12,18 К модельному описанию электронного спектра графеноподобных Янус-структур

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

Поступила в Редакцию 1 октября 2021 г. В окончательной редакции 1 октября 2021 г.

Принята к публикации 11 октября 2021 г.

Предложена модель Янус-структуры C-AB-D как соединения, образованного взаимодействующими (через атомы A и B) димерами A-C и B-D, где атомы A и B находятся в узлах двумерной гексагональной решетки, а атомы C и D расположены по разные стороны от плоскости этой решетки. В рамках теории сильной связи методом функций Грина получено общее уравнения для определения закона дисперсии. Подробно рассмотрены частные случаи соединений C-AA-D и A-AB-B, для которых закон дисперсии получен в аналитическом виде и определено влияние внешней механической деформации на зонные характеристики. Обсуждается вопрос о намагниченности Янус-структур.

Ключевые слова: модель взаимодействующих димеров, электронный спектр, влияние деформации, магнитные состояния.

DOI: 10.21883/FTT.2022.02.51939.218

1. Введение

Двумерными Янус-соединениями называют структуры, верхняя и нижняя поверхности которых построены из различающихся атомов или молекул [1-3]. Исследования электронного спектра таких структур началось в 2009 г. с графона-графена, каждый второй атом углерода которого связан с атомом водорода, причем атомы водорода лежат по одну сторону от графенового листа (ту же структуру можно рассматривать как графан, у которого с одной из поверхностей удален водород) [4]. Практически одновременно возник интерес к структурам, в которых место атомов водорода занимают атомы галогенов, а место графена — графеноподобные соединения (GLC), такие как гексагональный нитрид бора (h-BN), силицен, германен и т.п. [5,6]. Большое внимание уделяется Янус-структурам на основе дихалькагенидов переходных металлов [7,8]. Особое место занимают исследования магнитных состояний в Янусструктурах [4,9,10].

Насколько известно автору, все теоретические работы по данной тематике выполнены в рамках DFT (density functional theory). Здесь мы предложим простую модель графеноподобных Янус-соединений (J-GLC), позволяющую получить аналитические выражения для зонных характеристик (включая эффективные массы носителей) и оценить, как на значения этих характеристик влияет внешняя механическая деформация. Обсудим также вопрос о намагниченности J-GLC.

2. Электронный спектр: общие соотношения

Структурная модель гексагонального фрагмента J-GLC представлена на рисунке. В дальнейшем мы используем результаты работы [11], где рассматривалась симметричная графеноподобная структура, отличающаяся от структуры J-GLC тем, что по обе стороны от GLC-листа расположены одинаковые атомы *C*.

Как и в работе [11], начнем с набора двух различных асимметричных димеров, состоящих из атомов A, Cи B, D, связанных соответственно интегралами перехода t_{ac} и t_{bd} . Построим из этих димеров гексагональную двумерную решетку, включив взаимодействие t_{ab} между ближайшими атомами A и B. Такую структуру будем обозначать как C-AB-D. Обобщая результаты рабо-

Гексагональный фрагмент структуры графеноподобного Януссоединения (J-GLC).

ты [11], получим для J-GLC функции Грина вида

$$G^{AA(BB)}(\omega, \mathbf{k}) = \frac{G^{A(B)}(\omega)}{1 - t_{ab}^2 G^A(\omega) G^B(\omega) f^2(\mathbf{k})},$$
$$G^{A(B)}(\omega) = \frac{g^{A(B)}(\omega)}{1 - t_{a(b)c(d)}^2 g^{A(B)}(\omega) g^{C(D)}(\omega)}, \qquad (1)$$

$$f(\mathbf{k}) = \sqrt{3 + 2\cos(k_x a\sqrt{3}) + 4\cos(k_x a\sqrt{3}/2)\cos(3k_y a/2)}.$$

Здесь ω — энергетическая переменная, $g^{I}(\omega) = (\omega - \varepsilon_{i} + i0^{+})^{-1}$ — атомная функция Грина, где ε_{i} — энергия уровня атома i = a, b, c, d; $\mathbf{k} = (k_{x}, k_{y}, 0)$ — волновой вектор для движения электрона в плоскости (x, y, 0), a — расстояние между ближайшими атомами A и B. Электронный спектр системы находим из уравнения Re $D(\omega, \mathbf{k}) = 0$, где

$$D(\omega, \mathbf{k}) = \left[1 - t_{ac}^2 g^A(\omega) g^C(\omega)\right] \left[1 - t_{bd}^2 g^B(\omega) g^D(\omega)\right]$$
$$- t_{ab}^2 g^A(\omega) g^B(\omega) f^2(\mathbf{k}), \qquad (2)$$

откуда получаем уравнение

$$(\Omega_a \Omega_c - t_{ac}^2)(\Omega_b \Omega_d - t_{bd}^2) - \Omega_c \Omega_d t_{ab}^2 f^2(\mathbf{k}) = 0, \quad (3)$$

где $\Omega_i = \omega - \varepsilon_i$. При $t_{ac} = t_{bd} = 0$ имеем два локальных атомных уровня $\omega_{c,d} = \varepsilon_{c(d)}$ и две GLC-зоны $\omega_{ab}^{\pm}(\mathbf{k}) = \varepsilon_{ab} \pm \sqrt{\Delta_{ab}^2 + t_{ab}^2 f^2(\mathbf{k})}$, где $\overline{\varepsilon}_{ab} = (\varepsilon_a + \varepsilon_b)/2$ и $\Delta_{ab} = |\varepsilon_a - \varepsilon_b|/2$. При $t_{ab} = 0$ имеем четыре локальных уровня димеров A - C и B - D с энергиями $\overline{\omega}_{ac}^{\pm} = \varepsilon_{ac} \pm R_{ac}$ и $\overline{\omega}_{bd}^{\pm} = \varepsilon_{bd} \pm R_{bd}$, где $R_{ij} = \sqrt{\Delta_{ij}^2 + t_{ij}^2}$, $\overline{\varepsilon}_{ij} = (\varepsilon_i + \varepsilon_j)/2$ и $\Delta_{ij} = |\varepsilon_i - \varepsilon_j|/2\Delta_{ij}$. В общем случае решение уравнения (3) слишком громоздко и поэтому малоинформативно. Легко показать, однако, что при $\varepsilon_a = -\varepsilon_b$, $\varepsilon_c = -\varepsilon_d$ и $t_{ac} = t_{bd}$ уравнение (3) переходит в биквадратное уравнение. Поэтому ниже мы рассмотрим частные случаи и покажем, какие конкретные J-GLC этим случаям можно сопоставить.

Частные случаи и соответствующие им J-GLC

3.1. Соединения С-АА-D

Пусть $\varepsilon_a = \varepsilon_b = 0$, $\varepsilon_c = -\varepsilon_d = e > 0$, $t_{ac} = t_{bd} = t_{\perp}$, $t_{ab} = t$ (вариант 1). Тогда получаем решения уравнения (3) вида

$$E_{1\pm}^{\pm}(\mathbf{k}) = \pm \sqrt{\left[B_1(\mathbf{k}) \pm R_1(\mathbf{k})\right]/2},$$

$$R_1(\mathbf{k}) = \sqrt{\left[e^2 - t^2 f^2(\mathbf{k})\right]^2 + 4t_{\perp}^2 \left[e^2 + t^2 f^2(\mathbf{k})\right]}, \quad (4)$$

где $B_1(\mathbf{k}) = e^2 + 2t_{\perp}^2 + t^2 f^2(\mathbf{k})$, верхние знаки у зон $E_{1\pm}^{\pm}(\mathbf{k})$ соответствуют знакам перед внешним корнем, нижние — перед внутренним корнем $R_1(\mathbf{k})$. В дальнейшем сосредоточим внимание на низкоэнергетических

зонах $E_{1-}^+(\mathbf{k}) = E_{C1}(\mathbf{k})$ и $E_{1-}^-(\mathbf{k}) = E_{V1}(\mathbf{k})$, где индексы *C* и *V* относятся к зоне проводимости и валентной зоне.

Учитывая, что $f(\Gamma) = 3$, f(M) = 1 и f(K) = 0, где Γ , M и K — точки зоны Бриллюэна двумерной гексагональной решетки, имеем

$$B_{1\Gamma} = e^2 + 2t_{\perp}^2 + 9t^2, \quad B_{1M} = e^2 + 2t_{\perp}^2 + t^2,$$

$$B_{1K} = e^2 + 2t_{\perp}^2, \quad R_{1\Gamma} = \sqrt{(e^2 - 9t^2)^2 + 4t_{\perp}^2(e^2 + 9t^2)},$$

$$R_{1M} = \sqrt{(e^2 - t^2)^2 + 4t_{\perp}^2(e^2 + t^2)}, \quad R_{1K} = e\sqrt{e^2 + 4t_{\perp}^2}.$$

Щели между экстремумами низкоэнергетических зон в точках $\Gamma(M,K)$ равны

$$\Delta_{1\Gamma(\mathbf{M},\mathbf{K})} = \sqrt{2(B_{1\Gamma(\mathbf{M},\mathbf{K})} - R_{1\Gamma(\mathbf{M},\mathbf{K})})}.$$

Покажем теперь, что в рамках варианта 1 можно приближенно описать, например, соединение Cl-графен (Gr)-Вг. В принципе, можно подобрать соответствующие декорирующие атомные пары C и D и для других двумерных гексагональных одноэлементных структур типа силицена, германена и т.д., именуемых соединениями Xenens [12.13]. Здесь мы ограничимся асимметрично декорированным графеном.

Считая, что σ -связь атомов углерода (A и B) осуществляется |s p²>-орбиталями и принимая энергию $\varepsilon_{sp2}(Gr) = (\varepsilon_s + 2\varepsilon_p)/3 = -11.82 \, eV$ относительно вакуума (мы использовали таблицы атомных термов Хермана-Скиллмана [14]) за начало отсчета, получим для энергий *p*-уровней атомов хлора и брома значения -0.49 и 0.62 eV соответственно. Для определения интегралов перехода t и t_⊥ воспользуемся методом связывающих орбиталей Харрисона [15]. Тогда $t = V_{sp2} = 3.2(\hbar^2/m_0a^2)$, где \hbar — приведенная постоянная Планка, m_0 — масса свободного электрона. В дальнейшем все длины связей будем приравнивать к сумме радиусов r_a атомов [16,17], образующих эти связи. Тогда для Gr получаем длину связи a = 1.54 Å, что практически совпадает со значением 1.53 Å, полученным из численного расчета для графона Gr-C [18]. Тогда получим $t \approx 10.5 \, \text{eV}$. Связи атомов углерода с атомами галогенов считаем σ -связями двух $|p\rangle$ -орбиталей, так что $t_{\perp} = V_{pp\sigma} = 2.22(\hbar^2/m_0 d^2)$, где d — длина связи. Для атома углерода $r_a = 0.77 \text{ Å}$ [16], для атомов Cl и Br значения r_a (по Полингу) равны соответственно 0.99 и 1.14 Å [17]. Отсюда получаем $t_{\perp} = 5.46$ и 4.64 eV для связей C-Cl и C-Br соответственно. Для дальнейших численных оценок положим $e = 0.5 \,\text{eV}, t = 10 \,\text{eV},$ $t_{\perp} = 5 \, \text{eV}$. Результаты расчетов сведены в таблицу, где приведены также оценки ширины зон разрешенных состояний $W_C = W_V = W = (\Delta_{\rm K} - \Delta_{\Gamma})/2$ и щели между высокоэнергетическими и низкоэнергетическими зонами $\Delta_{\rm KK} = E^+_+({\rm K}) - E^+_-({\rm K}).$

Так как, $\Delta_{1\Gamma} < \Delta_{1K}$, ширина запрещенной зоны $E_{g1} = \Delta_{1\Gamma}$. В окрестности точки Γ дисперсии зоны проводимости $E_C(\mathbf{k}) = E_-^+(\mathbf{k})$ и валентной зоны

J-GLC	Cl-Gr-Br	B-BN-N	Al-AlP-P	Ga–GaAs–As	In-InSb-Sb
t	10	10	5	4.4	3.3
t_{\perp}	5.0	10	5	4.4	3.3
е	0.5	3.0	2.2	1.3	1.5
$\Delta_{\Gamma} = E_g \ \delta_{2D} \Delta_{\Gamma} / \xi \ \delta_z \Delta_{\Gamma} / \xi \ \delta_z \Delta_{\Gamma} / \psi$	1.89 1.30 -2.70 0.25	7.71 4.65 -51 1.48	4.63 0.35 -21 0.80	3.26 1.17 -24 0.66	3.07 0.20 -14 0.93
$\Delta_{ m M} \ \delta_{2D} \Delta_{ m M}/\xi \ \delta_z \Delta_{ m M}/\xi \ \delta_e \Delta_{ m M}/\psi$	4.22 2.82 -6.90 0.09	11.3 3.22 -34 -0.92	5.21 0.52 -18 -0.75	4.98 1.45 -15 -0.39	3.190.12-13-0.50
$\Delta_{ m K} \ \delta_{2D} \Delta_{ m K}/\xi \ \delta_z \Delta_{ m K}/\xi \ \delta_z \Delta_{ m K}/\psi$	9.51 0 -10 -0.24	17.8 0 -19 -0.67	8.68 0 -9 -0.07	7.83 0 -8 -0.30	5.73 0 -6 -0.08
$\Delta_{ m KK} \ \delta_{2D} \Delta_{ m KK}/\xi \ \delta_z \Delta_{ m KK}/\xi \ \delta_e \Delta_{ m KK}/\psi$	$0.50 \\ 0 \\ -4 \\ 2$	2.90 0 -0.38 10.8	1.84 0 -0.56 7.1	$1.26 \\ 0 \\ -0.16 \\ 4.71$	0.96 0 -0.63 4.76
$m_e^* \ \delta_{2D} m_e^* / m_e^* \xi \ \delta_z m_e^* / m_e^* \xi \ \delta_e m_e^* / m_e^* \psi$	5 -4.9 7 0.13	3 -4.0 30 0.83	8 -4.5 175 7.27	3 -4.2 60 4.90	11 -4.5 208 1.13
W	3.81	2.90	2.03	2.20	1.31

Параметры модели и оценки зонных характеристик J-GLC (Все значения энергетических характеристик приведены в eV, деформационные характеристики нормированы на относительные деформации межатомных связей ξ и ξ , отклики зонных характеристик на вариацию энергии *е* нормированы на ψ . Индексы 1 для Cl–Gr–Br и 2 для остальных соединений опущен.)

 $E_V(\mathbf{k}) = E_-^{-}(\mathbf{k})$ можно представить в виде

$$E_{C(V)}(\mathbf{k}) = \pm \frac{E_{g1}}{2} + \frac{\hbar^2 k^2}{2m_{1e(h)}}.$$
 (5)

где эффективные массы электронов (*e*) и дырок (*h*) равны

$$m_{1e} = -m_{1h} = \frac{\hbar^2 E_{g1}}{9t^2 a^2 C_{1\Gamma}},\tag{6}$$

 $C_{1\Gamma} = r_{1\Gamma}/R_{1\Gamma} - 1$, $r_{1\Gamma} = 9t^2 + 2t_{\perp}^2 - e^2$. Значение безразмерной эффективной массы $m_{1e}^* = m_{1e}/m_0$ приведено в таблице. При $e^2 \ll t_{\perp}^2 \ll t^2$ получаем $C_{1\Gamma} \approx 2t_{\perp}^4/81t^4 \ll 1$, точное значение $C_{1\Gamma} = 1.36 \cdot 10^{-3}$.

Теперь рассмотрим соединение H–Gr–Cl, воспользовавшись таблицами атомных термов Фишер (см. [14], т. 2, Приложение 1). Тогда для атомов углерода (атомы *A* и *B*) имеем $\varepsilon_a = \varepsilon_b = (\varepsilon_s + 2\varepsilon_p)/3 = -13.84 \text{ eV}$ относительно вакуума. Для атома водорода (атом *C*) имеем $\varepsilon_c = \varepsilon_s = -I = -13.60 \text{ eV}$, где *I* — энергии ионизации. Для хлора имеем $\varepsilon_d = -13.78 \text{ eV}$. Положим, для простоты, $\varepsilon_a = \varepsilon_b = \varepsilon_c = \varepsilon_d = -13.7 \text{ eV}$ и примем эту энергию за начало отсчета. Далее, как показано выше, для связи C–Cl имеем $t_{bd} = 5.46 \text{ eV}$. Полагая длину связи C–Cl равной 1.30 Å, где за атомный радиус водорода мы приняли радиус Бора, получим $t_{ac} = V_{sp\sigma} = 1.42(\hbar^2/m_0d^2) = 6.40$ eV. Положим $t_{\perp} = 6$ eV и, как и выше, $t_{ab} = t = 10$ eV. Вместо уравнения (3) теперь имеем

$$\omega^4 - \left(2t_{\perp}^2 + t^2 f^2(\mathbf{k})\right) + t_{\perp}^4 = 0,$$

откуда получаем

$$\mathcal{E}^{\pm}_{\pm}(\mathbf{k})' = \pm \sqrt{\left[B'(\mathbf{k}) \pm R'(\mathbf{k})\right]/2},$$

где

И

$$B_1(\mathbf{K}) = e^2 = 2t_\perp^2 f^2(\mathbf{K})$$

$$R'(\mathbf{k}) = tf(\mathbf{k})\sqrt{4t_{\perp}^2 + t^2f^2(\mathbf{k})}.$$

Таким образом, зоны $E_{\pm}^{\pm}(\mathbf{k})'$ совпадают с зонами $E_{1\pm}^{\pm}(\mathbf{k})$ (4) для соединения Cl–Gr–Br, где во всех выражениях для $B'_{\Gamma,M,K}$ и $R'_{\Gamma,M,K}$ нужно положить e = 0. Так как для Cl–Gr–Br $e \ll t_{\perp}, t$ (см. таблицу), а значения $t_{\perp} = 5 \text{ eV}$ близко к $t_{\perp} = 6 \text{ eV}$ для H–Gr–Cl, будут близки и зонные характеристики двух этих соединений. Так, например, получаем $E'_{g1} = \Delta'_{1\Gamma} = 2.31 \text{ eV}$ и $m'_{1e} = 3$.

DFT-расчеты для соединений H–Gr–D (D = F, Cl, Br) были выполнены в [19,20]. В этих работах рассматривались, однако, малые поверхностные концентрации атомов водорода и галогенов, образующих трехатомные островки вокруг гексагонов с обеих сторон графенового листа. В зависимости от конфигурации таких островков на поверхности графена меняются как положения запрещенных зон (точки Γ и K), так и их ширина (от 0.06 до 1.57 eV). Так, например, для соединения H–Gr–Cl для запрещенной зоны в точке Γ было получено значение $E_g = 1.57$ eV. К сожалению, информация об эффективных массах носителей в [19,20] отсутствует.

3.2. Соединения А-АВ-В

Пуст теперь $\varepsilon_a = \varepsilon_c = e$, $\varepsilon_b = \varepsilon_d = -e$, $t_{ac} = t_{bd} = t_{\perp}$, $t_{ab} = t$ (вариант 2). Тогда из уравнения (3) получаем спектр вида

$$E_{2\pm}^{\pm} = \pm \sqrt{[B_2(\mathbf{k}) \pm R_2(\mathbf{k})]/2},$$

$$R_2(\mathbf{k}) = \sqrt{4t_{\perp}^2 [4e^2 + t^2 f^2(\mathbf{k})] + t^4 f^4(\mathbf{k})},$$
 (7)

где

$$B_2(\mathbf{k}) = 2(e^2 + t_{\perp}^2) = t^2 f^2(\mathbf{k}).$$

Характерные зонные параметры равны:

$$\begin{split} B_{2\Gamma} &= 2(e^2 + t_{\perp}^2) + 9t^2, \quad B_{2M} = 2(e^2 + t_{\perp}^2) + t^2, \\ B_{2K} &= 2(e^2 + t_{\perp}^2), \quad R_{2\Gamma} = \sqrt{4t_{\perp}^2(4e^2 + 9t^2) + 81t^4}. \\ R_{2M} &= \sqrt{4t_{\perp}^2(4e^2 + t^2) + t^4}, \quad R_{2K} = 2et_{\perp}, \\ \Delta_{2\Gamma,M} &= 2\sqrt{(B_{2\Gamma,M} - R_{2\Gamma,M})/2} \text{ is } \Delta_{2K} = 2\sqrt{e^2 + t_{\perp}^2 - et_{\perp}}. \end{split}$$

Легко показать, что $\Delta_{\Gamma} < \Delta_{K}$, или $2et_{\perp} < R_{2\Gamma}$, так что запрещенная зона формируется в точке Г. Ширина зоны проводимости и валентной зоны $W = (\Delta_{K} - \Delta_{\Gamma})/2$, а щель

$$\Delta_{2\mathrm{K}\mathrm{K}} = \sqrt{e^2 + t_\perp^2 + et_\perp} - \sqrt{e^2 + t_\perp^2 - et}.$$

Эффективные массы носителей имеют вид

$$m_{2e}^* = -m_{2h}^* = \frac{\hbar^2 E_{g2}}{9t^2 a^2 C_{2\Gamma}},\tag{8}$$

где $E_{g2} = \Delta_{2\Gamma}, C_{2\Gamma} = r_{2\Gamma}/R_{2\Gamma} - 1, r_{2\Gamma} = 9t^2 + 2t_{\perp}^2.$

Вариант 2 можно применить к J-GLC вида A-AB-B, где AB представляют собой двумерные гексагональные соединения III–V, такие, например, как BN, AlP, GaAs и InSb [11,21,22]. Так как в рамках нашей схемы среднее значение длины связей A-A и B-B равно длине связи A-B, т.е. d = a, то $t_{\perp} = t$. Будем считать, что все атомы образуют σ -связи $|sp^{3}\rangle$ -орбиталей с энергиями $\varepsilon_{sp3} = (\varepsilon_{s} + 3\varepsilon_{p})/4$. Тогда $t = V_{sp3} = 3.22(\hbar^{2}/m_{0}a^{2})$ [15]. Принимая значение $\overline{\varepsilon}_{ab} = (\varepsilon_{a} + \varepsilon_{b})/2$ за начало отсчета энергии, положим $\varepsilon_{a} = -\varepsilon_{b} = e$. Результаты расчетов

сведены в таблицу. Для сравнения приведем значение $E_g = 2.55 \text{ eV}$, полученное для соединения F–BN–H в [9] — единственной известной нам работе по соединениям типа C-AB-D.

По результатам представленным в таблице, можно сформулировать следующие выводы: 1) соединения Cl-Gr-Br и In-InSb-Sb являются широкозонными полупроводниками, соединения B-BN-N, A1-A1P-P и Ga-GaAs-As — изоляторами; 2) зоны $E_C(\mathbf{k})$ и $E_V(\mathbf{k})$ узки, мала и щель Δ_{KK} , отделяющая эти зоны от широких высокоэнергетических зон $E^{\pm}_{+}(\mathbf{k})$; 3) в рассмотренных J-GLC эффективные массы носителей являются тяжелыми. В силу сделанных нами упрощений, все приведенные оценки зонных характеристик следует считать полуколичественными. Оценки эффективных масс являются лишь порядковыми, что связано с малостью параметра $C \sim 10^{-3}$, могущей приводить к существенным ошибкам в оценках. Малость С возникает вследствие того, что при разложении выражения $E_C(\mathbf{k}) = -E_V(\mathbf{k})$ по $(ka)^2$ вклады от $B(\mathbf{k})$ и $R(\mathbf{k})$ почти компенсируют друг друга, что приводит к слабой дисперсии (отсюда и узость зон) и большой эффективной массе.

Отметим, что оценки зонных параметров для графана H–Gr–H [23] и флюорографена F–Gr–F [24] (полученные в рамках практически той же модели, что и здесь) близки к результатам настоящей работы. Так, например, $E_g \approx 5.6$ и 3 eV, $m_e^* = -m_h^* \approx 2$ и 3 для графана и флюорографана соответственно. С другой стороны, согласно результатам работы [11], симметричные структуры C–BN–C, Si–AlP–Si, Ge–GaAs–Ge и Sn–InSb–Sn являются узкозонными полупроводниками ($E_g \approx 0.7$ eV для C–BN–C и ~ 0.3 eV для остальных соединений), также узкими являются ширины зон $W_C = W_V$ и щели $\Delta_{\rm KK}$.

Влияние деформации на электронный спектр

Пусть гексагональная решетка, образованная атомами АВ, подвергается всестороннему растяжению или сжатию (плоская деформация). Соответствующую относительную деформацию длины связи между ближайшими соседями обозначим $\xi = \delta a/a$. При такой деформации вид функции $f(\mathbf{k})$ не меняется, но энергетические характеристики зон претерпевают изменения. Пусть теперь под действием пары разнонаправленных вдоль оси z сил осуществляется растяжение или сжатие связей А-С и В-D. При этом деформации δd_{ac} и δd_{bd} длин связей должны удовлетворять равенству $k_{ac}\delta d_{ac} = k_{bd}\delta d_{bd}$, где k_{ac} и k_{bd} — силовые константы связей. В соответствии с [14,15,25], центральная силовая константа $k = 4\alpha_c(1-2\alpha_p)V_2/d^2$, где $V_2 = t_{ac}, t_{bd}, \ lpha_c = V_2/\sqrt{V_2^2 + V_3^2}$ и $lpha_p = V_3/\sqrt{V_2^2 + V_3^2}$ ковалентность и полярность связи, $V_3 = |\varepsilon_{a(b)} - \varepsilon_{c(d)}|/2$.

Для рассматриваемых нами частных случаев ($d_{ac} = d_{bd}$, $t_{ac} = t_{bd} = t_{\perp}$ и $V_2 = e/2$) получаем $\xi_{ac} = \xi_{bd} = \xi$.

4.1. Соединения С-АА-D

Перейдем теперь к оценкам для конкретных структур и начнем с соединений C-AA-D. Вводя для плоской деформации параметр $\delta_{2D}L \equiv (\partial L/\partial a)\xi$, где L — зонная характеристика, и учитывая, что $t_{ab} \propto a^{-2}$ и $t_{ac(bd)} \propto d_{ac(bd)}^{-2}$, получим:

$$\delta_{2D}B_{1\Gamma} = -36t^{2}\xi, \ \delta_{2D}B_{1M} = -4t^{2}\xi, \ \delta_{2D}B_{1K} = 0,$$

$$\delta_{2D}R_{1\Gamma} = \delta_{2D}B_{1\Gamma}(r_{1\Gamma}/R_{1\Gamma}), \ r_{1\Gamma} = 9t^{2} + 2t_{\perp}^{2} - e^{2},$$

$$\delta_{2D}R_{1M} = \delta_{2D}B_{1M}(r_{1M}/R_{1M}), \ r_{1M} = t^{2} + 2t_{\perp}^{2} - e^{2},$$

$$\delta_{2D}R_{1K} = 0.$$
(9)

Изменение параметров $\Delta_{1\Gamma,M,K}$ равно:

$$\delta_{2D}\Delta_{1\Gamma,M,K} = -\delta_{2D}B_{1\Gamma,M,K}C_{1\Gamma,M,K}/2\Delta_{1\Gamma,M,K}, \qquad (10)$$

где $C_{1\Gamma,M,K} = r_{1\Gamma,M,K}/R_{1\Gamma,M,K} - 1$. Влияние плоской деформации на эффективные массы носителей дается выражением

$$\delta_{2D}m_{1e(h)}/m_{1e(h)} = 2\xi + \delta_{2D}\Delta_{1\Gamma}/\Delta_{1\Gamma} + \frac{\delta_{2D}B_{1\Gamma}}{R_{1\Gamma}}\left(1 + \frac{r_{1\Gamma}}{R_{1\Gamma}}\right),$$
(11)

откуда получим $\delta_{2D}m_{1e(h)}/m_{1e(h)} \approx -5.6\xi$. Результаты расчета для соединений Cl–Gr–Br приведены в таблице. Те же по порядку величины результаты получим и для соединения H–Gr–Cl. Таким образом, плоская деформация сравнительно слабо влияет на зонные параметры и эффективные массы носителей.

Перейдем к одноосной деформации, для чего определим параметр $\delta_z L \equiv (\partial L/\partial d) \xi$, где $\xi = \xi_{ac} (1 + k_{ac}/k_{bd})$. Тогда получим

$$\delta_{z}B_{1\Gamma,\mathrm{M},\mathrm{K}} = -8t_{\perp}^{2}\xi,$$

$$\delta_{z}R_{1\Gamma} = \delta_{z}B_{1\Gamma}(\rho_{1\Gamma}/R_{1\Gamma}), \quad \rho_{1\Gamma} = e^{2} + 9t^{2},$$

$$\delta_{z}R_{1\mathrm{M}} = \delta_{z}B_{1\mathrm{M}}(\rho_{1\mathrm{M}}/R_{1\mathrm{M}}), \quad \rho_{1\mathrm{M}} = e^{2} + t^{2},$$

$$\delta_{z}R_{1\mathrm{K}} = \delta_{z}B_{1\mathrm{K}}(\rho_{1\mathrm{K}}/R_{1\mathrm{K}}), \quad \rho_{1\mathrm{K}} = e^{2}.$$
 (12)

Вместо (10) имеем

$$\delta_{z}\Delta_{1\Gamma,M,K} = \delta_{z}B_{1\Gamma,M,K}(1 - \rho_{1\Gamma,M,K}/R_{1\Gamma,M,K})/2\Delta_{1\Gamma,M,K}.$$
(13)

откуда, с учетом неравенства $e^2 \ll t_{\perp}^2 \ll t^2$, находим

$$egin{aligned} &\delta_z\Delta_{1\Gamma}pprox-8t_{\perp}^4\xi/9t^2\Delta_{1\Gamma}, &\delta_z\Delta_{1M}pprox-8t_{\perp}^4\xi/t^2\Delta_{1M}, \ &\delta_z\Delta_{1K}pprox-4t_{\perp}^4\xi/\Delta_{1K}, &\delta_z\Delta_{1KK}=0. \end{aligned}$$

Таким образом, $|\delta_z \Delta_{1\Gamma,M,K}| \gg |\delta_{2D} \Delta_{1\Gamma,M,K}|$. Для эффективных масс получаем

$$\delta_z m_{1e(h)}/m_{1e(h)} = \delta_z \Delta_{1\Gamma}/\Delta_{1\Gamma} - \frac{\delta_{2D} B_{1\Gamma}}{C_{1\Gamma} R_{1\Gamma}} \left(1 - \frac{r_{1\Gamma} \rho_{1\Gamma}}{R_{1\Gamma}^2}\right).$$
(14)

Результаты численных оценок для соединения Cl-Gr-Br приведены в таблице. Того же порядка оценки отвечают соединению H-Gr-Cl. Отметим, вопервых, что деформации $\delta_{2D}\Delta_{\Gamma,M} > 0$ ($C_{1\Gamma,M,K} > 0$) и растут при переходе от Γ к M, $\delta_{2D}\Delta_{K} = 0$; деформации $\delta_{z}\Delta_{1\Gamma,M,K} < 0$ ($\rho_{1\Gamma,M,K}/R_{1\Gamma,M,K} < 1$) и также растут по модулю при переходе от Γ к K. По порядку величины все деформационные характеристики лежат в диапазоне от 0 до $10\xi(\xi)$ eV. Значение $\delta_{2D}m_{1e(h)}/m_{1e(h)} = -4.9\xi$, так как третье слагаемое в формуле (11) преобладает; $\delta_{z}m_{1e(h)}/m_{1e(h)} = 7\xi$, так как $r_{1\Gamma}\rho_{1\Gamma}/R_{1\Gamma} < 1$. Подчеркнем, что одноосная деформация сильнее изменяет характеристики электронного спектра, чем деформация плоская.

4.2. Соединения A - AB - B

В случае плоской деформации легко показать, что $\delta_{2D}B_{1\Gamma,M,K} = \delta_{2D}B_{1\Gamma,M,K}$, а значения $\delta_{2D}R_{2\Gamma,M,K}$ даются формулами (9) с соответствующей заменой индекса 1 на 2, где $r_{2\Gamma} = 9t^2 + 2t_{\perp}^2$, $r_{2M} = t^2 + 2t_{\perp}^2$ $(r_{1\Gamma,M}$ переходят в $r_{2\Gamma,M}$ при e = 0). Для $\delta_{2D}m_{2e(h)}$ справедлива формула (10) с заменой индексов 1 на индексы 2. В случае одноосной деформации име-ем $\delta_z B_{2\Gamma,M,K} = -8t_{\perp}^2 e^2$, $\delta_z R_{2\Gamma,M} = \delta_z B_{2\Gamma,M}(\rho_{2\Gamma,M}/R_{2\Gamma,M})$, $\rho_{2\Gamma,M} = e^2, \ \delta_z R_{2K} = -4t_{\perp}e.$ Выражения для $\delta_z \Delta_{2\Gamma,M,K}$ и $\delta_z m_{2e(h)}$ получаются из выражений (13) и (14) заменой индексов 1 на индексы 2. Результаты численных оценок для двумерных гексагональных соединений III-V сведены в таблицу. Из таблицы, во-первых, следует, что реакция зонных параметров этих соединений на плоскую деформацию практически такая же, что и у соединений Cl-Gr-Br и H-Gr-Cl. Что же касается отклика структур A - AB - B на одноосную деформацию, то для рассмотренных здесь характеристик, соответствующих точкам Г и М зоны Бриллюэна, этот отклик значительно выше (в разы и десятки раз), чем для соединений Cl-Gr-Br и H-Gr-Cl. Причина такого расхождения состоит в том, что для А-АВ-В отношение $\rho_{2\Gamma,M}/R_{2\Gamma,M} \ll 1$ и $(1 - r_{2\Gamma,M}\rho_{2\Gamma,M}/R_{2\Gamma,M}^2) \sim 1$, а для Cl-Gr-Br и H-Gr-Cl имеем $\rho_{2\Gamma,M}/R_{2\Gamma,M} \sim 1$ и $(1 - r_{2\Gamma,M} \rho_{2\Gamma,M} / R_{2\Gamma,M}^2) \ll 1$. При этом для всех структур $C_{1\Gamma} \sim C_{2\Gamma} \ll 1.$

Итак, в этом разделе мы рассмотрели реакцию электронного спектра J-GLC на деформацию длин связей *а* и *d*. Полученные результаты можно, однако, трактовать и как устойчивость модели к выбору параметров *а* и *d*. В Приложении рассмотрен отклик системы на вариацию энергии *e*. Отметим, что длины и энергии связей являются единственными параметрами использованного нами здесь метода связывающих орбиталей Харрисона [14,15].

5. О магнитных состояниях в J-GLC

Вопрос о намагниченности J-GLC был поднят в теоретических работах [4.10,26], где рассматривался графон Gr-H. Было показано, что свободный от H атом углерода обладает большим спиновым моментом ($\sim 1 \, \mu_B$, где μ_B — магнетон Бора). Аналогичные результаты получены в [9] для соединения H–BN и F–BN: свободные атомы азота обладает магнитным моментом ~ 0.75 и $1 \, \mu_B$ соответственно.

Для описания спиновых состояний в приближении Хартри–Фока в рамках предложенной нами модели J-GLC нужно, во-первых, приписать спиновый индекс $\sigma = \uparrow, \downarrow$ всем функциям Грина, входящим в выражение (1), и вместо энергии ε_i (i = a, b, c, d) ввести энергию $\varepsilon_{i\sigma} = \varepsilon_i + U_i n_{i-\sigma}$, где U_i — кулоновское отталкивание электронов с противоположными спинами на атоме $I = A, B, C, D, n_{i\sigma}$ — число заполнения уровня $\varepsilon_{i\sigma}$ [27,28]. Во-вторых, оставляя в качестве декорирующих атомов только атомы C, следует в выражении (1) заменить функцию Грина $G^B_{\sigma}(\omega)$ димера B-D на функцию Грина $g^B_{\sigma}(\omega)$ атома B. Тогда вместо (3) получим систему двух уравнений (для $\sigma = \uparrow, \downarrow$) вида

$$\Omega_{a\sigma}\Omega_{b\sigma}\Omega_{c\sigma} - \Omega_{b\sigma}t_{ac}^2 - \Omega_{c\sigma}t_{ab}^2f^2(\mathbf{k}) = 0, \qquad (15)$$

где $\Omega_{i\sigma} = \omega - \varepsilon_{i\sigma}$. То же уравнение можно получить из (3), положив $t_{bd} = 0$ и отбросив решение $\Omega_d = 0$. В общем виде самосогласованное решение системы уравнений (15) является достаточно трудоемкой проблемой.

Рассмотрим, например, графон. Учитывая, что длины связей С-С и С-Н, равных соответственно 1.50 и 1.16 А [9,18], имеем $t_{ab} = t \approx 11 \, \text{eV}$ и $t_{ab} = V_{sp\sigma} \equiv t \approx 8 \, {\rm eV}$ [15]. Для атомов углерода $\varepsilon_a = \varepsilon_b = (\varepsilon_s + 2\varepsilon_p)/3 = -13.84 \,\mathrm{eV}$ относительно вакуума, где мы использовали таблицы атомных термов Манна [29], содержащие также значение $U_a = U_b = 11.76 \,\text{eV}$ (отметим, что значения энергий *ε*_s и *ε*_p таблиц Манна практически совпадают со значениями таблиц Фишер). Для атома водорода $\varepsilon_c = \varepsilon_s = -I = -13.60 \,\mathrm{eV}, \ U_c = I - A = 12.85 \,\mathrm{eV},$ где Iи А — энергии ионизации и сродства к электрону [16]. Положим $\varepsilon_a = \varepsilon_b = \varepsilon_c = -13.7 \,\mathrm{eV}, \ U_a = U_b = U_c \equiv U$ $= 12.3 \,\mathrm{eV}$. Вводя локализованные на атоме *I* спиновые моменты $m_i = n_{i\uparrow} - n_{i\downarrow}$ и полагая $\varepsilon_a + U/2 = \varepsilon_b + U/2$ $= arepsilon_c + U/2 = 0,$ получим $arepsilon_{i\uparrow} = -U(Z_i + m_i)/2$ И $arepsilon_{i\perp}=-U(Z_i-m_i)/2$, где $Z_i=1-n_i$ — заряд i-го атома. Учтем два дополнительных обстоятельства: 1) вследствие закона сохранения заряда имеем $\sum Z_i = 0;$ 2) так как в системе на элементарную ячейку приходится лишь один нескомпенсированный спин, локализованный, в основном, на неспаренной $|p_z\rangle$ -орбитали атома углерода, получаем $\sum m_i = 1$. Отсюда следует, что $\sum_{i} \varepsilon_i = U$.

Без учета кулоновского взаимодействия (U = 0) из уравнения (3) получаем симметричные зоны вида $E_0^0(\mathbf{k}) = 0$ и $E_{\pm}^0(\mathbf{k}) = \pm \sqrt{t_{\perp}^2 + 4t^2 f^2(\mathbf{k})}$. При $U \neq 0$ симметрия нарушается за счет межатомного перехода электронов и наличия спиновых моментов. Легко видеть,

что даже при сделанных нами значительных упрощениях самосогласованная система уравнений (15) не имеет аналитического решения и следует обращаться к машинным расчетам.

6. Заключение

Итак, в настоящей работе мы предложили модель Янус-структуры и рассмотрели ряд случаев, для которых эта модель дает простые аналитические решения. Отметим, что такая модель удобна для экспресс-оценок зонных параметров (щелей в спектре, эффективных масс), отклика на внешнее возмущение (в нашем случае, механическую деформацию) и, в случае рассмотрения достаточно представительного набора изучаемых соединений, выявления характера изменений той или иной физической характеристики. При этом мы не использовали какие-либо подгоночные параметры, определяя энергии состояний по таблицам атомных термов [14,29], межатомные расстояния — по сумме атомных радиусов [16,17] и интегралы перехода — по схеме Харрисона [14,15]. В принципе, не составило бы большого труда, воспользовавшись подходами работ по графану [23], флюорографену [24] и графеноподобным соединениям C-h-AB-C [11], рассмотреть здесь емкостные характеристики Янус-структур, а также и вопрос о дефектах в этих структурах. Мы, однако, отложили эти исследования до появления соответствующих экспериментальных данных или, хотя бы, расчетов из первых принципов.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

ПРИЛОЖЕНИЕ

Рассмотрим реакцию электронного спектра на вариации энергии *e*, определив реакцию зонной характеристики *L* на относительное изменение $\psi = \delta e/e$ как $\delta_e L = (\partial L/\partial e)\psi$.

Соединения С-АА-Д.

В соответствии с выражениями для $B_{1\Gamma,M,K}$ и $R_{1\Gamma M,K}$ имеем

$$\delta_e B_{1\Gamma,M,K} = 2e^2 \psi, \quad \delta_e R_{1\Gamma} = -2e^2(9t^2 - 4t_{\perp}^2 - e^2)\psi/R_{1\Gamma},$$

 $\delta_e R_{1M} = -2e^2(t^2 - 4t_{\perp}^2 - e^2)\psi/R_{1M},$
 $\delta_e R_{1K} = R_{1K}(1 + e^4/R_{1\Gamma}^2)\psi.$

Для реакции щелей $\Delta_{1\Gamma,M,K}$, Δ_{1KK} и эффективных масс носителей $m_{1e} = -m_{1h}$ на относительное изменение энергии *е* получаем

$$\delta_e \Delta_{1\Gamma,M,K} = (\delta_e B_{1\Gamma,M,K} - \delta_e R_{1\Gamma,M,K}) / 2\Delta_{1\Gamma,M,K}, \quad (\Pi 1)$$

$$\delta_e \Delta_{1\text{KK}} = (\delta_e B_{1\text{K}} + \delta_e R_{1\text{K}}) / \sqrt{(B_{1\text{K}} + R_{1\text{K}})/2} - (\delta_e B_{1\text{K}} - \delta_e R_{1\text{K}}) / \sqrt{(B_{1\text{K}} - R_{1\text{K}})/2}. \quad (\Pi 2)$$

$$\begin{split} \delta_{e} m_{1e} &= -\delta_{e} m_{1h} = m_{1e} (\delta_{e} \Delta_{1\Gamma} / \Delta_{1\Gamma} - \delta_{e} C_{1\Gamma} / C_{1\Gamma}), \\ \delta_{e} C_{1\Gamma} &= -\frac{2e^{2} \psi}{R_{1\Gamma}} \left(1 - \frac{r_{1\Gamma} (9t^{2} - 4t_{\perp}^{2} - e^{2})}{R_{1\Gamma}^{2}} \right). \end{split}$$
(II3)

Результаты численных оценок для соединения Cl-Gr-Br приведены в таблице. Для соединения H-Gr-Cl, для которого e = 0, и, как следствие, $\delta_e B_{1\Gamma,M,K} = \delta_e R_{1\Gamma,M,K} = 0$, получаем $\delta_e \Delta_{1,M,K} = \delta_e \Delta_{KK} = \delta_e m_{1e(h)} = 0$.

Соединения А-АВ-В.

В соответствии с выражениями для $B_{2\Gamma,M,K}$ и $R_{2\Gamma,M,K}$ имеем

$$\delta_e B_{2\Gamma,\mathrm{M,K}} = 4e^2\psi,$$

$$\delta_e R_{2\Gamma,\mathrm{M}} = 16e^2 t_{\perp}^2 \psi/R_{2\Gamma,\mathrm{M}}, \quad \delta_e R_{2\mathrm{K}} = R_{2\mathrm{K}} \psi.$$

Реакции щелей $\Delta_{2\Gamma,M,K}$, Δ_{2KK} даются формулами (П1) и (П2) с заменой индексов 1 на индексы 2. Для эффективных масс получаем

$$\delta_e m_{2e} = -\delta_e m_{2h} = m_{1e} (\delta_e \Delta_{2\Gamma} / \Delta_{1\Gamma} - \delta_e C_{2\Gamma} / C_{2\Gamma}),$$

$$\delta_e C_{2\Gamma} = -r_{2\Gamma} \delta_e R_{2\Gamma} / R_{2\Gamma}^2. \tag{II4}$$

Численные результаты приведены в таблице, из которой следует, что изменения почти всех рассмотренных характеристик по модулю не превышают ψ . Исключениями являются значения $\delta_e \Delta_{2\Gamma}$ для B–BN–N и $\delta_e m_e/m_e$ для Al–AlP–P, Ga–GaAs–As и In–InSb–Sb. Порядок величины ψ логично оценить по разнице энергий атомных уровней ε_s и ε_p , приведенных в таблицах Манна (M) [15] и Хермана–Скиллмана (HS) [14]. Оценки $\psi_{s,p} = 2[\varepsilon_{s,p}(M) - \varepsilon_{s,p}(HS)]$ показывают, что максимальные значения (ψ_z)_{max} = 0.17 имеет место для атома хлора и (ψ_p)_{max} = 0.24 для атома брома. Средние значения для всех атомов, составляющих рассмотренные нами J-GLC, равны $\bar{\psi}_s = 0.07$ и $\bar{\psi}_p = 0.14$.

Список литературы

- [1] L. Zhang, Z. Yang, T. Gong, R. Pan. J. Mater. Chem. A 8, 8813 (2020).
- [2] M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F.M. Peeters, S. Tongay, H. Sahin. Appl. Phys. Rev. 7, 011311 (2020).
- [3] L. Ju, M. Bie, X. Zhang, X. Chen, L. Kou. arXiv: 2009.12985.
- [4] J. Zhou, Q. Wang, Q. Sun, X.S. Chen, Y. Kawazoe, P. Jena. Nano Lett. 9, 3867 (2009).
- [5] S.-W. Ng, N. Noor, Z. Zheng. Asia Mater. 10, 4, 1 (2018).
- [6] A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, D. Akinwande. Nature Mater. 16, 163 (2017).
- [7] R. Li, Y. Cheng, W. Huang. Small 1802091 (2018).
- [8] L. Ju, M. Bie, J. Shang, X. Tang, L. Kou. J. Phys. Mater. 3, 022004 (2020).
- [9] J. Zhou, Q. Wang, Q. Sun, P. Jena. Phys. Rev. B 81, 085442 (2010).

- [10] Y. Wei, X. Tang, J. Shang, L. Ju, L. Kou. Intern. J. Smart Nano Mater. 11, 247 (2020).
- [11] С.Ю. Давыдов. ФТТ 63, 413 (2021).
- [12] A. Molle, J. Goldberger, M. Houssa, Y. Xu4, S.-C. Zhang, D. Akinwande. Nature Mater. 16, 163 (2017).
- [13] W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma, J. Ouyang, B. Qi, J. Wang, N. Xie, C. Kang, H. Zhang, O.C. Farokhzad, J.S. Kim. Chem. Soc. Rev. 48, 2891 (2019).
- [14] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. 1983.
- [15] W.A. Harrison. Phys. Rev. B 27, 3592 (1983).
- [16] Физические величины. Справочник / Под ред. Е.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991).
- [17] Краткий справочник физико-химических величин / Под ред. К.П. Мищенко и А.А. Равделя. Химия, Л. (1974).
- [18] J. Zhou, M.M. Wu, X. Zhou, Q. Sun. Appl. Phys. Lett. 95, 103108 (2009).
- [19] M. Yang, R. Zhao, J. Wang, L. Zhang, Q. Xie, Z. Liu, Z. Liu. J. Appl. Phys. **113**, 084313 (2013).
- [20] M. Sun, Q. Ren, S. Wang, J. Yu, W. Tang. J. Phys. D 49, 445305 (2016).
- [21] С.Ю. Давыдов. ФТТ 58, 779 (2016).
- [22] H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci1. Phys. Rev. B 80, 155453 (2009).
- [23] С.Ю. Давыдов. ФТТ 62, 2188 (2020).
- [24] С.Ю. Давыдов. ФТТ **63**, 158 (2021).
- [25] С.Ю. Давыдов, О.В. Посредник. ФТТ 57, 819 (2015).
- [26] J. Zhou, M.M. Wu, X. Zhou, Q. Sun. Appl. Phys. Lett. 95, 103108 (2009).
- [27] Ч. Киттель. Введение в физику твердого тела. Наука, М. (1978).
- [28] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наносистем. Изд-во "Лань", СПб (2014).
- [29] W.A. Harrison. Phys. Rev. B 31, 2121 (1985).

Редактор Т.Н. Василевская