02

Процессы передачи энергии в эвлитите $Sr_3Y(PO_4)_3$, по отдельности и одновременно легированном ионами Tb^{3+} и Tm^{3+}

© Xiaowu Hu, Fabio Piccinelli, Marco Bettinelli[¶]

Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, 37134 Verona, Italy

[¶] e-mail: marco.bettinelli@univr.it

Поступила в редакцию 23.06.2021 г. В окончательной редакции 25.08.2021 г. Принята к публикации 08.09.2021 г.

Изучены оптические спектры и процессы переноса энергии с участием ионов Tb^{3+} и Tm^{3+} в двойных фосфатных матрицах эвлитита типа $Sr_3Y(PO_4)_3$, легированных различными количествами двух указанных ионов лантаноидов. Было обнаружено, что в этом классе материалов при возбуждении в уровень 5D_4 иона тербия и уровень 1G_4 иона тулия активны несколько процессов переноса энергии и кроссрелаксации. В частности, было установлено, что передача возбуждения $Tb^{3+} \rightarrow Tm^{3+}$ сильно гасит уровень 5D_4 иона Tb^{3+} . Эффективность передачи в данном процессе возрастает от 0.08 до 0.62 при концентрации донора в 2 mol% и увеличении концентрации акцептора от 2 до 15 mol%. На спектры испускания сильно влияет наличие процессов переноса энергии $Tb^{3+} \leftrightarrow Tm^{3+}$ и кроссрелаксации $Tm^{3+} \rightarrow Tm^{3+}$.

Ключевые слова: перенос энергии, ионы лантаноидов, люминесценция, фосфатные материалы, оптическая спектроскопия.

DOI: 10.21883/OS.2022.01.51895.31-21

Введение

Безызлучательный перенос возбуждения с участием трехвалентных ионов лантаноидов интенсивно изучался, начиная с начала 1960-х годов [1–3], но все еще привлекает большое внимание в связи с нерешенными вопросами, касающимися механизмов передачи энергии [4] и технологических применений этого типа процессов [5,6]. Передача энергии $Tb^{3+} \leftrightarrow Tm^{3+}$ была зарегистрирована и исследована в прошлом, однако особое внимание было уделено применению данных ионов в кристаллических и некристаллических материалах с целью получения белого света (при солегировании другим подходящим ионом или несколькими ионами) [7-9] или усиленного излучения в ближней ИК области [10]. Не считая этих прикладных исследований, немногие исследования подробно рассматривали основные механизмы передачи энергии с участием Тb и Tm [9,11-23]. В последнее время наша группа изучила процессы переноса энергии возбуждения с участием тербия и другого иона лантаноида в кубических материалах типа эвлитита с формулой А₃М(РО₄)₃ (А = двухвалентный катион, М = трехвалентный катион) [24-27]. Мы посчитали интересным расширить эти исследования на эвлититы, легированные одновременно Tb и Tm, чтобы внести свой вклад в понимание процессов передачи энергии $Tb^{3+} \leftrightarrow Tm^{3+}$ и доказать влияние кристаллической структуры на эффективность передачи энергии и ее механизм. В настоящей работе мы сосредоточились на передаче энергии от донорного уровня ${}^{5}D_{4}$ иона Tb³⁺ к иону-акцептору Tm³⁺. Дополнительные результаты будут представлены в будущей работе [28].

Эксперимент

Ряд отдельно и совместно легированных эвлититов $Sr_3Y_{1-x-y}Tb_xTm_y(PO_4)_3$, (x = 0, 0.01, 0.02; y = 0, 0.01, 0.02, 0.03, 0.05, 0.07, 0.10, 0.15) был синтезирован в поликристаллической форме путем твердофазной реакции при высокой температуре ($1250 \,^{\circ}$ C, $48 \,h$), как было описано ранее в работе [23]. Рентгеновские дифрактограммы, спектры люминесценции и кривые затухания люминесценции были измерены согласно описанию в работе [27].

Результаты и обсуждение

Согласно данным порошковой рентгеновской дифракции, все исследуемые образцы однофазные и имеют кубическую структуру эвлитита (пространственная группа симметрии $I\bar{4}3d$) [29]. Примесных фаз не обнаружено.

Схема энергетических уровней ионов Tb³⁺ и Tm³⁺ приведена на рис. 1. Спектры люминесценции и возбуждения люминесценции эвлититов, легированных одним видом ионов, представлены на рис. 2 и 3. При возбуждении на длине волны 486 nm (20580 cm⁻¹) на уровень ⁵D₄ тербия образец Sr₃Y_{0.99}Tb_{0.01}(PO₄)₃ демонстрирует обычные излучательные переходы ⁵D₄ \rightarrow ⁷F_J (J = 0-5) в области 520–700 nm (рис. 2), в то время как под действием возбуждения на длине волны 463 nm (21598 cm⁻¹, что соответствует уровню ¹G₄ тулия) Sr₃Y_{0.99}Tm_{0.01}(PO₄)₃ дает две полосы, относящиеся к переходам ¹G₄ \rightarrow ³F₄ и ¹G₄ \rightarrow ³H₅, с длинами волн излучения 650 и 787 nm (15380 и 12710 cm⁻¹) соот-

Рис. 1. Схема энергетических уровней, пути передачи энергии и кроссрелаксации для ионов Tb³⁺ и Tm³⁺, обсуждаемые в тексте.

Рис. 2. Спектры люминесценции $Sr_3Y_{0.99}Tb_{0.01}(PO_4)_3$ при комнатной температуре при возбуждении на длине волны 486 nm.

ветственно (рис. 3). Идентификация полосы 787 nm с переходом ${}^{1}G_{4} \rightarrow {}^{3}H_{5}$ [30] предложена из соображения, что кроссрелаксация оказывает незначительное влияние, а многофононной релаксацией с уровня ${}^{1}G_{4}$ можно пренебречь в силу малой концентрации Tm и того факта, что спектр комбинационного рассеяния фосфатных эвлититов обычно имеет высокоэнергетичный пик в области от 950 до 990 сm⁻¹ [31], что подразумевает необходимость более шести колебательных квантов для преодоления запрещенной зоны ${}^{1}G_{4} - {}^{3}F_{2}$ иона Tm³⁺, составляющей почти 6200 сm⁻¹ [32].

Измерение кривой затухания люминесценции с уровня 5D_4 иона Tb³⁺ в Sr₃Y_{0.99}Tb_{0.01}(PO₄)₃ производилось при комнатной температуре при возбуждении на длине волны 486 nm и излучении на 543 nm. Затухание носит экспоненциальный характер с наблюдаемым временем затухания 2.79 ms (рис. 4).

Напротив, профиль затухания при комнатной температуре для уровня ${}^{1}G_{4}$ иона Tm³⁺ в Sr₃Y_{0.99}Tm_{0.01}(PO₄)₃, регистрация которого была выполнена при возбуждении на длине волны 464 nm для излучения с длиной волны 650 nm (рис. 5), явно не экспоненциален предположительно в силу почти резонансных механизмов

Рис. 3. Спектры люминесценции $Sr_3Y_{0.99}Tm_{0.01}(PO_4)_3$ при комнатной температуре при возбуждении на длине волны 463 nm.

Рис. 4. Кривая затухания люминесценции $Sr_3Y_{0.99}Tb_{0.01}(PO_4)_3$ при комнатной температуре. Длина волны возбуждающего света 486 nm, регистрируемой люминесценции — 543 nm.

Рис. 5. Кривая затухания люминесценции $Sr_3Y_{0.99}Tb_{0.01}(PO_4)_3$ при комнатной температуре. Длина волны возбуждающего света 463 nm, регистрируемой люминесценции — 650 nm.

кроссрелаксации, таких как

$${}^{1}G_{4}(\mathrm{Tm}) + {}^{3}H_{6}(\mathrm{Tm}) \rightarrow {}^{3}F_{2}(\mathrm{Tm}) + {}^{3}F_{4}(\mathrm{Tm}),$$
 (1)

действующих уже при малых концентрациях тулия [31,33]. Точный анализ приведенной кривой выходит за рамки данной работы, время затухания для начального участка этой кривой составляет 0.33 ms. Для сравнения, излучательное время жизни ${}^{1}G_{4}$ в кубическом $Y_{2}O_{3}$ составляет 0.408 ms [34].

Рисунок 6 демонстрирует спектр излучения при комнатной температуре в области 515-850 nm для одного из образцов, легированных одновременно Tb и Tm, при возбуждении на длине волны 486 nm на уровень ${}^{5}D_{4}$ (Tb). Спектр состоит из полос испускания, отнесенных к рассмотренным выше переходам ${}^5D_4 \rightarrow {}^7F_J$ в ионе тербия, без явных свидетельств наличия полос, относящихся к тулию. С другой стороны, ранее было обнаружено, что перенос энергии $\text{Tb}^{3+} \rightarrow \text{Tm}^{3+}$ происходит по резонансному механизму [12]:

$${}^{5}D_{4}(\mathrm{Tb}) + {}^{3}H_{6}(\mathrm{Tm}) \rightarrow {}^{7}F_{0}(\mathrm{Tb}) + {}^{3}F_{3}(\mathrm{Tm}).$$
 (2)

Этот механизм заселяет уровень ${}^{3}F_{3}$ иона Tm³⁺, который затем быстро релаксирует безызлучательно на уровень ${}^{3}H_{4}$, что теоретически должно вызывать излучение на длине волны около 790 nm, соответствующее переходу ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$. Этот переход не виден четко в исследованных спектрах излучения предположительно из-за того, что имеет место дополнительный процесс передачи энергии (Tm³⁺ \rightarrow Tb³⁺), уменьшающий населенность уровня ${}^{3}H_{4}$ (Tm³⁺) [13]:

$${}^{7}F_{6}(\mathrm{Tb}) + {}^{3}H_{4}(\mathrm{Tm}) \to {}^{7}F_{0}(\mathrm{Tb}) + {}^{3}F_{4}(\mathrm{Tm}).$$
 (3)

Возможность обнаружения излучения с уровня ${}^{3}F_{4}$ (около 1.75 μ m) ограничена спектральным диапазоном нашего оборудования.

Кривые затухания излучения с уровня ${}^{5}D_{4}$ иона Tb³⁺, полученные при возбуждении на длине волны 486 nm, показаны на рис. 7 для всех образцов, содержащих 2 mol% Tb и 0, 2, 3, 5, 7, 10 и 15 mol% Tm.

Полный анализ этих кривых выходит за рамки данной работы, но ясно, что легирование совместно с Tm^{3+} тушит люминесценцию Tb^{3+} , а следовательно, действует описанный выше механизм (2). Времена затухания люминесценции с уровня 5D_4 приведены в таблице. Более подробный анализ этих кривых затухания будет представлен в другой работе.

Рис. 6. Спектры люминесценции $Sr_3Y_{0.88}Tb_{0.02}Tm_{0.10}(PO_4)_3$ при комнатной температуре при возбуждении на длине волны 486 nm.

Рис. 7. Кривые затухания излучения с уровня ${}^{5}D_{4}$ иона Tb³⁺, полученные при возбуждении на длине волны 486 nm, для всех образцов, содержащих 2 mol% Tb и 0, 2, 3, 5, 7, 10 и 15 mol% Tm.

Начальные времена затухания $(\tau_{1/e})$ люминесценции с уровня ${}^{5}D_{4}$ и эффективность η_{T} переноса энергии $\mathrm{Tb}^{3+} \rightarrow \mathrm{Tm}^{3+}$, описанного уравнением (3), в образцах $\mathrm{Sr}_{3}\mathrm{Y}_{0.98-y}\mathrm{Tb}_{0.02}\mathrm{Tm}_{y}(\mathrm{PO}_{4})_{3}$

у	$ au_{1/e}({}^{5}D_{4}), \mathrm{ms}$	η_T
0	2.78	_
0.02	2.55	0.08
0.03	2.39	0.14
0.05	2.11	0.24
0.07	1.88	0.32
0.10	1.53	0.45
0.15	1.05	0.62

Эффективность переноса энергии η_T может быть примерно оценена, используя следующую формулу [34]:

$$\eta_T = 1 - \tau_{\text{Tb-Tm}} / \tau_{\text{Tb}}, \qquad (4)$$

где $\tau_{\text{Tb-Tm}}$ — время затухания люминесценции с уровня ${}^{5}D_{4}$ в присутствии Tm^{3+} . Значения для различных образцов также приведены в таблице.

Изучение таблицы показывает, что в присутствии относительно малой концентрации донора (Tb^{3+}) эффективность переноса энергии, по-видимому, значительно увеличивается с ростом концентрации акцептора Tm^{3+} . Это указывает на тот факт, что помощь миграции энергии не требуется для реализации относительно быстрого переноса энергии $Tb^{3+}-Tm^{3+}$, что согласуется с предыдущими исследованиями [12]. Более подробные исследования процессов передачи энергии, ответственных за тушение излучения с уровня ${}^5D_4(Tb^{3+})$, ведутся и будут представлены в другой работе [28].

Заключение

Изучены процессы передачи энергии с участием ионов Tb³⁺ и Tm³⁺ в эвлититовых двойных фосфатах со стехиометрией $Sr_3Y_{1-x-y}Tb_xTm_y(PO_4)_3$ (x = 0, 0.01,0.02; у = 0, 0.01, 0.02, 0.03, 0.05, 0.07, 0.10, 0.15) при комнатной температуре. Результаты исследования спектров и динамики возбужденного состояния показали, что в данных условиях эксперимента при возбуждении на излучательный уровень ${}^{5}D_{4}(\mathrm{Tb}^{3+})$, относящийся к конфигурации 4f⁸, имеют место процессы переноса энергии $Tb^{3+} \leftrightarrow Tm^{3+}$ и внутренней кроссрелаксации $(Tm^{3+} \rightarrow Tm^{3+})$. Тушение излучения с уровня ${}^5D_4(Tb^{3+})$ акцептором Tm³⁺ оказывается достаточно эффективным при концентрации донора (Tb³⁺) 2 mol%. Предварительные результаты показали наличие целого ряда дополнительных каналов передачи возбуждения, возникающих при возбуждении на другие энергетические уровни, такие как уровень ${}^{1}G_{4}$ иона Tm³⁺. Исследование этих дополнительных процессов выходит за рамки данной работы и будет представлено в другой работе [28]. В любом случае можно сделать вывод, что система Tb/Tm характеризуется множеством путей релаксации, возможно более сложных, чем для других пар ионов лантаноидов.

Благодарности

Авторы выражают благодарность Эрике Вивиани (Университет Вероны) за техническую помощь и центру "Centro Piattaforme tecnologiche" Университета Вероны за доступ к спектрофлуориметру Fluorolog 3 (Horiba-Jobin Yvon) и порошковому дифрактометру Thermo ARL X'TRA.

Финансирование работы

Благодарим за финансирование Университет Вероны (схема FUR). С.Х. получал финансовую поддержку от Совета по стипендиям Китая (CSC) № 201906130187 в течение 3 лет в Италии в качестве аспиранта.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] F. Varsanyi, G.H. Dieke. Phys. Rev. Lett., 7, 442 (1961).
- [2] W.W. Holloway Jr., M. Kestigian, R. Newman. Phys. Rev. Lett., 11, 458 (1963).
- [3] J.D. Axe, P.F. Weller. J. Chem. Phys., 40, 3066 (1964).
- [4] B. Di Bartolo. *Energy Transfer Processes in Condensed Matter* (Plenum, New York and London, 1983).
- [5] H. Dong, L.-D. Sun, C.-H. Yan. Chem. Soc. Rev., 44, 1608 (2015).
- [6] B. Zhou, B. Shi, D. Jin, X. Liu. Nature Nanotechnology, 10, 924 (2015).

- [7] A.S. Kuznetsov, A. Nikitin, V.K. Tikhomirov, M.V. Shestakov, V.V. Moshchalkov. Appl. Phys. Lett., **102**, art. no. 161916 (2013).
- [8] F. Song, C. Ming, L. An, Q. Wang, Y. Yu, H. Yu, T. Sun, J. Tian. Materials Letters, 65, 3140 (2011).
- [9] Z. Yahiaoui, M.A. Hassairi, M. Dammak, E. Cavalli. J. Alloys Compd., 763, 56 (2018).
- [10] P. Zhang, X. Huang, R. Wang, Z. Li, H. Yin, S. Zhu, Z. Chen, Y. Hang. Opt. Mater. Expr., 8, 668 (2018).
- [11] S. Zhang, Y. Bai. J. Lumin., 40-41, 655 (1988).
- [12] M. Bettinelli, G. Ingletto. J. Lumin., 43, 115 (1989).
- [13] M. Bettinelli, F.S. Ermeneux, R. Moncorgé, E. Cavalli. J. Phys. C: Condensed Matter, 10, 8207 (1998).
- [14] J.T. Vega-Durán, L.A. Díaz-Torres, M. A. Meneses-Nava, J.L. Maldonado-Rivera, O. Barbosa-García. J. Phys. D: Appl. Phys., 34, 3203 (2001).
- [15] L. Huang, Z. Hong, J. Zhuang. Chinese Journal of Lasers B (English Edition), 10, 450 (2001).
- [16] J. Pisarska, M. Ślęzok, M. Zelechower, S. Serkowski, T. Goryczka, W.A. Pisarski, W. Ryba-Romanowski. Proc. SPIE — The International Society for Optical Engineering, 5028, 181 (2003).
- [17] D.J. Lee, J. Heo, S.H. Park. J. Non-Cryst. Solids, 331, 184 (2003).
- [18] S. Shen, A. Jha, E. Zhang, S. Wilson. J. Lumin., 126, 434 (2007).
- [19] H. Yang, Z. Dai, N. Zu. J. Non-Cryst. Solids, 354, 1796 (2008).
- [20] T. Sasikala, L. Rama Moorthy. J. Mol. Struct., 1076, 529 (2014).
- [21] A. Castañeda-Miranda, V.M. Castaño. J. Electronic Mater., 46, 5107 (2017).
- [22] J. Guo, L. Zhao, Q. Tang, C. Zhang, Y. Chen. J. Lumin., 228, art. no. 117613 (2020).
- [23] X. Wu, L. Du, Y. Zheng, M. Pei, Q. Ren, O. Hai. J. Lumin., 235, art. no. 118027 (2021).
- [24] M. Bettinelli, A. Speghini, F. Piccinelli, J. Ueda, S. Tanabe. Opt. Mater., 33, 119 (2010).
- [25] M. Bettinelli, F. Piccinelli, A. Speghini, J. Ueda, S. Tanabe. J. Lumin., 132, 27 (2012).
- [26] V. Paterlini, F. Piccinelli, M. Bettinelli. Phys. B (Amsterdam, Neth.), 575, art. no. 411685 (2019).
- [27] A.N. Carneiro Neto, R.T. Moura, A. Shyichuk, V. Paterlini, F. Piccinelli, M. Bettinelli, O.L. Malta. J. Phys. Chem. C, 124, 10105 (2020).
- [28] X. Hu et al., in preparation.
- [29] J. Barbier. J. Solid State Chem., 101, 249 (1992).
- [30] J. Chrysochoos, A.H. Qusti. J. Less-Common Met., 126, 161 (1986).
- [31] J. Chrysochoos, A.H. Qusti. J. Less-Common Met., 148, 253, (1989).
- [32] W.T. Carnall, H. Crosswhite, H.M. Crosswhite, Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF₃ (Report ANL-78-XX-95, Argonne National Lab. (ANL), Argonne, IL (United States), 1978).
- [33] K.-S. Lim, P. Babu, C.K. Jayasankar, S.-K. Lee, V.-T. Pham, H.-J. Seo. J. Alloys and Compd., 385, 12 (2004).
- [34] R. Reisfeld, N. Lieblich-Soffer. J. Solid State Chem., 28, 391 (1979).

Перевод с английского Т. Иголкина