02

Терагерцовая спектроскопия магнитоэлектрика HoAl₃(BO₃)₄

© А.М. Кузьменко¹, В.Ю. Иванов¹, А.Ю. Тихановский¹, А.Г. Пименов², А.М. Шуваев², И.А. Гудим³, А.А. Мухин¹¶

¹ Институт общей физики им. А.М. Прохорова РАН,

119991 Москва, Россия

² Institute of Solid State Physics, Vienna University of Technology,

1040 Vienna, Austria

³ Институт физики им. Л.В. Киренского Сибирского отделения РАН, 660036 Красноярск, Россия

e-mail: krolandin@gmail.com, [¶] mukhin@ran.gpi.ru

Поступила в редакцию 02.08.2021 г. В окончательной редакции 02.08.2021 г. Принята к публикации 16.08.2021 г.

> Проведены экспериментальное и теоретическое исследования субмиллиметровых (терагерцовых) спектроскопических и магнитных свойств редкоземельного алюмобората $HoAl_3(BO_3)_4$ при температурах 3-300 К. В диапазоне частот 2-35 сm⁻¹ в спектрах пропускания в различных поляризациях обнаружен ряд линий поглощения, идентифицированных как переходы между нижними уровнями основного мультиплета иона Ho^{3+} , расщепленного в кристаллическом поле. Они включают как переходы с основного на возбужденные состояния, так и переходы между возбужденными состояниями. Установленные условия возбуждения мод и моделирование спектров позволили разделить магнито- и электродипольные переходы и определить энергии соответствующих состояний, их симметрию и матричные элементы переходов. Обнаружены низкочастотные линии, которые не вписываются в установленную картину электронных состояний Ho^{3+} . Эти линии, повидимому, соответствуют ионам с искаженной дефектами локальной симметрией кристаллического поля.

> Ключевые слова: терагерцовая спектроскопия, редкоземельные алюмобораты, мультиферроики, электронные переходы.

DOI: 10.21883/OS.2022.01.51890.33-21

Введение

Редкоземельные бораты $RM_3(BO_3)_4$ (R = Y, La-Lu; M = Fe, Al, Cr) с кристаллической структурой тригональной симметрии (пространственная группа R32) вызывают особый интерес в последние годы. Этому способствуют как значительный прогресс в выращивании крупных качественных монокристаллов [1], так и богатство магнитных, магнитоэлектрических, оптических и других физических свойств боратов [2–12]. Ферробораты RFe₃(BO₃)₄ являются мультиферроиками, в которых при магнитном упорядочении ионов железа возникает электрическая поляризация [2]. Магнитоэлектрические взаимодействия обусловливают также аномалии диэлектрической проницаемости, которые могут проявляться в гигантских (до 300%) изменениях ее величины, как в $SmFe_3(BO_3)_4$ [3]. Алюмобораты $RAl_3(BO_3)_4$ интересны своими люминесцентными и нелинейными оптическими свойствами [9,10], в них отсутствует магнитное упорядочение, а электрическая поляризация возникает лишь при приложении магнитного поля. В частности, в TmAl₃(BO₃)₄ обнаружен сильный квадратичный магнитоэлектрический эффект [11], сопоставимый по величине с наблюдаемым в ферроборатах [2]. В алюмоборате гольмия HoAl₃(BO₃)₄ обнаружено рекордное для кристаллов значение индуцированной магнитным полем

электрической поляризации ~ $3600 \,\mu C/m^2$ в поле 70 kOe при температуре 3 K [12]. Для всех боратов наблюдается сильная зависимость магнитных, магнитоэлектрических, спектроскопических и других свойств от типа иона R. В алюмоборате HoAl₃(BO₃)₄, исследованном в настоящей работе, характер температурных зависимостей магнитной восприимчивости и индуцированной поляризации [12] также свидетельствует о преобладании вклада низкочастотных состояний в магнитные и магнитоэлектрические свойства.

Целью настоящей работы являются терагерцовые спектроскопические исследования электронных переходов в основном мультиплете ${}^{5}I_{8}$ иона Ho³⁺ алюмобората HoAl₃(BO₃)₄, которые, как ожидается, должны давать основной вклад в магнитные, магнитоэлектрические и диэлектрические свойства.

Эксперимент

Крупные (до 5 mm) монокристаллы алюмобората гольмия были выращены методом кристаллизации из раствора в расплаве на затравке [1]. Для непосредственного наблюдения электронных переходов между низко-энергетическими состояниями иона Ho³⁺ в HoAl₃(BO₃)₄ было проведено исследование методом квазиоптической

Рис. 1. Терагерцовые спектры пропускания *a*-среза $\text{HoAl}_3(\text{BO}_3)_4$ для поляризаций излучения **h** || **c**, **e** || **b** (левый столбец) и **h** || **b**, **e** || **c** (правый столбец). Значки — экспериментальные данные для разных толщин образца: кружки — d = 2.19 mm, треугольники — d = 0.84 mm. Линии — теория.

субмиллиметровой (терагерцовой) спектроскопии с лампами обратной волны в качестве источника излучения [13]. Эта методика позволяет контролировать поляризацию излучения для определения условий возбуждения переходов. Проведены измерения спектров пропускания плоскопараллельных образцов а-среза (плоскость пластины перпендикулярна оси а кристалла) монокристалла $HoAl_3(BO_3)_4$ в диапазоне частот $2-35 \text{ cm}^{-1}$. Примеры спектров приведены на рис. 1. На фоне характерных осцилляций, обусловленных интерференцией в плоскопараллельном образце, при понижении температуры в образце наблюдалась сложная картина резонансных линий поглощения. Частоты резонансных линий не зависят от температуры, тогда как интенсивности и ширины линий сильно меняются с температурой. Поскольку при понижении температуры интенсивность некоторых линий сильно возрастала, пропускание становилось меньше уровня, возможного для детектирования, были подготовлены и измерены более тонкие образцы. Спектры для разных толщин образцов в дальнейшем описывались согласованно.

У большинства линий интенсивность растет с понижением температуры, тогда как интенсивность линий $3, 4 \Rightarrow 6$ и $5 \Rightarrow 6$ (рис. 1) имеет максимум и падает с дальнейшим понижением температуры. Такое поведение свидетельствует о том, что линии, интенсивность которых растет с понижением температуры, соответствуют переходам с основного состояния на возбужденные уровни, тогда как линии, температурная зависимость интенсивности которых имеет максимум, определяются переходами между возбужденными уровнями.

Анализ и обсуждение экспериментальных результатов

Поскольку в алюмоборате гольмия отсутствует упорядочение в магнитной подсистеме редкоземельных ионов вплоть до 2 К, то коллективные спиновые моды отсутствуют, и наблюдаемые линии естественно идентифицировать с магнито- и электродипольными электронными переходами внутри основного мультиплета ⁵*I*₈ иона Ho³⁺, расщепленного кристаллическим полем. Для получения детальной информации о переходах полученные спектры моделировались (линии на рис. 1) с использованием формул Френеля для плоскопараллельного слоя с учетом вкладов соответствующих электронных переходов в дисперсию диэлектрической ε^* и

Таблица 1. Правила отбора для переходов между состояниями симметрии $\Gamma = E$, A_1 , A_2 в кристаллическом поле симметрии D_3 в некрамерсовском ионе Ho^{3+} . Указаны компоненты электрического **d** и магнитного μ дипольных моментов, недиагональные матричные элементы которых отличны от нуля, прочерк — переходы запрещены

Γ	E	A_1	A_2
$E \\ A_1 \\ A_2$	$egin{aligned} & d_{x,y,z}, \mu_{x,y,z} \ & d_{x,y}, \mu_{x,y} \ & d_{x,y}, \mu_{x,y} \end{aligned}$	$d_{x,y}, \mu_{x,y}$ - d_z, μ_z	$d_{x,y}, \mu_{x,y}$ d_z, μ_z

магнитной μ^* проницаемостей:

$$\varepsilon^{*}(v) = \varepsilon'(v) + i\varepsilon''(v) = \varepsilon_{\infty} + \sum_{k} \frac{\Delta \varepsilon_{k} v_{k}^{2}}{(v_{k}^{2} - v^{2}) + iv_{k} \gamma_{k}},$$
(1)
$$\mu^{*}(v) = \mu'(v) + i\mu''(v) = 1 + \sum_{k} \frac{\Delta \mu_{k} v_{k}^{2}}{(v_{k}^{2} - v^{2}) + iv_{k} \gamma_{k}},$$
(2)

где ν_k — резонансные частоты, $\Delta \mu_k$ и $\Delta \varepsilon_k$ — вклады в магнитную и диэлектрическую проницаемости (интенсивности) и γ_k — ширины линий соответственно k-го электронного перехода (осциллятора), а ε_{∞} высокочастотная диэлектрическая проницаемость.

Картина линий поглощения HoAl₃(BO₃)₄ оказалась достаточно богатой (рис. 1). Основной мультиплет ${}^{5}I_{8}$ некрамерсовского иона Ho³⁺ в кристаллическом поле симметрии D_{3} расщепляется на синглеты (A_{1} и A_{2}) и дублеты (E), правила отбора между которыми для магнито-электродипольных переходов приведены в табл. 1 [8].

Для анализа полученного спектра использованы результаты работы [14], где была определена структура уровней основного мультиплета иона Но³⁺ в разбавленной системе Ho_{0.01}Y_{0.99}Al₃(BO₃)₄. На основе этих данных сделаны исходные предположения о положениях и симметрии уровней редкоземельного иона в HoAl₃(BO₃)₄ (рис. 2). В исследованный нами диапазон частот попадают уровни двух нижних дублетов Е и двух синглетов А1 и А2, а энергия следующего возбужденного уровня составляет 126 ст-1. В работе [15] уровни энергии и параметры кристаллического поля из работы [14] были использованы для описания магнитных и магнитоэлектрических свойств неразбавленного $HoAl_3(BO_3)_4$, что показало их хорошее соответствие параметрам концентрированного состава. Таким образом, из 17 состояний мультиплета ⁵*I*₈ будут рассмотрены шесть, переходы между которыми наблюдались в исследованных терагерцовых спектрах.

В табл. 2 приведены условия возбуждения для переходов между различными состояниями с учетом правил отбора (табл. 1) и даны обозначения наблюдаемых мод: указаны уровни, переходы между которыми дают вклад

Рис. 2. Схема нижних электронных состояний основного мультиплета иона Ho³⁺ в кристалле HoAl₃(BO₃)₄. Стрелки обозначают наблюдаемые в спектрах переходы. Справа — схема дополнительного расщепления основного состояния за счет возможных искажений локальной симметрии кристаллического поля.

Таблица 2. Идентификация наблюдаемых резонансных мод по условиям возбуждения (магнито- или электродипольные). В первой колонке — условное обозначение резонансной линии, которое отображает уровни соответствующих ей переходов; во второй — частоты резонансных линий; далее — вклады в интенсивность линии для разных поляризаций излучения

$n_i \Rightarrow n_j$	$v(n_i \Rightarrow n_j),$ cm ⁻¹	<i>a</i> -cut		c-cut	
		$\mathbf{h}\parallel\mathbf{c},\mathbf{e}\parallel\mathbf{b}$	$\mathbf{h}\parallel\mathbf{b},\mathbf{e}\parallel\mathbf{c}$	$\mathbf{h}\parallel\mathbf{a},\mathbf{e}\parallel\mathbf{b}$	
$1, 2 \Rightarrow 3, 4$	12.3	$\Delta \mu_c, \Delta \varepsilon_b$	$\Delta \mu_b, \Delta \varepsilon_c$	$\Delta \mu_a, \Delta \varepsilon_b$	
$1, 2 \Rightarrow 5$	14.5	$\Delta \varepsilon_b$	$\Delta \mu_b$	$\Delta \mu_a, \Delta \varepsilon_b$	
$5 \Rightarrow 6$	18.9	$\Delta \mu_c$	$\Delta \varepsilon_c$	_	
$3, 4 \Rightarrow 6$	21.2	$\Delta \varepsilon_b$	$\Delta \mu_b$	$\Delta \mu_a, \Delta \varepsilon_b$	
$1, 2 \Rightarrow 6$	34	$\Delta \varepsilon_b$	$\Delta \mu_b$	$\Delta \mu_a, \Delta \varepsilon_b$	

в соответствующую резонансную линию. Для идентификации условий возбуждения мод приведены также их вклады в ε^* или μ^* для разных ориентаций переменного магнитного **h** и электрического **e** полей относительно кристаллографических осей.

Таким образом, большую часть линий (кроме 1, 2 \Rightarrow 3, 4) в образце *a*-среза можно однозначно идентифицировать как магнито- либо электродипольные в каждой из поляризаций. Соответствующие частоты переходов, полученные из моделирования наблюдаемых резонансных линий в спектрах пропускания, позволили определить значения энергий рассмотренных состояний: $E_{1,2} = 0 \text{ cm}^{-1}$, $E_{3,4} = 12.3 \text{ cm}^{-1}$, $E_5 = 14.5 \text{ cm}^{-1}$, $E_6 \approx 34 \text{ cm}^{-1}$, что хорошо согласуется с результатами работы [14]. Ненулевые матричные элементы магнитодипольных переходов, выраженные в магнетонах Бора (μ_B), приведены в табл. 3. Параметры резонансных линий (частоты и вклады), наблюдаемых в HoAl₃(BO₃)₄, приведены на рис. 3. На рис. 3, *b*, *e* приведено описание температурных зависимостей вкладов в магнитную

Рис. 3. Температурные зависимости параметров резонансных мод: частот (a, d), вкладов в магнитную (b, e) и диэлектрическую (c, f) проницаемости. Символы — эксперимент, линии — теория.

проницаемость μ^* от магнитодипольных переходов. Для вклада в магнитную проницаемость перехода между состояниями *i* и *j* имеем

$$\Delta \mu_{i,j}^{b,c} = 4\pi \rho \, \frac{N_A}{M_{\rm mol}} \, \frac{2(\mu_{ij}^{b,c})^2}{Z(E_j - E_i)} \Big(e^{-\frac{E_i}{k_B T}} - e^{-\frac{E_j}{k_B T}} \Big), \qquad (3)$$

где N_A — число Авогадро; M_{mol} — молярная масса; Z — статсумма; $\mu_{ij}^{b,c}$ — модуль матричного элемента перехода (табл. 3) для соответствующей ориентации переменного магнитного поля $\mathbf{h} \parallel \mathbf{b}$ либо $\mathbf{h} \parallel \mathbf{c}$; $E_{i,j}$ — энергии начального и конечного состояний перехода. Нужно отметить, что выражение (3) дает вклад наблюдаемой резонансной линии в магнитную проницаемость только для переходов между синглетами (5 \Rightarrow 6). Для вычисления вкладов линий, определяемых состояниями, включающими вырожденные дублеты, необходимо суммировать вклады компонент $\Delta \mu_{ij}^{b,c}$ переходов дублета. Например, вклад перехода 1,2 \Rightarrow 6 $\Delta \mu_b(1, 2 \Rightarrow 6) = \Delta \mu_{16}^b + \Delta \mu_{26}^b = 2\Delta \mu_{16}^b$.

Аналогичными зависимостями описаны вклады в диэлектрическую проницаемость электродипольных переходов (рис. 3, *c*, *f*):

$$\Delta \varepsilon_{i,j}^{b,c} = 4\pi \rho \; \frac{N_A}{M_{\rm mol}} \; \frac{2(d_{ij}^{b,c})^2}{Z(E_j - E_i)} \Big(e^{-\frac{E_i}{k_B T}} - e^{-\frac{E_j}{k_B T}} \Big), \qquad (4)$$

где $d_{ij}^{b,c}$ — матричный элемент перехода. Из описаний температурных зависимостей вкладов электроактивных мод (рис. 3, *c*, *f*) получены следующие значения матричных элементов (электрические дипольные моменты в дебаях): $d_{15}^b = d_{25}^b = 0.1 \text{ D}$, $d_{16}^b = d_{26}^b = 0.06 \text{ D}$, $d_{36}^b = d_{46}^b = 0.11 \text{ D}$, $d_{56}^c = 0.12 \text{ D}$.

В спектрах пропускания помимо идентифицированных линий поглощения наблюдалась низкочастотная мода $1^* \Rightarrow 2^*$. Ее вклад в разных поляризациях растет вплоть до низких температур, что указывает на то, что она

Рис. 4. Температурные зависимости магнитной восприимчивости алюмобората $\text{HoAl}_3(\text{BO}_3)_4$ вдоль (χ_c) и перпендикулярно (χ_a) оси с кристалла. Значки — эксперимент, линии — расчет суммы вкладов в магнитную восприимчивость от всех наблюдаемых низкочастотных переходов.

соответствует переходам с основного состояния. Таким образом, она не может быть интерпретирована как переход между возбужденными уровнями 3, 4 ⇒ 5. Для определенности при описании интенсивности этой линии она рассматривалась как магнитодипольная и описывалась при помощи выражения (3) вкладом в магнитную проницаемость (рис. 3, b). Для этого описания получены значения матричных элементов $\mu_{1^*2^*}^b = 2.1 \, \mu \text{B}$, $\mu_{1*2*}^c = 4.2 \,\mu\text{B}$. Данная мода может содержать также вклад электродипольных переходов. Возможной причиной появления этой моды могли бы быть переходы между компонентами основного дублета, расщепленного за счет локальных искажений их симметрии D₃ для ряда позиций редкоземельных ионов (см. правую часть рис. 2). Для вышележащих мод заметных признаков такого расщепления не обнаружено, что может свидетельствовать о небольшом количестве искаженных позиций. Этот эффект может быть обусловлен примесями Ві аналогично обнаруженному ранее в $TmAl_3(BO_3)_4$ [16] и YbAl₃(BO₃)₄ [17]. Другой причиной понижения локальной D₃-симметрии ионов Ho³⁺ могли бы быть янтеллеровские искажения кристаллического окружения редкоземельного иона, снимающие вырождение двух состояний нижнего дублета. Это могло бы сопровождаться

Таблица 3. Модули матричных элементов для магнитодипольных переходов (в магнетонах Бора) между нижними состояниями симметрии $\Gamma = E, A_1, A_2$ основного мультиплета иона Ho³⁺, найденные из экспериментальных значений магнитных вкладов. Прочерк — значение не определено

a) $\mu^{a,b}$									
п		1	2	3	4	5	6		
_	Γ	Ε	Ε	Ε	Ε	A_2	A_1		
1 2 3 4 5	E E E A_2 A_1	$egin{array}{c} 0 \ 0 \ 0 \ \leq 3.6 \ 3.2 \ 1.5 \end{array}$	$0 \\ 0 \\ \leq 3.6 \\ 0 \\ 3.2 \\ 1.5$	$0 \le 3.6 \ 0 \ - \ 3.0$	$\leq 3.6 \\ 0 \\ 0 \\ - \\ 3.0$	3.2 3.2 - 0 0	1.5 1.5 3.0 3.0 0 0		
b) μ^c									
п		1	2	3	4	5	6		
_	Γ	Ε	Ε	Ε	Ε	A_2	A_1		
1 2 3 4 5 6	E E E A_2 A_1	$egin{array}{c} - & & & & & & & & & & & & & & & & & & $	$egin{array}{c} 0 & - & \ 0 & \ \leq 4.9 & \ 0 & \ 0 & \ 0 & \ \end{array}$	$\leq 4.9 \\ 0 \\ - \\ 0 \\ 0 \\ 0 \\ 0$	$egin{array}{c} 0 \\ \leq 4.9 \\ 0 \\ - \\ 0 \\ 0 \end{array}$	0 0 0 0 6.1	0 0 0 6.1 0		

также и кооперативными искажениями решетки, которые требуют дальнейших исследований. В какой степени эти два механизма могут сосуществовать и влиять друг на друга, также требует дальнейших исследований.

Для высокочастотных мод $(1, 2 \Rightarrow 6)$, $(3, 4 \Rightarrow 6)$ наблюдалось некоторое несоответствие частот в поляризациях **h** || **c**, **e** || **b** и **h** || **b**, **e** || **c** (рис. 3, *d*). Это может быть обусловлено дополнительным искажением формы линии за счет оптической активности (вращения плоскости поляризации и изменения эллиптичности прошедшего излучения), проявляющейся в других алюмоборатах, в частности в YbAl₃(BO₃)₄ [18].

На основе теоретического описания идентифицированных магнитных линий определены модули недиагональных матричных элементов (табл. 3). Ввиду неопределенности в условиях возбуждения моды 1, $2 \Rightarrow 3, 4$ ее интенсивность описана магнитодипольным вкладом в магнитную проницаемость (2). Поэтому для величин недиагональных матричных элементов переходов между дублетами 1, $2 \Rightarrow 3, 4$ (табл. 3) определена фактически верхняя граница их значений. Не исключено, что часть интенсивности линии переходов 1, $2 \Rightarrow 3, 4$ может быть обусловлена и электродипольным переходом.

На рис. 4 приведены температурные зависимости магнитной восприимчивости $HoAl_3(BO_3)_4$, линии — суммарный вклад всех наблюдаемых магнитодипольных переходов, предполагается, что переходы $1, 2 \Rightarrow 3, 4$ дают вклад только в намагниченность. Этот результат

подтверждает превалирующий вклад в намагниченность рассмотренных нижних электронных состояний Ho^{3+} . Основной дублет $1 \Rightarrow 2$ в неискаженных позициях мог бы дать дополнительный вклад в намагниченность вдоль оси **с** за счет диагональных матричных элементов, тогда в направлении, перпендикулярном **с**, неискаженные позиции не должны давать дополнительного вклада в намагниченность, что согласуется с описанием магнитной восприимчивости (рис. 4).

Заключение

Методом терагерцовой спектроскопии в диапазоне частот 2-35 cm⁻¹ проведено прямое наблюдение электронных переходов между нижними уровнями основного мультиплета иона Ho³⁺ в алюмоборате HoAl₃(BO₃)₄. Резонансные линии, обнаруженные в спектрах пропускания, идентифицированы как электронные переходы, возбуждаемые электрической или магнитной компонентой переменного поля излучения. Из теоретического описания температурных зависимостей параметров резонансных линий восстановлены как положения уровней энергии, так и матричные элементы переходов. Помимо линий, соответствующих переходам между уровнями Но³⁺ в высокосимметричном кристаллическом поле алюмобората, обнаружены дополнительные низкочастотные линии, соответствующие предположительно позициям редкой земли в искаженном локальными дефектами кристаллическом поле. Установлено, что намагниченность HoAl₃(BO₃)₄ при низких температурах определяется преимущественно наблюдаемыми переходами.

Финансирование работы

Работа выполнена при частичной финансовой поддержке Российского научного фонда (проект 16-12-10531).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- V.L. Temerov, A.E. Sokolov, A.L. Sukhachev, A.F. Bovina, I.S. Edel'man, A.V. Malakhovskii. Crystallogr. Rep., 53, 1157 (2008).
- [2] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров. Физика низких температур, **36** (6), 640 (2010).
- [3] А.А. Мухин, Г.П. Воробьев, В.Ю. Иванов, А.М. Кадомцева, А.С. Нарижная, А.М. Кузьменко, Ю.Ф. Попов, Л.Н. Безматерных, И.А. Гудим. Письма в ЖЭТФ, 93 (5), 305 (2011).
- [4] S.A. Klimin, D. Fausti, A. Meetsma, L.N. Bezmaternykh, P.H.M. van Loosdrecht, T.T.M. Palstra. Acta Crystallogr., Sect. B: Struct. Sci., 61, 481 (2005).

- [5] M.N. Popova, E.P. Chukalina, K.N. Boldyrev, T.N. Stanislavchuk, B.Z. Malkin, I.A. Gudim. Phys. Rev. B, 95, 125131 (2017).
- [6] M.N. Popova, B.Z. Malkin, K.N. Boldyrev, T.N. Stanislavchuk, D.A. Erofeev, V.L. Temerov, I.A. Gudim. Phys. Rev. B, 94, 184418 (2016).
- [7] M.N. Popova, T.N. Stanislavchuk, B.Z. Malkin, L.N. Bezmaternykh. Phys. Rev. B, 80, 195101 (2009).
- [8] M.N. Popova, E.P. Chukalina, D.A. Erofeev, I.A. Gudim, I.V. Golosovsky, A. Gukasov, A.A. Mukhin, B.Z. Malkin. Phys. Rev. B, 103, 094411 (2021).
- [9] A.V. Malakhovskii, I.S. Edelman, A.E. Sokolov, V.L. Temerov, S.L. Gnatchenko, I.S. Kachur, V.G. Piryatinskaya. Phys. Lett. A, **371**, 254 (2007).
- [10] A.V. Malakhovskii, U.V. Valiev, I.S. Edelman, A.E. Sokolov, I.Yu. Chesnokov, I.A. Gudim. Optical Materials, 32, 1017 (2010).
- [11] R.P. Chaudhury, F. Yen, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B, 81, 220402(R) (2010).
- [12] K.-C. Liang, R.P. Chaudhury, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B, 83, 180417(R) (2011).
- [13] A.A. Volkov, Yu.G. Goncharov, G.V. Kozlov, S.P. Lebedev, A.M. Prokhorov. Infrared Phys., 25, 369 (1985).
- [14] A. Baraldi, R. Capelletti, M. Mazzera, N. Magnani, I. Földvári, E. Beregi. Phys. Rev. B, 76, 165130 (2007).
- [15] N.V. Kostyuchenko, A.I. Popov, A.K. Zvezdin. Solid State Phenomena, 215, 95 (2014).
- [16] A.M. Kuzmenko, A.A. Mukhin, V.Yu. Ivanov, G.A. Komandin, A. Shuvaev, A. Pimenov, V. Dziom, L.N. Bezmaternykh, I.A. Gudim. Phys. Rev. B, 94, 174419 (2016).
- [17] K.N. Boldyrev, M.N. Popova, M. Bettinelli, V.L. Temerov, I.A. Gudim, L.N. Bezmaternykh, P. Loiseau, G. Aka, N.I. Leonyuk. Optical Materials, 34, 1885 (2012).
- [18] A.M. Kuzmenko, V. Dziom, A. Shuvaev, A. Pimenov, D. Szaller, A.A. Mukhin, V.Yu. Ivanov, A. Pimenov. Phys. Rev. B, 99, 224417 (2019).