза и исследования композитов, реализующих трансформацию механической энергии в СИ в радиочастотном диапазоне и формирование при этом импульса свободных электронов, которые инициируют окислительно-восстановительные процессы, протекающие в полимерной матрице.

Для решения этих задач в настоящей работе использовали комплекс $[Eu^{III}(SQ)_3 bipy]$ (структура приведена на рис. 1, *a*). Методика синтеза и структура данного комплекса приведены в работе [12]. Так же в работе [12] показано, что данный комплекс — это молекулярный магнетик, имеющий четыре парамагнитных центра ион Eu(III) и три — SQ лиганда (рис. 1, *a*).

1. Экспериментальная часть

Синтезированы образцы композитов С1, С2, С3, С4, С5, содержащие $0.4 \cdot 10^{20}$, $0.6 \cdot 10^{20}$, $0.8 \cdot 10^{20}$, $1.0 \cdot 10^{20}$, $1.2 \cdot 10^{20}$ комплексов Eu(III)(SQ)₃bipy в 1 сm³ полистирола (PS) соответственно. Смешивание [Eu^{III}(SQ)₃bipy] и PS осуществляли в шаровой вибрационной микромельнице с агатовой гарнитурой Pulverisette 0 (Германия) в течение 10 min. Полученную смесь прессовали при 190°С. Образцы диаметром 14 mm и толщиной 1 mm не испытывали реологического взрыва при одноосном сдавливании до 5 GPa. Для исследования возникновения импульсов СИ при механическом воздействии использовали специальную ячейку высокого давления, которая помещалась в машину сжатия ИС-500. Схема установки приведена на рис. 1, *b*.

Были выбраны следующие режимы RSI при RVR — на образец вначале действует одноосная нагрузка (скорость сдавливания 1.0 GPa/s), а затем следует резкий сброс давления при заданном $P_{\rm RVR} = 2$ или 3 GPa. Сброс давления производился автоматически, для этого в конструкцию машины сжатия ИС-500 было внесено

авторское изменение. Видно, что ячейка, изолированная от прессового оборудования, состоит из наковальни Бриджмена, стальной обоймы и пуансонов, между которыми находится исследуемый образец. В изоляцию вмонтирован планарный пьезодатчик для измерения давления на образец. Пуансоны через сопротивление нагрузки $R = 50 \,\Omega$ соединены с двухканальным цифровым осциллографом Tektronix MSO 200, к которому также подключен и пьезодатчик. Ячейка позволяет регистрировать импульс тока J(t), генерируемый электрической составляющей E(t) электромагнитного излучения, возникающего в образце. Соответственно на осциллографе регистрируется импульс напряжения U(t) = RJ(t) (на рис. 1, *b* это узкий сигнал). Также при необходимости пьезодатчиком фиксируется и процесс сброса давления, которому отвечает более протяженный импульс разгрузки, сигнал которого приведен на рис. 1, *b* черным цветом.

Для получения спектров ЭПР использовали ЭПР спектрометр Bruker EMX (Германия). Электронные микрофотографии и электронограммы получены с помощью туннельного электронного микроскопа LEO 912 AB OMEGA ("Zeiss" Германия).

2. Теоретическая часть

СИ — это процесс электромагнитного излучения среды как единого сфазированного ансамбля (макродиполя), состоящего из микродиполей, охваченных коллективным взаимодействием через кооперативную волну связи. Интенсивность импульса СИ $W_S \propto N^2$, где N число центров возбуждения. Для лазеров интенсивность излучения пропорциональна N, т. е. $W_L \propto N$. Коллективная динамика сверхизлучательного состояния характеризуется коэффициентом связи (ω_C)², который является показателем интенсивности обменно-волнового процесса, обеспечивающего коллективную сфазированность колебаний всех микродиполей сверхвозбужденной среды. Кооперативная волна с частотой ω_C , промодулированная электрической волной, формирует стоячую волну в заданном объеме среды вблизи собственной резонансной частоты ω_0 возбужденной среды, соответствующей одному из уровней возбужденной системы. При этом имеет место поляритонный резонанс — при поляризации на резонансной частоте возникающие в среде волны поляризации охватывают все микродиполи, образуя единый сфазированный макродиполь. Энергия поля поляризации и фазы волн поляризации становятся едиными для всех центров возбуждения (возбужденных атомов и молекул). Сверхизлучательное коллективизированное состояние характеризуется общими энергетическими уровнями. Описание излучения вследствие переходов между этими уровнями в макроскопическом приближении возможно классическими уравнениями Максвелла (1) и (2) и уравнением для поляризации Р (3), а также уравнением (4), полученным Дике [6]:

$$rotE = -\frac{1}{c} \frac{\partial B}{\partial t},\tag{1}$$

$$rotB = -\frac{1}{c}\frac{\partial(E+4\pi P)}{\partial t} + \frac{4\pi\sigma}{c}E,$$
 (2)

$$\frac{\partial^2 P}{\partial t^2} + \omega_{r,E} \frac{\partial P}{\partial t} + \omega_{rez,E} P = \omega_c^2 E, \qquad (3)$$

$$\frac{d(R_8)}{dt} = -\frac{1}{T_1} \left(\frac{N^2}{2} - \frac{(R_8)^2}{2} + N + \langle R_3 \rangle \right), \qquad (4)$$

где T_1 — время энергетической релаксации, $\omega_{r,E} = 1/T_2$, T_2 — время фазовой релаксации активных центров, $\langle R_3 \rangle$ — среднее значение разности населенности уровней в единичном объеме среды, содержащем N возбуждаемых атомов и n возбужденных атомов. Таким образом, $\langle R_3 \rangle = n - (N - n) = 2n - N$. Если правую часть уравнения (4) переписать в виде $1/2[(N + 1)^2 - n - (\langle R_3 \rangle - 1)^2]$, то

$$\langle R_3 \rangle = 1 - (N+1) \operatorname{th} \left[\frac{N+1}{2T_1} (t-t_0) \right].$$
 (5)

При $\langle R_3(t=0) \rangle = N$ имеем $t_0 = \frac{T_1}{N+1} \ln N$ и получаем мощность электромагнитного излучения (интенсивность излучения) как функцию времени

$$I(t) = I_0 N^2 \operatorname{sech}^2 \left[\frac{1}{2\tau_c} \left(t - t_0 \right) \right], \qquad (6)$$

I(t) описывает импульс СИ, мощность которого $I_{\max}(t = t_0)$ достигает максимума при $t = t_0$, а I_0 — интенсивность излучения одной частицы из ансамбля N частиц. Величина максимума пропорциональна N_2 , t_0 — время задержки импульса $t_0 = 2\tau_c \ln N$, τ_c — ширина импульса на полувысоте $(2\tau_c$ — длительность импульса).

Более подробно уравнения (1)–(6) обсуждаются в работах [6,19–21]. Заметим, что уравнение (3) описывает

систему в рамках модели Лоренца для гармонического осциллятора с затуханием [22], когда вынужденные колебания заряженных частиц приводят к поляризации среды, которая для не взаимодействующих частиц одного типа описывается вектором поляризации Р, равным Np, где N — концентрация частиц, а $\mathbf{p} = \mathbf{qr}$ дипольный момент одной частицы. При этом если изменение электрического дипольного момента и изменение в структуре спиновой системы связаны между собой, т.е. электрический дипольный момент D связан со спиновой системой и $D \propto R \times (S_a \times S_b)$ [23], где **R** — относительное положение двух произвольно взятых спинов в исследуемом комплексе, то, поскольку R изменяется во времени, соответственно изменяются векторы дипольных моментов D и векторы поляризации P и, как следствие, магнитные моменты системы M, которые связаны со спиновым ансамблем. Тогда подобная система описывается как в рамках модели Лоренца для гармонического осциллятора с затуханием [22] — уравнение (3), так и в рамках модели на основе уравнения Ландау-Блоха-Бломбергена [24–26], т.е. уравнения (7):

$$\frac{dM}{dt} = -\gamma M \times H + \omega_{r,H} [\chi_0 H - M].$$
(7)

Соответственно анализировать спектры, полученные после фурье-преобразования сигналов электрических импульсов E(t) для подобных систем можно, используя приведенное для $\varepsilon''(\omega)$ уравнение (3) и приведенное для $\chi''(\omega)$ уравнение (7), т. е. по формулам (8) [27,28]

$$\varepsilon''(\omega) = \varepsilon_0 \frac{2\omega_{r,E}\omega_C^2\omega}{(\omega_{rez,B}^2 - \omega^2)^2 + 4\omega_{r,E}^2\omega^2},$$

$$\chi''(\omega) = \chi_0 \frac{2\omega_{r,H}\omega_H\omega^2}{(\omega_{rez,H}^2 - \omega^2)^2 + 4\omega_{r,H}^2\omega^2},$$
(8)

где $\omega_{r,E} = \Delta E(MHz)/2$ и $\omega_{r,H} = \Delta H(MHz)/2$, а $\Delta E(MHz)$ и $\Delta H(MHz)$ — полуширины резонансных линий. При этом $\omega_{rez,E}^2 = \omega_{r,E}^2 + \omega_C^2$ и $\omega_{rez,H}^2 = \omega_{r,H}^2 + \omega_H^2$, $\omega_H = \gamma H$.

3. Результаты и обсуждение

В проводимых в настоящей работе экспериментах с помощью осциллографа регистрировали переменное напряжение U(t) = RJ(t). Ток J(t) генерируется электрической составляющей E(t) электромагнитного излучения, которое возникает в исследуемых образцах при механическом воздействии и $U(t) \propto J(t) \propto E(t)$. При реологических взрывах при 3 и 2 GPa были зафиксированы интенсивные сигналы от образцов композитов C1–C5 и зафиксированы слабые сигналы от матричного полимера PS. В отнормированном к максимальному по интенсивности сигналу виде сигналы от C1–C5 и от матричного полимера представлены на рис. 2, *а.* Самый интенсивный сигнал в 500 V наблюдался для C5 при 3 GPa. Интенсивность сигнала от PS, записанного при

Рис. 2. *а* — временная развертка нормированных сигналов J(t) для композитов C1–C5 и PS; *b* — временная развертка нормированных сигналов $I(t) \propto [E(t)]^2$ для композитов C1–C5 и PS; *c* — нормированная зависимость $I(t_0)$ от квадрата концентрации комплексов Eu(III)(SQ)₃bipy в 1 cm³ для композитов C1–C5. Нормировка проведена к максимальному значению $I(t_0)$ для C5.

тех же условиях, не превышала 15 V. Из представленного рисунка видно, что сигналы от композитов имеют характерный интенсивный узкий пик в самом начале. Подобный пик отсутствует в сигналах от полистирола.

На рис. 2, b приведены импульсы электромагнитного излучения $I(t) \propto [E(t)]^2 \propto [J(t)]^2 \propto [U(t)]^2$, достигающие максимальной интенсивности при $t = t_0$. Видно, что форма линии полос излучения соответствует закону, характерному для процессов СИ — экспоненциальному симметричному подъему и спаду (на рис. 2, b анаморфозы по формуле (6) даны пунктиром). Установлено, что интенсивность пиков $I(t_0)$ (при $t = t_0$) пропорциональна квадрату концентрации комплексов N². Это хорошо видно из рис. 2, с, на котором показана зависимость нормированной амплитуды $I_{norm}(t_0) = I(t_0)/I_{max}(t_0)$ от N^2 для комплексов [Eu^{III}(SQ)₃bipy]. $I_{max}(t_0)$ соответствует максимальному значению импульса RSI для композита С5 при 3 GPa, где $I_{max}(t_0)$ для образца, содержащего 1.2 · 10²⁰ комплексов [Eu^{III}(SQ)₃bipy] в 1 cm³ PS — т.е. с максимальной концентрацией комплекса европия. Как следует из рис. 2, с, использование режима RSI при RVR позволило установить, что процесс RSI можно реализовывать для всех образцов C1-C5 при P_{RVR} как при 2 GPa, так и при 3 GPa. Следует подчеркнуть, что интенсивность пиков $I(t_0)$ от образцов композитов С1-С5 почти на четыре порядка превосходит интенсивность импульса от образца "чистого" PS — матричного полимера при реализации в нем реологического взрыва разгрузки при 3 GPa; также эти характерные пики со структурой, описываемой формулой (6), отсутствуют в сигналах матричного полимера (рис. 2, b). Для определения $t_0 = 2\tau_c \ln N$ из эксперимента брали τ_c (считая, что au_c — ширина импульса на полувысоте, а $2 au_c$ длительность импульса); отметим, что количество парамагнитных комплексов в образцах, превратившихся в непарамагнитные частицы — это 70% от комплексов во всех образцах и линейно пропорционально N — количеству комплексов, введенных в композит при синтезе в пересчете на ст⁻³. Установлено, что время задержки импульса уменьшается с увеличением концентрации комплексов в образце, и в нашем случае для С1-С5 оно равно 300, 280, 260, 240, 200 ns соответственно (рис. 2, b).

Фурье-анализ импульсов $J(t) \propto E(t)$ показал, что наблюдаемые процессы испускания RSI лежат в диапазоне частот от 0 до 300 MHz — т.е. в радиочастотном диапазоне (рис. 3, *a*). Как видно из рис. 3, *a*, фурье-образы сигналов $E(t) \propto J(t)$ имеют вид полосатых (полосчатых) спектров. При этом нормированный фурье-спектр для композита (на рис. 3, *a* спектр 1) кардинально отли-

Рис. 3. *а* — нормированный фурье-образ электрического сигнала для композита C5 (*1*) и PS (*2*); *b* — фурье-образ электрического сигнала для композита C5 и полосы излучения, полученные по методу Лоренца (их параметры даны в табл. 1); *с* — фурье-образ электрического сигнала для композита C5 и полосы излучения, получения, полученные по методу Ландау–Блоха–Бломбергена (их параметры даны в табл. 1).

чается по структуре от нормированного фурье-спектра матричного полимера — PS (на рис. 3, спектр 2). Т.е. можно утверждать, что фурье-спектр обусловлен введенным комплексом [Eu^{III}(SQ)₃bipy]. Как известно, полосатые (полосчатые) спектры излучаются отдельными возбужденными молекулами, не связанными или слабо связанными друг с другом. Излучение вызвано как электронными переходами в атомах, так и колебательными движениями самих атомов в молекулах. Поэтому можно представить, что при воздействии импульса упругих волн (ИУВ) происходят локальные размораживания подвижности фрагментов макромолекул и дестабилизация введенных в полимерную матрицу парамагнитных комплексов, а также реализуются процессы ионизации и образование ансамбля свободных электронов. При этом возникает электромагнитное излучение на частотах, обусловленных собственными колебаниями зарядов. Поскольку высокочастотные колебания E(t) связаны с колебаниями зарядов, свободных и связанных с молекулярными компонентами композита, они, очевидно, обусловлены колебаниями поляризации. Поскольку подобные многоспиновые объекты изменяют свои магнитные характеристики при воздействии давления, очевидно,

что у них электрический дипольный момент D связан с их спиновой системой, т.е. $D \propto R \times (S_a \times S_b)$, где R — относительное положение двух произвольно взятых спинов в комплексе [Eu^{III}(SQ)₃bipy]. Поскольку R изменяется во времени, соответственно изменяются векторы дипольных моментов D и векторы поляризации P и соответственно магнитные моменты системы M, которые связаны со спиновым ансамблем [23]. Результаты расчетов спектра Фурье для C5 при 3 GPa по формулам (9) для отдельных полос излучения, из которых формируется общий спектр, приведены на рис. 3, *b*, *c*. Исходные данные для расчетов даны в табл. 1.

Однако анализ сигналов от реологического взрыва композитов C1–C5 и матричного полимера на основе уравнений (8) не позволяет оценить релаксационные свойства изучаемых систем. Провести анализ этих характеристик позволяет метод Гаврилиака–Негами [29]. Поскольку формализм описания спектров в рамках метода Гаврилиака–Негами работает с одиночной линией спектра независимо от того, принадлежит эта линия процессу излучения или поглощения, полосы радиочастотного СИ можно анализировать с помощью метода

2	6	2
L	υ	э

$\omega_{rez.E}~(\mathrm{MHz})$	9.50	27.00	50.00	75.00	175.00	204.00	255.00	306.00
$\omega_{r.E}$ (MHz)	5.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
ω_C (MHz)	8.07	25.07	48.98	71.33	174.71	203.75	254.80	305.83
\mathcal{E}_0	4061.53	1588.5	596.92	320.00	31.70	29.08	10.03	4.70
$\omega_{rez.H}$ (MHz)	9.50	27.00	50.00	75.00	175.00	204.00	255.00	306.00
$\omega_{r.H}$ (MHz)	5.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
ω_H (MHz)	8.07	25.07	48.98	71.33	174.71	203.75	254.80	305.83
χο	4625	1389	548.95	279.3	31.80	35.00	12.91	4.62

Таблица 1. Параметры полос излучения

Таблица 2. Параметры полос фурье-спектра для полос СИ для C5 и для полос фурье-спектра PS (модель Гаврилиака-Негами)

Полоса спектра СИ	$\log \omega_0$	$\Delta \varepsilon$	а	b	τ_0 , ns
P1	7.616	1.289	1.235	1.320	28
P2	8.202	0.366	1.631	1.025	5.2
P3	8.488	0.172	1.777	1.005	3.0
P4	8.668	0.096	1.844	1.002	2.3
P5	9.039	0.0077	1.930	1.000	0.9
P6	9.106	0.0073	1.940	1.000	0.8
P7	9.203	0.0025	1.951	1.000	0.6
P8	9.286	0.0011	1.959	1.000	0.5
PS_1	8.295	12.331	0.919	8.471	12.0
PS_2	8.032	2.229	1.576	1.579	27.0

Гаврилиака-Негами по формулам (9) и (10) [29]:

$$\varepsilon'' = \frac{\Delta\varepsilon}{[1 + (i\omega\tau_0)^a]^b},\tag{9}$$

$$g(\tau) = \frac{1}{\pi} \frac{(\tau/\tau_0)^{ab} \sin(b\theta)}{[(\tau/\tau_0)^{2a} + 2(\tau/\tau_0)^a \cos(a\pi) + 1]^{b/2}},$$
 (10)

где $\theta = \arctan \left| \frac{\sin(b\pi)}{(\tau/\tau_0)^a + \cos(a\pi)} \right|$, и получить коэффициенты $\log \omega_0 \ (\omega_0 -$ частота в максимуме полосы излучения), $\Delta \varepsilon \ (\Delta \varepsilon = \varepsilon_s - \varepsilon_\infty,$ где ε_s и ε_∞ - проницаемость при $\omega = 0$ и $\omega \gg 1/\tau_0$ соответственно), *a* (определяет степень частотной зависимости), *b* (определяет ширину спектра), позволяющие аппроксимировать полосы излучения (рис. 4, *a*, *b*), а также определить характерные значения времени релаксации в максимумах полос излучения $\tau_0 = 1/(2\pi\tau_0)$. Аппроксимация фурье-образа электрического сигнала для композита C5 и для полистирольной матрицы по модели Гаврилиака–Негами показана на рис. 4, *a*, *b*, а данные, полученные при этом, приведены в табл. 2.

Расчет кривых релаксации проведен по формулам (6) и данным из табл. 2; значения τ_0 совпадают с максимумами кривых релаксации на рис. 4, *c*. Используя значения коэффициентов $\log \omega_0$, $\Delta \varepsilon$, *a*, *b*, из табл. 2 можно построить кривые распределения времен релаксации $g(\tau)$ для полос композита (C5 в нашем случае) и для полистирольной матрицы (эти кривые приведены на рис. 4, *c*), а также определить характерные значения времен релаксации в максимумах полос излучения τ_0 (приведены в табл. 2). Видно, что распределения времен релаксации имеют длинный хвост со стороны больших частот. Также из рис. 4, *c* видно, что релаксационные кривые для PS (кривая PS_1) и для композита (кривая P1) совпадают. Это указывает на непосредственное участие полимерной матрицы в исследуемых процессах и свидетельствует о том, что колебания полистирольной матрицы активируют поляризационные колебания комплекса европия.

Очевидно, что быстрые процессы связаны и обусловлены нестабильными короткоживущими продуктами, имеющими времена жизни порядка сотен наносекунд. Представляет интерес выяснить, к каким стабильным продуктам приводят быстропротекающие физико-химические процессы с участием короткоживущих частиц.

Методами ЭПР и ТЭМ были проведены оценки количества стабильных частиц после реализации процесса СИ и определены вероятные стабильные продукты этих превращений.

Анализируя спектры ЭПР образцов композитов C1-C5 (рис. 5, *a*, *b*), можно уверенно утверждать, что они представляют собой суперпозицию двух спектров ЭПР. Один из этих спектров принадлежит иону европия (с $g_1 = 2.13$, $g_2 = 1.98$, $g_3 = 1.87$ и соответственно с g_{med} = 1.99), а другой, отмеченный буквой А, скорее всего, принадлежит бирадикалу (или трирадикалу) на лигандах комплекса [Eu^{III}(SQ)₃bipy] — более определенно соотнести этот парамагнитный центр (ПМЦ) не представляется возможным, так как низкополевые сигналы ЭПР, характерные для бирадикалов (или трирадикалов) [30], выявить не удалось. После протекания механохимических процессов (которые сопровождаются актом испускания СИ) фиксируется суммарный спектр ЭПР, который представлен суперпозицией синглетного спектра с $g_{med} = 1.98$ и

Рис. 4. a — фурье-образ электрического сигнала для PS и полосы излучения, полученные по методу Гаврилиака—Негами (параметры даны в табл. 2); b — аппроксимация фурье-образа электрического сигнала для композита C5 по модели Гаврилиака—Негами (параметры полос даны в табл. 2); c — кривые распределения времен релаксации $g(\tau)$ от t для PS-матрицы и композита C5. Номера полос излучения и кривых $g(\tau)$ от τ соответствуют номерам в табл. 2.

спектра от бирадикала (или трирадикала) (рис. 5, c). Подобную трансформацию спектров ЭПР можно, вероятно, трактовать следующим образом: происходит удаление — механохимический отрыв бипиридинового лиганда $[Eu^{III}(SQ)_3 bipy] \rightarrow [Eu^{III}(SQ)_3] + bipy и ион ев$ ропия стабилизируется в кислородном октаэдрическом окружении, при этом сохраняются неспаренные электроны на SQ-лигандах. Подобный процесс — это одна из стадий механохимических превращений исходного [Eu^{III}(SQ)₃bipy]. В пользу того, что до и после механической активации мы методом ЭПР фиксируем только парамагнитные продукты, говорит то, что спектры ЭПР, записанные при комнатной температуре, уширились (рис. 5, b, d), т.е. они связаны с парамагнитными комплексами Eu(III). В случае, если бы в образцах образовались суперпарамагнитные частицы, вероятно, соответствующие им линии ЭПР должны были бы испытать сужение, как фиксировали в работах для наночастиц Со, Fe, Ni [31]. Именно поэтому было проведено двойное интегрирование спектров, записанных при 77 К (интегрирование проводили по всем ПМЦ в образце —

от ПМЦ на Eu(III) и на лигандах), позволившее установить, что после реологического взрыва во всех образцах (в пересчете на количество ПМЦ в cm³) остается только 30% ПМЦ от исходного количества комплексов [Eu^{III}(SQ)₃bipy]. Более детальный анализ методом ЭПР комплексов [Eu^{III}(SQ)₃bipy] и их механохимических превращений требует более высоких экспериментальных возможностей и отдельной публикации.

Также были проведены исследования с помощью просвечивающего электронного микроскопа LEO 912 AB OMEGA при ускоряющем напряжении 100 kV и установлено образование металлических наночастиц европия.

На рис. 6 приведены микрофотографии (*a*, *b*, *d*, *e*) И электронограммы (c, f)образцов композитов $(PS + Eu(III)(SQ)_3 bipy)$ С1 и С5, до (a, d) и после (b, e)механической активации при 3 GPa. Полученные изображения И электронограммы демонстрируют возникновение металлических наночастиц европия (рис. 6, b, c, e, f). Размытое кольцо для композита C1 (рис. 6, c) соответствует дифракции от очень мелких наночастиц размером менее 1 nm. Для композитов при

Рис. 5. Спектры ЭПР, записанные при 77 К (*a*, *c*) и при комнатной температуре (*b*, *d*) для композитов до (*a*, *b*) и после (*c*, *d*) реологического взрыва.

Рис. 6. Микрофотографии (a, b, d, e) и электронограммы (c, f) образцов композитов С1 (a-c) и С5 (d-f).

увеличении концентрации исходного $[Eu^{III}(SQ)_3 bipy]$ наблюдается наличие металлических монокристаллов Eu размера 5 nm и более, о чем можно судить по наличию отдельных дифракционных рефлексов на электронограмме (рис. 6, f). Дифракционная картина электронов совпадает с таковой для металлического европия, что подтверждает наличие рефлексов [110], [200], [211] (рис. 6, f — белые круги) и доказывает наличие нанокристаллов металлического Eu в образце.

Заключение

Можно полагать, что процесс механической активации композитов протекает при непосредственном участии полимерной матрицы, поскольку колебания цепей полимерной матрицы приводят к активации металлоорганических комплексов. При этом разумно предположить, что активация (механоактивация) наиболее активно происходит в нанообъемах (нанополостях) с подвижными стенками, возникающих при реологическом взрыве в полимерной матрице [10]. Очевидно, что эти нанополости возникают в местах соприкосновения (нахождения) наполнителя и полимерных цепей PS. В активированных таким образом комплексах начинают протекать физикохимические процессы, в том числе окислительно-восстановительные, связанные с редокс-активными лигандами, переносом электронной плотности, образованием подвижных электронов и возникновением триплетных возбужденных состояний и отрицательной спиновой поляризации [32-35]. При этом четырехспиновая система трансформируется в трехспиновую с образованием подвижного электрона е-, который инициирует процессы восстановления ионов европия и последующие процессы синтеза наночастиц металлического европия. Образование неспаренных свободных электронов в образце можно рассматривать как исходный этап сложного, вероятно, каталитического процесса, приводящего к образованию металлических наночастиц европия в полимерной матрице. Очевидно, что подобные утверждения требуют проведения дополнительного комплексного исследования этих физико-химических процессов с учетом специфики механохимических процессов при наличии полимерной матрицы. Действительно, аномальную диффузионную подвижность реагентов при механической активации отмечали достаточно давно [36]. В более поздней работе [10] доказано возникновение свободных нанополостей в полистирольной матрице при реологическом взрыве. Опираясь на эти работы и данные о количестве свободных электронов, возникающих при механоактивации, и количестве комплексов Eu(III) в исходных образцах, можно предположить, что механохимические превращения в полимерной матрице идут в нанореакторах при аномально высокой диффузионной подвижности компонентов. Именно это позволяет наблюдать приведенные в работе эффекты. Представленные в работе эффекты и ранее опубликованная авторами

работа [10] являются логическим продолжением работ С.Н. Журавлева и В.Р. Регеля [37,38], в которых рассмотрены процессы образования ансамблей нано- и микротрещин, несущих электрические заряды. Очевидно, что рассмотрение описанных в работе физико- химических процессов требует отдельной публикации и проведения дополнительных экспериментов с целью развития и обобщения воззрений, изложенных в работах [33–39].

Уже сейчас можно отметить, что важной особенностью подобного механохимического подхода является возможность эффективного контроля за размером синтезируемых наночастиц в полимерной матрице в зависимости от состава композита. Также отметим, что системы на основе подобных элементоорганических соединений являются хорошей моделью для исследования механохимических процессов синтеза полимерных композитов.

Благодарности

Авторы выражают благодарность Центру коллективного пользования ИБХФ РАН за помощь в получении данных ЭПР.

Финансирование работы

Работа выполнена при финансовой поддержке Минобрнауки России (грант № 075-15-2020-794).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.И. Александров, И.А. Александров, А.И. Прокофьев. Письма в ЖЭТФ, 97 (9), 630 (2013). [А.І. Aleksandrov, I.A. Alexandrov, А.І. Prokof'ev. JETP Lett., 97 (9), 546 (2013). DOI: 10.1134/S0021364013090038]
- [2] А.И. Александров, И.А. Александров, А.И. Прокофьев. ДАН сер. физ. хим., 451 (1), 50 (2013). [А.І. Aleksandrov, І.А. Alexandrov, А.І. Prokof'ev. Dokl. Phys. Chem., 451 (1), 147 (2013). DOI:10.1134/S0012501613070014]
- [3] А.И. Александров, И.А. Александров, С.Б. Зезин, Е.Н. Дегтярев, А.А. Дубинский, С.С. Абрамчук, А.И. Прокофьев. Химическая физика, **35** (2), 78 (2016). [А.І. Aleksandrov, I.A. Aleksandrov, S.B. Zezin, E.N. Degtyarev, А.А. Dubinskiy, S.S. Abramchuk, A.I. Prokof'ev. Rus. J. Phys. Chem. B, **10** (1), 69 (2016). DOI: 10.1134/S1990793116010139]
- [4] А.И. Александров, В.Г. Шевченко, И.А. Александров. Письма в ЖТФ, 46 (7), 43 (2020).
 DOI: 10.21883/PJTF.2020.07.49220.18119 [A.I. Aleksandrov, V.G. Shevchenko, I.A. Aleksandrov. Tech. Phys. Lett., 46 (4), 346 (2020). DOI: 10.1134/S1063785020040021]
- [5] А.И. Александров, В.Г. Шевченко, И.А. Александров, Е.Н. Дегтярев, С.С. Абрамчук. Высокомолек. соед. Сер. А, **62** (5), 380 (2020). [А.І. Aleksandrov, V.G. Shevchenko, I.A. Aleksandrov, E.N. Degtyarev, S.S. Abramchuk. Polymer Sci., Ser. A, **62** (5), 550 (2020). DOI: 10.1134/S0965545X2004001X]

267

- [6] R.H. Dicke. Phys. Rev., 93, 99 (1954).
- [7] P.W. Bridgman. Rev. Mod. Phys., 18 (1), 1 (1946).
- [8] I.J. Dzyaloshinskii. Chem. Sol., 4, 241 (1958).
- [9] T. Moriya. Phys. Rev., 120, 91 (1960).
- [10] A.I. Aleksandrov, I.A. Aleksandrov, V.G. Shevchenko, A.N. Ozerin. Chinese J. Polym. Sci., 39, 601 (2021).
 DOI: 10.1007/s10118-021-2511-5
- [11] А.И. Александров, В.Г. Шевченко, И.А. Александров, С.В. Фокин, В.И. Овчаренко. Письма в ЖТФ, 47 (1), 23 (2021). DOI: 10.21883/PJTF.2021.01.50453.18451
 [A.I. Alexandrov, V.G. Shevchenko, I.A. Alexandrov, S.V. Fokin, V.I. Ovcharenko, Tech. Phys. Lett., 47 (1), 19 (2021). DOI: 10.1134/S106378502101003X]
- [12] Г.В. Романенко, С.В. Фокин, Г.А. Летягин, А.С. Богомяков, В.И. Овчаренко. Журн. структурной химии, **60** (7), 1139 (2019). DOI: 10.26902/JSC_id42975 [G.V. Romanenko, S.V. Fokin, G.A. Letyagin, A.S. Bogomyakov, V.I. Ovcharenko. J. Struct. Chem., **60** (7), 1091 (2019). DOI: 10.1134/S0022476619070102]
- [13] T. Sugawara, H. Komatsu, K. Suzuki. Chem. Soc. Rev., 40, 3105 (2011). DOI: 10.1039/c0cs00157k
- [14] I. Barskaya, E. Tretyakov, R. Sagdeev, V. Ovcharenko, E. Bagryanskaya, K. Maryunina, T. Takui, K. Sato, M. Fedin. J. Am. Chem. Soc., 136, 10132 (2014). DOI: 10.1021/ja504774q
- [15] S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. Mori, R.D. Rahimi, E. Sato, Y. Morita, K. Toyota, D. Shiomi. Angew. Chem. Int. Ed., **51**, 9860 (2012). DOI: 10.1063/1.4816636
- [16] K. Ayabe, K. Sato, S. Nakazawa, S. Nishida, K. Sugisaki, T. Ise, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa. Mol. Phys., 111, 2767 (2013).
 DOI: 10.1080/00268976.2013.811304
- [17] E. Coronado, A.J. Ctein. J. Mater. Chem. 19, 1670 (2009).
 DOI: 10.1039/b901955n
- [18] R. Hussain, S.S. Kruk, C.F. Bonner, M.A. Noginov, I. Staude, Y.S. Kivshar, N. Noginova, D.N. Neshev. Opt. Lett., 40, 8 (2015). DOI: 10.1364/OL.40.001659
- [19] Е.Д. Трифонов. ЖЭТФ, **120** (5), 1117 (2001). [Е.D. Trifonov. JETP, 93 (5), 969 (2001). DOI:10.1134/1.1427108]
- [20] А.В. Андреев, В.И. Емельянов, Ю.А. Ильинский. УФН, 131 (4), 655 (1980). [А.V. Andreev, V.I. Emel'yanov, Yu.A. Il'inskii. Sov. Phys. Usp., 23, 493 (1980). DOI: 10.1070/PU1980v023n08ABEH005024]
- [21] В.В. Кочаровский, В.В. Железняков, Е.Р. Кочаровская, В.В. Кочаровский. УФН, 187 (4), 367 (2017).
 [V.V. Kocharovsky, V.V. Zheleznyakov, E.R. Kocharovskaya, V.V. Kocharovsky. Phys. Usp., 60, 345 (2017).
 DOI: 10.3367/UFNe.2017.03.038098]
- [22] H.A. Lorentz. PhysikalischeZeitschrift, 498, 514 (1899).
- [23] T.A. Kaplan, S.D. Mahant. Phys. Rev. B, 83, 174432 (2011).
 DOI: 10.1103/PhysRevB.83.174432
- [24] L. Landau, L. Lifshitz. Physik. Zeitschrift Sowjet Union, 8, 153 (1935).
- [25] F. Bloch. Phys. Rev., 70, 460 (1946).DOI:10.1103/PhysRev.70.460
- [26] N. Bloembergen. Phys. Rev., 78, 572 (1950). DOI:10.1103/PhysRev.78.572
- [27] A.K. Jonscher. Dielectric Relaxation in Solids (Chelsea Dielectric Press Ltd, London, 1983)
- [28] А.Г. Гуревич. Ферриты на сверхвысоких частотах (Физматгиз, М., 1960)

- [29] S. Havriliak, S. Negami. J. Polym. Sci., 14, 99 (1966). DOI:10.1002/polc.5070140111
- [30] S.D. Chemerisov, G.D. Perekhodtsev, D.S. Tipikin, Ya.S. Lebedev, A.I. Prokof'ev, A.I. Aleksandrov, A.A. Dubinskii, K. Mobius, O.G. Poluektov, J. Schmidt. J. Chem. Soc., Faraday Trans., 92 (11), 1959 (1996). DOI: 10.1039/ft9969201959
- [31] R.R. Rakhimov, E.M. Jackson, J.S. Hwang, A.I. Prokof'ev, I.A. Alexandrov, A.Y. Karmilov, A.I. Aleksandrov. J. Appl. Phys., 95 (11), 7133 (2004). DOI: 10.1063/1.1668613
- [32] А.Л. Бучаченко, В.Л. Бердинский. Успехи химии, 52 (1), 3 (1983). [A.L. Buchachenko, V.L. Berdinskii. Rus. Chem. Bull., 44, 1578 (1995). DOI: 10.1007/BF01151273]
- [33] Я.Б. Зельдович, А.Л. Бучаченко, Е.Л. Франкевич. УФН, 155 (1), 3 (1988). [Ya.B. Zel'dovich, A.L. Buchachenko, E.L. Frankevich. Sov. Phys. Usp., 31, 385 (1988). DOI: 10.1070/PU1988v031n05ABEH003544]
- [34] А.Л. Бучаченко, В.Л. Бердинский. Изв АН. Сер. хим. 1646 (1995).
 [A.L. Buchachenko, V.L. Berdinskii. Rus. Chem. Bull., 44, 1578 (1995). DOI:10.1007/BF01151273]
- [35] А.Л. Бучаченко, В.Л. Бердинский. Кинетика и катализ, 37 (5), 659 (1996). [V.L. Berdinskii, A.L. Buchachenko. Kinetics and Catalysis, 37, 615 (1996).]
- [36] Н.С. Ениколопов. Успехи химии, 60, 586 (1991).
 [N.S. Enikolopov. Rus. Chem. Rev., 60, 283 (1991).
 DOI: 10.1070/RC1991v060n03ABEH001062]
- [37] С.Н. Журков. ФТТ, **25** (10), 3119 (1983).
- [38] E.E. Tomashevskii, V.A. Zakrevskii, I.I. Novak, V.E. Korsukov, V.R. Regel, O.F. Pozdnjakov, A.I. Slutsker, V.S. Kuksenko. Int. J. Fract., 11, 803 (1975). DOI: 10.1007/BF00012898
- [39] В.А. Закревский, В.А. Пахотин. ФТТ, 52 (6), 1083 (2010).