05.2;07.2;08.2;13.1;13.3

Посвящается памяти В.Д. Александрова

Влияние отжига в инертной атмосфере на электрические свойства кристаллических пленок пентацена

© Г.А. Юрасик, А.А. Кулишов, М.Е. Гиваргизов, В.А. Постников ¶

Федеральный научно-исследовательский центр "Кристаллография и фотоника" РАН, Москва, Россия E-mail: yurasik.georgy@yandex.ru [¶] E-mail: postva@yandex.ru

Поступило в Редакцию 4 августа 2021 г. В окончательной редакции 27 августа 2021 г. Принято к публикации 30 августа 2021 г.

Представлены результаты исследования влияния отжига при 150° С в инертной атмосфере (Ar + 5% H₂) на электрические свойства органических полевых транзисторов на основе пентацена. Кристаллические пленки пентацена толщиной 95 ± 5 nm были получены с помощью вакуумного термического напыления. Исследованы передаточные и выходные характеристики полевых транзисторов до и после отжига в течение 15 h. Установлено, что в результате термической обработки дырочная подвижность в режиме насыщения увеличилась в среднем на 30%, а пороговое напряжение уменьшилось приблизительно в 2 раза. По данным атомно-силовой микроскопии отжиг привел к снижению шероховатости поверхности пленок пентацена более чем в 2 раза, а также к заметному укрупнению зерен, что и привело к уменьшению концентрации ловушек для дырочного электротранспорта в канале полевого транзистора.

Ключевые слова: пентацен, вакуумное термическое напыление, кристаллические пленки, органические полевые транзисторы, дырочная подвижность, отжиг в инертной атмосфере.

DOI: 10.21883/PJTF.2021.23.51783.18983

Для оптоэлектроники получение тонких кристаллических пленок на подложках как органических, так и неорганических полупроводников с помощью вакуумного термического напыления давно уже является классическим методом, отличающимся простотой и эффективностью [1,2]. Вместе с тем полученные таким образом тонкопленочные кристаллические структуры, как правило, отличаются невысоким структурным совершенством, поскольку представляют собой поликристаллы с размерами зерен на уровне сотен нанометров. Один из возможных путей улучшения морфологического качества напыленных пленок с целью улучшения электрических свойств — постобработка в условиях изотермического отжига при повышенной температуре. Такой подход весьма эффективен для изначально аморфных пленок, в которых за счет последующего отжига инициируется кристаллизация с образованием крупных монокристаллических областей, что способствует существенному улучшению электрических свойств [1,3]. Однако с точки зрения применения данного подхода для улучшения структурного совершенства кристаллических слоев органических полупроводниковых молекул, несклонных к формированию аморфной фазы, в литературе имеются неоднозначные мнения, что, судя по всему, связано с недостатком систематических исследований. Рассмотрим, например, один из наиболее известных и эффективных с точки зрения электрических свойств органических полупроводников — пентацен [4,5]. Авторы работ [6,7] сообщают, что с ростом температуры выдержки, производимой в вакууме в течение 2 h, до 70°C наблюдается уменьшение среднего размера зерен и снижение шероховатости поверхности пленок пентацена; при этом подвижность дырочного транспорта в устройстве полевого транзистора при выдержках до 45°C увеличивалась, а выше данной температуры уменьшалась. Согласно [8], при выдержке пентаценовых тонкопленочных полевых транзисторов в вакууме в течение 15 h до 90°C наблюдается увеличение среднего размера зерен, а воздействие на дырочную подвижность аналогичное: при выдержках до 50°C имеет место увеличение почти в 2 раза, а выше данной температуры — снижение к исходному значению при комнатной температуре. Согласно результатам [9], при выдержке в потоке азота при температурах до 120°C отмечаются улучшение кристаллического упорядочения молекул в пленках и улучшение электрических свойств с увеличением дырочной подвижности почти в 4 раза в сравнении с исходными неотожженными пленками, а при температурах от 120 до 240°С электрические свойства деградируют. В работе [10] сообщается, что отжиг тонкопленочных полевых транзисторов в азоте при температурах до 180°C снижает шероховатость поверхности пленок и значительно улучшает их электрические характеристики. О заметном улучшении электрических характеристик полевых транзисторов после отжига в течение нескольких часов в вакууме при 77°С также

Рис. 1. Вольт-амперные характеристики полевого транзистора до обработки (штриховые кривые) и после отжига при 150° С (сплошные кривые). a — передаточные характеристики при напряжении между истоком и стоком $U_{sd} = -60$ V. На вставке — подложка p-Si с образцами ОПТ. b — семейство выходных характеристик при различных значениях напряжения на затворе U_g . На вставке — зависимости в линейной области.

сообщается в работе [11]. Имеются сведения о том, что при отжиге тонкопленочных полевых транзисторов на воздухе в течение 1 min наблюдалось заметное улучшение электрических характеристик с максимумом для 77° С, а выше данной температуры электрические свойства стремительно деградировали [12].

С целью изучения влияния термической обработки на морфологическое и структурное совершенство напыленных тонких кристаллических пленок на основе полупроводниковых органических молекул нами инициированы систематические исследования. В настоящей работе представлены результаты изучения влияния отжига кристаллических пленок пентацена (Рс) в течение 15 h при 150°C в инертной атмосфере. Из литературы известно, что у пентацена около 190°С наблюдается полиморфный переход в высокотемпературную кристаллическую модификацию [13], а также интенсифицируются процессы возгонки молекул в паровую фазу [14], что на данном этапе мы хотели бы исключить из рассмотрения. Исследование электрических свойств кристаллических пленок пентацена, как и в представленных выше работах, также было выполнено по методу полевого транзистора [11,12,15,16].

Органические полевые транзисторы (ОПТ) изготавливались по схеме с нижним затвором и верхними истоковыми и стоковыми электродами [15]. В качестве подложек, выполняющих роль электрода затвора, использовались пластины кремния толщиной 0.5 mm, допированного примесью *p*-типа (подложки *p*-Si). Роль подзатворного диэлектрика на подложках *p*-Si выполнял оксидный слой SiO₂ толщиной 440 nm, выращенный путем отжига на воздухе при 950°С. Подготовленные таким образом подложки с одной стороны протравливались концентрированной плавиковой кислотой (HF) для удаления SiO₂. Подложки последовательно очищались с помощью ацетона, изопропанола, деионизованной воды и выдерживались в установке плазменной очистки (Harrick Plasma, США) в течение 0.5 h при генерации плазмы из атмосферного кислорода. Далее на поверхность подложек со слоем SiO₂ была нанесена пленка полиметилметакрилата (РММА) из насыщенного раствора в толуоле с помощью метода центрифугирования со скоростью вращения 3000 грт на установке Spin Coater P6700 (Specialty Coating Systems, США). Толщина сформированного таким образом буферного слоя РММА составляла 30 ± 3 nm. Для формирования кристаллических пленок использовался пентацен (99.9%, Sigma Aldrich) без дополнительной очистки. Напыление Рс, а затем контактов стока и истока из золота (99.99%) производилось методом вакуумного термического напыления на установке COVAP III (Angstrom Engineering, Канада), интегрированной в перчаточный инертный бокс СПЕКС ГБ 03М ("Спектроскопические системы", Москва), при давлении в камере $\sim 1 \cdot 10^{-6}$ mbar. Напыление золотых контактов проводилось через специально изготовленные маски (см. вставку на рис. 1, a). Скорость напыления Рс и золотых контактов была 0.8 и 0.2 Å/s соответственно. В результате напыления толщина кристаллической пленки пентацена составляла 95 ± 5 nm, а золотых контактов — 50 ± 10 nm. В процессе напыления пленок пентацена температура подложек не превышала 25°С.

Морфология поверхности полученных пленок исследовалась с помощью атомно-силового микроскопа (ACM) Ntegra (NT-MDT, Россия) в режиме полуконтактного метода (зонды серии NSG01 с жесткостью кантилевера 5.1 N/m, резонансной частотой 103 kHz, радиусом закругления иглы не более 10 nm), откалиброванного по образцу TGZ1 (NT-MDT). Полученные топограммы об-

Обработка	μ , 10^{-3} cm ² · V ⁻¹ · s ⁻¹	U_t, V	R_a , nm	$N_a, \mu \mathrm{m}^{-2}$
До отжига После отжига	$1.9 \pm 0.3 \\ 2.5 \pm 0.4$	$\begin{array}{c} -16\pm2\\ -7\pm3\end{array}$	2.5 1.1	45 25

Усредненные электрические характеристики и параметры поверхностной морфологии кристаллических пленок пентацена до и после отжига при 150°C (15 h)

Примечание. μ — дырочная подвижность в режиме насыщения, U_t — пороговое напряжение, R_a и N_a — средние шероховатость поверхности и плотность зерен пленки.

Рис. 2. Топографические АСМ-изображения поверхности кристаллической пленки пентацена перед обработкой (*a*) и после отжига при 150°С (*b*).

рабатывались и анализировались с помощью программы Gwyddion [17].

Передаточные и выходные вольт-амперные характеристики (ВАХ) устройств ОПТ исследовались по схеме с общим истоком с помощью источникаизмерителя 2612В (Keithley, США) и ПО Probestation ("Принтэлтех", Россия) [18] на зондовой станции LA150DC (Semiprobe, США) при комнатной температуре. Подвижность носителей заряда μ в режиме насыщения определялась на основе полученных при измерении передаточных ВАХ зависимостей значений тока между истоком и стоком I_{sd} от напряжения на затворе U_g с помощью следующего выражения [11,15]:

$$I_{sd} = \frac{W}{2L} \mu C \left(U_g - U_T \right)^2, \tag{1}$$

где W и L — ширина и длина канала транзистора соответственно, $C = 7.3 \text{ nF/cm}^2$ — удельная поверхностная электроемкость подзатворного диэлектрика (для оценки C использовались значения диэлектрических проницаемостей $\varepsilon_{\text{SiO}_2} = 3.9$, $\varepsilon_{\text{PMMA}} = 3.6$). Ширина канала W на различных образцах составляла 1, 2 и 3 mm, а длина канала L была равна 100, 200 и 300 μ m соответственно, так что отношение W/L во всех случаях составляло 10.

Отжиг образцов проводился в течение 15 h при 150°C в потоке смеси аргона с 5% водорода (НИИ КМ, Москва). Контроль расхода газа на уровне 0.3 l/h поддер-

живался с помощью контроллера-расходомера EL-FLOW Prestige FG-200CV (Bronkhorst, Нидерланды).

Средние значения дырочной подвижности μ в режиме насыщения и порогового напряжения Ut для серии из 20 полевых транзисторов, определенные до и после отжига, представлены в таблице. Установленные в наших условиях электрические характеристики пленок пентацена до обработки близки к исходным значениям, полученным в работе [11]. Как видно из таблицы, изотермический отжиг при 150°С в течение 15 h привел к увеличению средней дырочной подвижности на 30% и снижению порогового напряжения приблизительно в 2 раза. В качестве примера на рис. 1 приведены передаточные (а) и выходные (b) ВАХ одного из образцов. Для данного транзистора подвижность возросла в 1.4 раза (с $2.1 \cdot 10^{-3}$ до $2.9 \cdot 10^{-3}$ cm² · V⁻¹ · s⁻¹), а абсолютное значение порогового напряжения снизилось с 13.4 до 9.9 V. Судя по изменениям выходных характеристик в линейной области (см. вставку на рис. 1, b), отжиг привел к снижению контактного барьера на границе пленки Рс с золотыми электродами.

По данным ACM толщина пленок Pc в результате термической обработки изменилась незначительно, а морфология поверхности и зеренная структура претерпели существенные изменения (рис. 2). Как видно из представленных на рис. 2 топографических ACM-изображений поверхности пленки пентацена, отжиг привел к снижению средней шероховатости поверхности R_a более чем в 2 раза и укрупнению зерен вместе с некоторым размытием межзеренных границ (средняя плотность зерен N_a уменьшилась почти в 2 раза), см. таблицу.

Таким образом, улучшение электрических свойств напыленных кристаллических пленок пентацена и снижение контактного барьера на границе с электродами стока и истока связаны со структурной перестройкой молекул в процессе отжига в инертной атмосфере. Судя по увеличению дырочной подвижности μ и снижению порогового напряжения полевых транзисторов, отжиг пленок снизил число ловушек для электротранспорта в канале транзистора, что, согласно данным АСМ, отчасти связано с укрупнением зерен и повышением их связности (рис. 2). В дальнейшем запланированы поиск оптимальных параметров термовременной обработки и выяснение роли буферного диэлектрика — РММА в процессах рекристаллизации пентацена, приводящих к значительному улучшению электрических характеристик тонкопленочных полевых транзисторов.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках государственного задания ФНИЦ "Кристаллография и фотоника" РАН с использованием научного оборудования ЦКП "Структурная диагностика материалов" (проект RFMEF162119X0035).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- В.Д. Александров, Высокомолекуляр. соединения А, 20 (9), 1943 (1978).
- S. Kania, W. Mycielski, A. Lipiński, Thin Solid Films, 61 (2), 229 (1979). DOI: 10.1016/0040-6090(79)90465-6
- [3] M.A. Fusella, S. Yang, K. Abbasi, H.H. Choi, Z. Yao, V. Podzorov, A. Avishai, B.P. Rand, Chem. Mater., 29 (16), 6666 (2017). DOI: 10.1021/acs.chemmater.7b01143
- Y. Jin, Z. Rang, M.I. Nathan, P.P. Ruden, C.R. Newman, C.D. Frisbie, Appl. Phys. Lett., 85 (19), 4406 (2004).
 DOI: 10.1063/1.1814802
- [5] X. Shen, Y. Wang, J. Li, Y. Chen, Z. Wang, W. Wang, L. Huang, L. Chi, Front. Mater., 7, 245 (2020).
 DOI: 10.3389/fmats.2020.00245
- [6] D. Guo, S. Ikeda, K. Saiki, J. Appl. Phys., 99 (9), 094502 (2006). DOI: 10.1063/1.2193055
- [7] D. Guo, S. Ikeda, K. Saiki, J. Appl. Phys., 105 (11), 113520 (2009). DOI: 10.1063/1.3132824
- [8] T. Ahn, H. Jung, H.J. Suk, M.H. Yi, Synth. Met., 159 (13), 1277 (2009). DOI: 10.1016/j.synthmet.2009.02.023
- [9] D.W. Chou, C.J. Huang, C.M. Su, C.F. Yang, W.R. Chen, T.H. Meen, Solid State Electron., 61 (1), 76 (2011). DOI: 10.1016/j.sse.2011.01.003

- [10] H.S. Shin, H.J. Yun, K.H. Baek, Y.H. Ham, K.S. Park, D.P. Kim, G.W. Lee, H.D. Lee, K. Lee, L.M. Do, J. Nanosci. Nanotechnol., **12** (7), 5325 (2012). DOI: 10.1166/jnn.2012.6253
- [11] Lassnig, B. Striedinger, M. Hollerer, A. Fian, B. Stadlober, A. Winkler, J. Appl. Phys., **116** (11), 114508 (2014).
 DOI: 10.1063/1.4895992
- [12] Y.J. Lin, H.Y. Tsao, Microelectron. Eng., 149 (C), 57 (2016).
 DOI: 10.1016/j.mee.2015.09.014
- [13] T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison,
 D. Chernyshov, B. Batlogg, C. Kloc, Adv. Mater., 19 (16),
 2079 (2007). DOI: 10.1002/adma.200602072
- [14] S. Jo, M. Takenaga, Jpn. J. Appl. Phys., 49 (7R), 078002 (2010). DOI: 10.1143/JJAP.49.078002
- [15] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett., 49 (18), 1210 (1986). DOI: 10.1063/1.97417
- [16] L.G. Kudryashova, M.S. Kazantsev, V.A. Postnikov, V.V. Bruevich, Y.N. Luponosov, N.M. Surin, O.V. Borshchev, S.A. Ponomarenko, M.S. Pshenichnikov, D.Y. Paraschuk, ACS Appl. Mater. Interfaces, 8 (16), 10088 (2016). DOI: 10.1021/acsami.5b11967
- [17] P. Nečas, D. Klapetek, Gwiddion software [Электронный ресурс]. URL: http://gwyddion.net/
- [18] D. Zotkin, A. Sizov, Probestation software: 1.13.