Применение методов радиоспектроскопии для исследования термоэлектриков со структурой халькопирита

© В.Л. Матухин¹, А.Н. Гавриленко^{1,¶}, Е.В. Шмидт¹, С.Б. Орлинский², И.Г. Севастьянов¹, С.О. Гарькавый¹, J. Navratil³, P. Novak³

 Казанский государственный энергетический университет, 420066 Казань, Россия
 Казанский федеральный университет, 420008 Казань, Россия
 Institute of Physics of the Czech Academy of Sciences, 16200 Praha 6, Czech Republic
 E-mail: ang_2000@mail.ru

Поступила в Редакцию 19 сентября 2021 г. В окончательной редакции 24 сентября 2021 г. Принята к публикации 24 сентября 2021 г.

> Рассмотрены легированные соединения халькопирита. Приведены результаты изучения спектральных параметров методом ядерного магнитного резонанса ^{63,65}Си в локальном поле, а также методом электронного парамагнитного резонанса в интервале температур 15–300 К. Наблюдаемое уширение резонансных линий спектров ядерного магнитного резонанса и обнаружение парамагнитного сигнала в образце при температуре 15 К свидетельствуют о появлении антиструктурных дефектов. Быстрое изменение формы линии спектра электронного парамагнитного резонанса в интервале температур 100–130 К связывается со структурнофазовым переходом.

Ключевые слова: термоэлектрики, соединения халькопирита, антиструктурные дефекты.

DOI: 10.21883/FTP.2022.01.51807.23

1. Введение

Высокоэффективные термоэлектрические материалы привлекают большое внимание из-за их потенциального применения в получении энергии, особенно для вторичного использования тепла, которое является побочным результатом технологических процессов. Недавно было предложено использовать магнитные полупроводники в качестве эффективных термоэлектриков [1]. Одной из характерных особенностей магнитных полупроводников является сильная связь между носителями и спинами магнитных ионов. Это сильное взаимодействие может привести к большой эффективной массе носителей, которая может увеличить коэффициент Зеебека при хорошей проводимости носителей. Одним из представителей этого класса соединений является широко известный полупроводниковый минерал халькопирит CuFeS₂.

Недавние исследования показали возможное улучшение термоэлектрических свойств этого соединения, особенно за счет разбавленного легирования [2,3]. Для получения высокоэффективных термоэлектрических соединений необходимо детальное понимание изменений структурных характеристик и происходящих при легировании процессов.

В данной работе представлено исследование серии соединений $Cu_{1-x}Pd_xFeS_2$ (x = 0-0.02) методами ядерного магнитного резонанса (ЯМР) ^{63,65}Си в локальном поле и электронного парамагнитного резонанса (ЭПР). Ранее были изучены термоэлектрические и транспорт-

ные свойства образцов $Cu_{1-x}Pd_xFeS_2$ (x = 0-0.1) в виде горячепрессованных таблеток [4].

2. Эксперимент

Поликристаллические образцы с номинальным составом $Cu_{1-x}Pd_xFeS_2$ (x = 0, 0.01, 0.02) были синтезированы из смеси чистых элементов, полученных от Sigma-Aldrich, включая Cu (4N порций), Pd (4N порошок), Fe (4N гранулированный) и S (5 порошок). Синтез образцов описан в работе [4].

Спектральные параметры ЯМР 63,65 Си в локальном поле в CuFeS₂ были измерены на многоимпульсном ЯКР/ЯМР-спектрометре Тестад Redstone. Измерение формы линии ЯМР проводили с помощью квадратурного детектирования путем регистрации сигналов спинового эха с пошаговым прохождением частотного диапазона и накоплением сигнала.

Спектры ЭПР трех образцов $Cu_{1-x}Pd_xFeS_2$ (x = 0, 0.01, 0.02) были исследованы на стационарном рентгеновском спектрометре ESP-300 в интервале температур 15–300 К. Массы образцов были примерно одинаковы и составляли ~ 20 мг.

3. Результаты и обсуждение

Детальное изучение формы резонансных линий показало их асимметричный характер с более пологим затуханием в высокочастотной области. Экспериментальный спектр ЯМР Си соединений при 77 К можно рассматривать как суперпозицию двух спектров ЯМР Си: первый спектр, состоящий из низкочастотных резонансных линий, отнесенных к основной фазе (синие линии l_1 , l'_1 , c_1 , c'_1 , h_1 , h'_1 на рис. 1), и второй спектр, состоящий из высокочастотных линий, обусловленных резонансными центрами, расположенными в дефектных областях кристаллической структуры (красные линии l_2 , l'_2 , c_2 , c'_2 , h_2 , h'_2 на рис. 1).

Уширение резонансных линий может быть результатом увеличения количества дефектов в кристаллической решетке соединения, что приводит к большему разбросу градиента электрического поля (ГЭП) на резонансных ядрах меди. Образование таких дефектов (Fe_{Cu}^{2+} антиструктурные (AS) дефекты, как предложено в работе [4]) вызвано образованием фазы PdS в матрице халькопирита с увеличением номинального содержания Pd. Частотный сдвиг резонансных линий можно объяснить взаимодействием Рудермана–Киттеля–Касуя–Йосиды (РККИ) [5]. Об этом свидетельствует повышенная проводимость образца $Cu_{0.98}Pd_{0.02}FeS_2$ [4].

Спектры ЭПР всех образцов имеют свои особенности. Значительный сдвиг центра линии вправо и его сужение

Рис. 1. ЯМР спектры 63,65 Си в локальном поле при температуре 77 К образцов CuFeS₂ (*a*), Cu_{0.99}Pd_{0.01}FeS₂ (*b*) и Cu_{0.98}Pd_{0.02}FeS₂ (*c*). *1* — экспериментальные данные, *2* узкая линия (*l*₁, *l'*₁, *c*₁, *h*₁, *h'*₁), *3* — широкая линия (*l*₂, *l'*₂, *c*₂, *c'*₂, *h*₂, *h'*₂), *4* — линия накопления. На рисунке представлены пунктирная (*2*) и штриховая (*3*) кривые, указывающие на расщепление каждой резонансной линии (*1* или *4*) на две пары линий.

Физика и техника полупроводников, 2022, том 56, вып. 1

Рис. 2. Спектры ЭПР при температуре 15 К образцов CuFeS₂ (*1*), Cu_{0.99}Pd_{0.01}FeS₂ (*2*) и Cu_{0.98}Pd_{0.02}FeS₂ (*3*).

Рис. 3. Спектры ЭПР при температуре 300 К образцов CuFeS₂ (1), Cu_{0.99}Pd_{0.01}FeS₂ (2) и Cu_{0.98}Pd_{0.02}FeS₂ (3).

в образце $CuFeS_2$ (0% Pd) происходит в интервале температур 100–130 K.

При низкой температуре T = 15 К, в отличие от предыдущего образца без Pd, в образце с содержанием Pd, равным 1%, практически отсутствует часть широкого ферромагнитного сигнала; однако наблюдается, предположительно, парамагнитный сигнал с g-фактором, равным 2.08, и шириной ~ 1 кГц (рис. 2), который постепенно ослабевает и сужается с ростом температуры. В образце с содержанием Pd, равным 2%, сигнал около g = 2.00 имеет меньшую интенсивность (рис. 2). Он повторяет поведение сигнала в образце с содержанием Pd, равным 1%, при нагревании.

При температуре 150 К и выше характер температурной зависимости одинаков для всех образцов. Форма линий всех образцов одинакова и в этом интервале температур, хотя есть разница в интенсивностях. Спектры ЭПР образцов при 300 К представлены на рис. 3.

4. Заключение

Уширение резонансных линий ЯМР может быть результатом увеличения количества дефектов в кристаллической решетке соединения, что приводит к большему разбросу ГЭП на резонансных ядрах меди. Такими дефектами могут быть дефекты антиструктуры Fe_{Cu}^{2+} (AS). Образование таких дефектов обусловлено образованием фазы PdS в матрице халькопирита с увеличением номинального содержания Pd. Таким образом, показано, что метод ЯМР Си в локальном поле может быть использован для оценки дефектности поликристаллических соединений $Cu_{1-x}Pd_xFeS_2$ (x = 0-0.02).

Обнаружено быстрое изменение формы спектра ЭПР в интервале температур 100-130 К в образце CuFeS₂, что, предположительно, соответствует возможному структурному фазовому переходу.

В спектрах ЭПР образца CuFeS₂: Pd 1% при температуре T = 15 К наблюдается парамагнитный сигнал с g-фактором, равным 2.08, и шириной ~ 1 кГц, что может быть связано с появлением антиструктурных дефектов.

Благодарности

Авторы благодарят Чешский научный фонд за финансовую поддержку, проект № 18-12761S.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] N. Tsujii. J. Electron. Mater., 42, 1974 (2013).
- [2] H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, T. Mori. Mater. Today Phys., **3**, 85 (2017).
- [3] H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, T. Mori. Appl. Phys. Lett., 110, 072107 (2017).
- [4] J. Navratil, J. Kasparova, T. Plechacek, L. Benes, Z. Olmrova-Zmrhalova, V. Kucek, C. Drasar. J. Electron. Mater., 48, 1795 (2019).
- [5] T. Koyama, M. Matsumoto, S. Wada, Y. Muro, M. Ishikawa. J. Phys. Soc. Jpn., **70**, 3667 (2001).

Редактор А.Н. Смирнов

Application of radio spectroscopy methods for the study of thermoelectrics with a chalcopyrite structure

V.L. Matukhin¹, A.N. Gavrilenko¹, E.V. Schmidt¹, S.B. Orlinskii², I.G. Sevastianov¹, S.O. Garkavyi¹, J. Navratil³, P. Novak³

¹ Kazan State Power Engineering University,
420066 Kazan, Russia
² Kazan Federal University,
420008 Kazan, Russia
³ Institute of Physics of the Czech Academy of Sciences,
16200 Praha 6, Czech Republic

Abstract Doped chalcopyrite compounds are considered. The results of studying the spectral parameters by the 63,65 Cu NMR method in a local field, as well as by the EPR method in the temperature range 15-300 K are presented. The observed broadening of the resonance lines of the NMR spectra and the detection of a paramagnetic signal in the sample at a temperature of 15 K indicate the appearance of anti-structural defects. The rapid change in the shape of the EPR spectrum line, in the temperature range 100-130 K, is associated with the structural phase transition.