06

Влияние лазерного разрушения на нелинейно-оптические свойства core/shell наностержней Au/SiO₂

© Т.А. Чевычелова, А.И. Звягин[¶], О.В. Овчинников, М.С. Смирнов, А.С. Перепелица

Воронежский государственный университет, 394018 Воронеж, Россия

¶e-mail: andzv92@yandex.ru

Поступила в редакцию 03.08.2021 г. В окончательной редакции 16.08.2021 г. Принята к публикации 20.08.2021 г.

Проанализированы механизмы нелинейно-оптического отклика от ансамблей золотых наностержней, покрытых оболочкой из диоксида кремния (Au/SiO₂ HC). Методом Z-сканирования под действием 10 пs импульсов второй гармоники YAG:Nd³⁺-лазера (532 nm) найдены зависимости, характерные для нелинейного поглощения и отрицательной динамической линзы. Показано, что усиливающееся с ростом энергии импульса просветление коллоидного раствора вызвано лазерным разрушением Au/SiO₂ HC, реализующимся за счет плавления, что подтверждается теоретическими оценками. Отрицательная нелинейная рефракция отнесена к отклику от сферических наночастиц (Au HЧ), сформированных при лазерном разрушении HC.

Ключевые слова: наностержни золота, core-shell системы, нелинейная рефракция, нелинейное поглощение, *Z*-сканирование.

DOI: 10.21883/OS.2021.12.51746.2608-21

Введение

Наночастицы (НЧ) благородных металлов проявляют уникальные нелинейно-оптические свойства благодаря особому механизму взаимодействия с лазерным излучением, связанному с существованием коллективных электронных возбуждений, называемых в литературе локализованными или поверхностными плазмонами, время жизни которых ограничено и определяется электронэлектронной ($\sim 10^2$ fs) и электрон-фононной релаксацией (до 10^2 ps) [1–5].

Для плазмонных НЧ сферической формы [1,2,6-9] наблюдают проявления нелинейного поглощения лазерных импульсов. Методом Z-сканирования наблюдают профили нелинейного отклика, характерные для обратного насыщенного поглощения (reverse saturable absorption, RSA) у нанокластеров, и просветления или насыщения поглощения (saturable absorption, SA) у более крупных НЧ. По данным [7,8], SA связано с электронными переходами на уровни, лежащие выше уровня Ферми, а RSA — с поглощением свободными носителями заряда в зоне проводимости плазмонных НЧ. Помимо этого, считается возможным посредством лазерного возбуждения индуцировать переход электронов из глубокой *d*-зоны в *sp*-зону золота [7,8].

Интерпретация нелинейного отклика от НЧ несферической формы сложнее. Структура наностержней (НС) подразумевает существование в спектре экстинкции поперечного и продольного плазмонного резонансов. Интерес представляет нелинейный отклик, связанный с продольным резонансом. Время жизни локализованного плазмона в Au HC составляет 40–120 ps [10]. Это зна-

чение сопоставимо с временем лазерного превращения наностержней в наносферы 30 ps [11]. При воздействии фемтосекундных лазерных импульсов на длине волны излучения вблизи продольного плазмонного резонанса (700 nm) Au HC демонстрируют нелинейное поглощение и нелинейную рефракцию положительного знака, что связывают с однофотонным поглощением [12] или с поглощением свободными носителями заряда [13]. Однако и при воздействии наносекундных импульсов отмечен сильный нелинейно-оптический отклик НЧ цилиндрической и пирамидальной геометрии [14-16]. Для треугольных НЧ серебра, демонстрирующих широкий контур просветления на длине волны 532 nm, установлено, что SA связано с их разрушением и превращением в сферы, у которых плазмонный пик находится в области 420 nm [16]. Это заключение не случайно. В ряде работ отмечено, что действие даже коротких лазерных импульсов приводит к нагреву, плавлению и разрушению НЧ размером несколько десятков нанометров [17-20]. Чтобы избежать деструкции НЧ, интенсивность излучения подбирают ниже порога их разрушения.

Таким образом, наблюдаемые оптические нелинейности, особенно эффекты нелинейного поглощения для плазмонных НЧ, требуют учета вклада в наблюдаемые сигналы процессов их фотодеградации. Обоснование механизма возникновения нелинейно-оптического отклика плазмонных НЧ имеет важное значение для рассмотрения аналогичных свойств в гибридных структурах с плеэкситонным взаимодействием [20,21]. В подобных наноструктурах благодаря взаимодействию между плазмоном в металлической НЧ и возбуждением (например, экситоном в квантовых точках) возможны эффекты,

Рис. 1. ПЭМ-изображения до (a) и после (b) воздействия лазерного излучения Au/SiO₂ HC.

вызванные изменением вероятности переходов в одной из компонент плеэкситонных наноструктур. Такие эффекты могут оказывать существенное влияние на оптические нелинейности, имеющие накопительный характер [22–26]. Взаимное расстояние компонентов плеэкситонных наноструктур является одним из ключевых параметров. Управления расстоянием между компонентами системы, как правило, достигают формированием инертных органических или неорганических оболочек. Часто используют SiO₂-оболочки. Однако нелинейнооптические свойства core/shell плазмонных наноструктур сферической формы рассматривается лишь в нескольких работах [27,28], а для несферических НЧ — отсутствуют вовсе.

Данная работа частично восполняет этот пробел. Она посвящена анализу нелинейно-оптического отклика коллоидных НЧ золота цилиндрической формы, покрытых оболочкой из диоксида кремния (Au/SiO₂ HC), наблюдаемого методом Z-сканирования под действием 10 пs лазерных импульсов на длине волны второй гармоники Nd:YAG-лазера $\lambda = 532$ nm.

Экспериментальные методики измерения и приготовления образцов

Приготовление исследуемых образцов Au/SiO₂ HC осуществляли в два этапа: выращивание Au HC и покрытие готовых наностержней оболочкой из диоксида кремния.

Для формирования Au HC использовали многостадийный подход в рамках коллоидного синтеза [20]. Водный раствор поверхностно-активного вещества цетилтриметиламмония бромида (ЦТАБ) используется для выращивания цилиндрических HЧ, являясь одновремен-

но слабым восстановителем и анизотропной средой. Затравочный раствор наносфер золота размером 3 nm получали путем восстановления водной золотохлористоводородной кислоты HAuCl₄ (7 µl, 0.36 M) раствором NaBH₄ (1.0 ml, 5 mM) в водном растворе ЦТАБ (20 ml, 0.02 mM). Анизотропию роста НЧ обеспечивает ростовой раствор, который получали в результате смешивания HAuCl₄ (28 μl, 0.36 M), ЦТАБ (50 ml, 0.1 mM), AgNO₃ (0.1 ml, 0.02 M) и C₆H₈O₆ (5 ml, 0.05 µM). Добавление AgNO₃ способствует управлению отношения длины к диаметру Au HC. Готовый раствор очищали от продуктов реакции путем промывки дистиллированной водой посредством нескольких циклов центрифугированиядиспергирования. По данным ПЭМ, полученные НЧ представляли собой наностержни и имели средний размер 6×18 nm.

На основе полученных Au HC создавали соге/shell структуры путем наращивания слоя диоксида кремния [29]. Формирование оболочки SiO₂ на поверхности Au HC осуществляли путем функционализации поверхности Au HC монослоем (3-меркаптопропил) триметоксисилан (3-MPTMS) с последующим формированием плотных слоев SiO₂ метасиликатом натрия (Na₂O(SiO₂)) [21]. Для этого 0.5 ml гидролизованного 2 mM раствора 3-MPTMS смешивали с 20 ml раствора коллоидных Au HC (pH = 9.0). Далее в реакционную смесь добавляли 4 ml водного раствора Na₂SiO₃ (0.38 mM), регулируя pH до значения 10.2, и оставляли перемешивать в течении 7 дней. Размер полученной оболочки составлял 5 nm (рис. 1, *a*).

Размеры Au/SiO₂ HC и толщину оболочки SiO₂ на ее поверхности определяли с помощью просвечивающего электронного микроскопа (Libra 120, Carl Zeiss, Германия). Исследование спектров экстинкции света

Рис. 2. Схема *Z*-сканирования: BS — светоделитель; L — линза; D1 — первый фотодиод; S — образец; А — диафрагма; D2 — второй фотодиод.

синтезированными ансамблями Au/SiO₂ HC осуществляли с использованием спектрометра USB2000+ (Ocean Optics) с источником излучения USB-DT (Ocean Optics).

Для исследования нелинейно-оптических свойств исследуемых образцов использовали метод Z-сканирования. Он основан на измерении нормализованного пропускания исследуемого образца при его перемещении относительно фокальной плоскости собирающей линзы, вдоль оптической оси z [30]. Коэффициент нормализованного пропускания определяется как отношение коэффициента пропускания образца $T_{meas}(z)$ в точке с координатой z к пропусканию образца в линейном режиме при низкой интенсивности, которое регистрируется вдали от фокуса линзы $T_{meas}(z \to \infty)$:

$$T = \frac{T_{meas}(z)}{T_{meas}(z \to \infty)}$$

В этом методе пропускание образца измеряли при условии различного поперечного размера гауссова пучка (различной интенсивности). Другими словами, при изменении координаты *z* фактически осуществляли сканирование по интенсивности лазерного излучения.

Нормализованное пропускание образцов коллоидных растворов Au/SiO₂ HC исследовали в геометрии с открытой (позволяет исследовать только абсорбционные нелинейные процессы) апертурой (OA), а также в геометрии с закрытой апертурой (CA). В последнем случае вклад в нормализованное пропускание (Z-скан) вносят еще и рефракционные эффекты. Экспериментальная установка представляла собой установленные на одной оптической оси YAG:Nd³⁺-лазер (вторая гармоника, 532 nm, 10 ns), светоделитель (BS), сферическая линза с фокусным расстоянием 300 mm (L), за которой установлен образец S в 5 mm кварцевой кювете (рис. 2).

Нелинейно-оптические свойства образцов

На рис. 3, *а* представлены *Z*-сканы от ансамблей Au/SiO₂ HC, полученных в геометрии с OA и энергии лазерного импульса 0.02 и 0.16 mJ. Для значения энергии лазерного импульса 0.02 mJ наблюдали увеличение нормализованного пропускания по мере

100 Оптика и спектроскопия, 2021, том 129, вып. 12

приближения образца к фокальной плоскости линзы $T_{\rm max} = 1.07$. С увеличением энергии импульса до 0.16 mJ незначительный рост просветления образца до 1.08 сопровождался возникновением симметричного провала $(T_{\rm min} = 0.90)$ относительно фокальной плоскости линзы (Z = 0). Следует отметить, что для Au HC, синтезированных тем же способом, наблюдали аналогичные Z-сканы, что указывает на отсутствие вклада оболочки SiO₂ в регистрируемый нелинейный отклик.

Наблюдаемое просветление может быть обусловлено как насыщением плазмонного поглощения, так и падением оптической плотности на длине волны зондирующих импульсов (рис. 3). Падение оптической плотности может быть связано с лазерным разрушением Au/SiO₂ HC. В пользу этого заключения свидетельствует также отсутствие просветления Au/SiO₂ HC при повторном zсканировании уже облучённого образца. В этом случае наблюдается только сигнал затемнения (рис. 3, *a*). Наведенное затемнение, возникающее по мере приближения образца к фокальной плоскости линзы, может возникать по нескольким причинам. Наряду с маловероятным механизмом обратного насыщения поглощения (RSA) [7,8] вероятно возникновение фотоиндуцированного рассеяния [16,21]. Аналогично указанным работам фотоиндуцированное рассеяние подтверждено в экспериментах, в которых использовали дополнительный фотодиод, установленный в используемой схеме Z-сканирования, под углом 5° к оптической оси. В этой схеме регистрировали сигнал рассеяния, который в Z-скане представлял собой симметричный пик с максимумом при z = 0.

Анализ результатов, полученных с помощью ПЭМ и спектров экстинкции света образцов до и после воздействия теми же лазерными импульсами, что использовали при Z-сканировании, свидетельствует о фотодеструкции Au/SiO₂ HC. Согласно данным ПЭМ, после экспонирования коллоидного раствора Au/SiO₂ HC микрофотографии содержат только сферические наночастицы размером 2-4 nm (рис. 1, b). Это заключение согласуется с данными работ [19,20], в которых наблюдали разрушение Au HC в поле наносекундных импульсов вследствие тепловых процессов. Полученные данные свидетельствуют о том, что Au/SiO2 HC неустойчивы, так же как и Аи НС в поле лазерных импульсов. В этом состоит отличие от случая сферических core/shell Ag/SiO₂ HЧ, когда оболочка SiO₂ предотвращала фотодеструкцию НЧ серебра Ag/SiO₂ [28].

В спектрах экстинкции света образцов после их экспонирования коллоидного раствора Au/SiO₂ HC теми же лазерными импульсами полностью исчезал пик при 636 nm, обусловленный продольным плазмонным резонансом. Этот факт также свидетельствует об изменении формы HЧ с цилиндрической на сферическую. Кроме того, пик при 534 nm смещается к 508 nm, и поглощение на длине волны 532 nm также уменьшается, что и определяет просветление (рис. 4).

Для детализации механизма лазерного разрушения золотых наностержней обратимся к структурным дан-

Рис. 3. Z — сканы Au/SiO₂ HC, полученные в геометрии с открытой (a) и закрытой (b) апертурой.

Рис. 4. Спектры экстинкции, демонстрирующие фотоиндуцированное преобразование Au HC в Au NPs.

ным. На ПЭМ изображениях (рис. 1, a) для Au/SiO₂ HC видна закономерная боковая огранка. Ввиду малой толщины на их фоне видна структура аморфной пленки углерода, на которой они находятся. Дифракционный контраст в пределах отдельных стержней не выявляет наличия границ зерен, тонких двойниковых прослоек, ростовых дислокаций, что свидетельствует о совершенной структуре Au/SiO₂ HC. В таком случае лазерно-индуцируемая рекристаллизация маловероятна. Для длительностей лазерных импульсов, составляющих наносекунды, характерным механизмом преобразования геометрии HЧ в таком случае может быть их плавление [17]. В пользу лазерного плавления Au/SiO₂ HC свидетельствуют также численные оценки достигаемых температур в рамках однотемпературной модели нагрева (OTM) [18]. Данная модель применима для наносекундных импульсов, так как за время одного импульса температура возбужденных горячих электронов и решеточной подсистемы успевает эффективно выровняться в каждый момент времени. В таком случае зависимость температуры от времени рассчитывается исходя из уравнения [18]:

$$\frac{dT}{dt} = \frac{\mu(T)}{\rho C(T)} \Delta T + \frac{Q(t,r)}{\rho C(T)} - j_D S_0 + \frac{3L}{r_{ef} C(T)} \frac{dr_{ef}}{dt},$$

где T(t, r) — температура решетки, $\mu(T)$ — теплопроводность золота, C(T) — удельная теплоемкость, ρ плотность золота, Δ — оператор Лапласа, Q(t, r) тепловой источник, j_D — отток тепла в окружающую среду, S₀ — площадь поверхности источника, L удельная теплота испарения, $r_{ef} = \sqrt[3]{\frac{3V}{4\pi}}$ — эффективный радиус наночастицы, V — объем наночастицы. Здесь в первом слагаемом учитывается форма наночастицы, во втором — ее однородный нагрев, в третьем — отток тепла в окружающую среду и в четвертом — испарение электронов с поверхности наностержней. В случае длительных наносекундных импульсов происходит однородный нагрев всего объема наночастицы, и ее форма не оказывает влияние на динамику нагрева. С другой стороны, оболочка из диоксида кремния должна предотвращать испарение электронов. Это дает возможность упростить решение уравнения следующим образом. Вопервых, произвести интегрирование не по цилиндрическому, а по сферическому объему, вводя эффективный радиус эквивалентной сферической наночастицы. Вовторых, пренебречь испарением с поверхности. Таким

Рис. 5. Зависимость температуры от интенсивности зондирующих импульсов для наностержней Au/SiO₂ HC размером ядра 6×18 nm ($r_{ef} = 5$ nm).

образом, оставшиеся слагаемые расписываем как в [18]:

$$\frac{dT}{dt} = \frac{3K_{abs}I_0f(t)}{4r_{ef}C(T)\rho} - \frac{\mu_{\infty}T}{(s+1)r_{ef}^2C(T)\rho} \left[\left(\frac{T}{T_{\infty}}\right)^{s+1} - 1 \right],$$

где T_{∞} — температура окружающей среды, K_{abs} — эффективность поглощения излучения НЧ, I_0 — интенсивность падающего излучения, f(t) — форма импульса μ_{∞} — теплопроводность окружающей среды, s = 1 — степенной показатель, зависящий от окружающей среды (значение указано для воды).

Зависимость температуры НЧ от интенсивности лазерного излучения T(I) представлена на рис. 5. Видно, что при пороговой интенсивности начала просветления $I_{thresh} = 17 \,\mathrm{MW}\cdot\mathrm{cm}^{-2}$ температура НЧ не достигает температуры плавления ($T_{melt} = 1337 \,\mathrm{K}$) и составляет порядка 500 К. Однако оценка интенсивности, при которой наступает плавление, составила $I_{melt} = 930 \,\mathrm{MW}\cdot\mathrm{cm}^{-2}$. Оказалось, что вблизи фокуса собирающей линзы интенсивности лазерного излучения вполне достаточно для плавления НЧ и изменения их формы с цилиндрической на сферическую, что и определяет наблюдающееся просветление в Z-сканах.

Таким образом, характерным механизмом изменения геометрии Au/SiO₂ HC в поле лазерных импульсов порядка наносекунд является их плавление с последующим образованием сферических HЧ золота, что проявляется в нелинейно-оптическом отклике в виде просветления коллоидного раствора при воздействии излучения с длиной волны 532 nm.

В случае закрытой апертуры СА исходные Au/SiO₂ HC и Au/SiO₂ HЧ после фотодеструкции демонстрируют нелинейную рефракцию; кривые Z-сканирования для "свежих" и экспонированных образцов идентичны (рис. 3, b). Наличие максимума при отрицательных и

100* Оптика и спектроскопия, 2021, том 129, вып. 12

минимума при положительных Z указывает на отрицательную нелинейную рефракцию.

Оценку нелинейного показателя преломления выполняли путем аппроксимации кривых Z-сканов с помощью формулы [31]:

$$T = 1 + \frac{2(-\rho x + 2x - 3\rho)}{(x^2 + 9)(x^2 + 1)} \Delta \Phi_0.$$

Здесь $\rho = \beta/2k\gamma$, $x = z/z_0$, $\Delta \Phi_0 = k\gamma I_0 L_{ef}$ — сдвиг фаз в фокусе за счет нелинейной рефракции и нелинейного поглощения, I_0 — интенсивность лазерного излучения в фокусе, $L_{ef} = [1 - \exp(-\alpha L)]/\alpha$ — эффективная длина образца, α — линейный коэффициент поглощения, γ нелинейный показатель преломления, β — коэффициент нелинейного поглощения материалов.

У ансамблей Au/SiO₂ HC величина нелинейного показателя преломления γ составила $-5 \cdot 10^{-15}$ cm² · W⁻¹. Оценка вклада тепловой рефракции дала значение коэффициента, равное $\gamma \sim -10^{-17}$ cm² · W⁻¹ [30], что на два порядка меньше, чем наблюдаемое в эксперименте для Au/SiO₂ HC. Это позволяет исключить из рассмотрения возможных механизмов рефракции вклад тепловых процессов.

Известно, что для золотых НЧ в процессах поглощения наряду с плазмонным поглощением также важную роль играют межподзонные переходы. В таком случае изменение заселенностей состояний в *d*-зоне и *s p*-зоне в результате поглощения излучения будет сопровождаться изменением нестационарных абсорбционных полос для Au/SiO₂ HC, что в свою очередь приведет к зависимости показателя преломления от интенсивности падающего излучения, в соответствии с дисперсионными соотношениями Крамерса-Кронига [32]. Однако данные о спектральных и энергетических свойствах локализованных состояний в *d*-зоне и *s p*-зоне [7,8,33], а также об их возможности участвовать в переходах, сопровождающихся нелинейной рефракцией, отсутствуют.

Для установления деталей механизма нелинейной рефракции осуществляли построение кривых зависимости нормализованного пропускания от падающей интенсивности, используя данные Z-сканов. Это позволило установить пороговые значения интенсивности начала фотодеструкции, ограничения оптической мощности и нелинейной рефракции, равные соответственно 17, 261 и 317 MW⋅cm⁻². Оказалось, что нелинейная рефракция наступает при значительно больших интенсивностях по сравнению с фотодеструкцией золотых наностержней. Таким образом, рефракционный отклик наблюдается преимущественно на сформированных лазерным излучением золотых наносферах Au.

Заключение

Полученные нелинейно-оптические свойства, спектральные и структурные данные указывают на разрушение core/shell Au/SiO₂ HC до золотых наносфер в поле наносекундных лазерных импульсов с длиной волны 532 nm. Рефракционный отклик наблюдается преимущественно на новообразованных наносферах под действием зондирующего излучения.

Финансирование работы

Работа поддержана грантом Президента РФ для государственной поддержки ведущих научных школ РФ, проект НШ-2613.2020.2.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Zhang K., Ganeev R.A., Rao K.S., Maurya S.K., Boltaev G.S., Krishnendu P.S., Yu Z., Yu W., Fu Y., Guo C. // J. Nanomater. 2019. V. 2019 P. 6056528. doi 10.1155/2019/6056528
- Mezher M.H., Nady A., Penny R., Chong W.Y., Zakaria R. // Appl. Opt. 2015. V. 54. N 33. P. 9703. doi 10.1364/ao.54.009703
- [3] Mezher M.H., Chong W.Y., Zakaria R. // RSC Adv. 2016.
 V. 6. N 106. P. 104624. doi 10.1039/c6ra22367b
- [4] Zhang Y.X., Wang Y.H. // RSC Adv. 2017. V. 7. N 71.
 P. 45129. doi 10.1039/c7ra07551k
- [5] Wurtz G.A., Pollard R., Hendren W., Wiederrecht G.P., Gosztola D.J., Podolskiy V., Zayats A.V. // Nat. Nanotechnol. 2011. V. 6. N 2. P. 107. doi 10.1038/nnano.2010.278
- [6] Hua Y, Chandra K, Dam D.H.M., Wiederrecht G.P., Odom T.W. // J. Phys. Chem. Lett. 2015. V. 6. N 24. P. 4904. doi 10.1021/acs.jpclett.5b02263
- [7] Mai H.H., Kaydashev V.E., Tikhomirov V.K., Janssens E., Shestakov M.V., Meledina M., Turner S., Van Tendeloo G., Moshchalkov V.V., Lievens P. // J. Phys. Chem. C. 2014.
 V. 118. N 29. P. 15995. doi 10.1021/jp502294u
- [8] Philip R., Chantharasupawong P., Qian H., Jin R., Thomas J. // Nano Lett. 2012. V. 12. N 9. P. 661. doi 10.1021/nl301988v
- Sánchez-Dena O., Mota-Santiago P., Tamayo-Rivera L., Crespo-Sosa A., Oliver A., Reyes-Esqueda J.A. // 2013. V. 4.
 P. 92. doi 10.1364/ome.4.000092
- [10] Hu M., Wang X., Hartland G.V., Mulvaney P., Juste J.P., Sader J.E. // J. Am. Chem. Soc. 2003. V. 125. N 48. P. 14925. doi 10.1021/ja037443y
- [11] Link S., Burda C., Mohamed M.B., Nikoobakht B., El-Sayed M.A. // J. Phys. Chem. A. 1999. V. 103. N 9. P. 1165. doi 10.1021/jp983141k
- Gordel M., Kolkowski R., Olesiak-Banska J., Matczyszyn K., Buckle M., Samoc M. // J. Nanophotonics. 2014. V. 9. N 1. P. 093797. doi 10.1117/1.jnp.9.093797
- Ban G., Fu X., Peng Z. // Key Eng. Mater. 2014. V. 602–603.
 P. 993. doi 10.4028/www.scientific.net/KEM.602-603.993
- [14] Zheng C., Huang J., Lei L., Chen W., Wang H., Li W. // Appl. Phys. B. 2018. V. 124. N 1. P. 1. doi 10.1007/s00340-017-6888-3
- [15] Jae Tae Seo, Qiguang Yang, Wan-Joong Kim, Jinhwa Heo, Seong-Min Ma, Austin J., Wan Soo Yun, Sung Soo Jung, Sang Woo Han, Tabibi B., Temple D. // Opt. Lett. 2009. V. 34. N 3. P. 307. doi 10.1364/ol.34.000307

- Zvyagin A.I., Perepelitsa A.S., Lavlinskaya M.S., Ovchinnikov O.V., Smirnov M.S., Ganeev R.A. // Optik (Stuttg). 2018.
 V. 175. P. 93. doi 10.1016/j.ijleo.2018.08.117
- [17] Letfullin R.R., George T.F., Duree G.C., Bollinger B.M. // Adv. Opt. Technol. 2008. V. 2008. P. 251718. doi 10.1155/2008/251718
- [18] Werner D., Furube A., Okamoto T., Hashimoto S. // J. Phys. Chem. C. 2011. V. 115. N 17. P. 8503. doi 10.1021/jp112262u
- [19] Attia Y.A., Flores-Arias M.T., Nieto D., Vázquez-Vázquez C., De La Fuente G.F., López-Quintela M.A. // J. Phys. Chem. C. 2015. V. 119. N 23. P. 13343. doi 10.1021/acs.jpcc.5b03046
- [20] Гревцева И.Г., Чевычелова Т.А., Дерепко В.Н., Овчинников О.В., Смирнов М.С., Перепелица А.С., Паршина А.С. // Конденсированные среды и межфазные границы. 2021. Т. 23. № 1. С. 25. doi 10.17308/kcmf.2021.23/3294
- [21] Овчинников О.В., Смирнов М.С., Гревцева И.Г., Дерепко В.Н., Чевычелова Т.А., Леонова Л.Ю., Перепелица А.С., Кондратенко Т.С. // Конденсированные среды и межфазные границы. 2021. Т. 23. № 1. С. 49. doi 10.17308/kcmf.2021.23/3302
- [22] Zvyagin A.I., Smirnov M.S., Ovchinnikov O.V. // Optik. 2020.
 V. 218. P. 165122. doi 10.1016/j.ijleo.2020.165122
- [23] Kondratenko T.S., Smirnov M.S., Ovchinnikov O.V., Zvyagin A.I., Ganeev R.A., Grevtseva I.G. // Optik. 2020. V. 200.
 P. 163391. doi 10.1016/j.ijleo.2019.163391
- [24] Boltaev G.S., Fu D.J., Sobirov B.R., Smirnov M.S., Ovchinnikov O.V., Zvyagin A.I., Ganeev R.A. // Optics Express. 2018.
 V. 26. N 11. P. 13865. doi 10.1364/OE.26.013865
- [25] Кондратенко Т.С., Гревцева И.Г., Звягин А.И., Овчинников О.В., Смирнов М.С. // Опт. и спектр. 2018.
 Т. 124. № 5. С. 640. doi 10.21883/OS.2018.05.45945.310-17; Kondratenko T.S., Grevtseva I.G., Zvyagin A.I., Ovchinnikov O.V., Smirnov M.S. // Opt. Spectrosc. 2018.
 V. 124. N 5. Р. 673. doi 10.1134/S0030400X18050090
- [26] Boltaev G.S., Sobirov B., Reyimbaev S., Sherniyozov H., Usmanov T., Smirnov M.S., Ovchinnikov O.V., Grevtseva I.G., Kondratenko T.S., Shihaliev H.S., Ganeev R.A. // Appl. Phys. A. 2016. V.122. N 12. P. 999. doi 10.1007/s00339-016-0536-3
- [27] Shiju E., Siji Narendran N.K., Narayana Rao D., Chandrasekharan K. // Nano Express. 2020. V. 1. N 3.
 P. 030026. doi 10.1088/2632-959x/abca0f
- [28] Chevychelova T.A., Grevtseva I.G., Zvyagin A.I., Smirnov M.S., Ovchinnikov O.V., Ganeev R.A. // Opt. Mater. 2021.
 V. 111. P. 110583. doi 10.1016/j.optmat.2020.110583
- [29] Li J.F. etal. // Nat. Protoc. 2013. V. 8. N 1. P. 52. doi 10.1038/nprot.2012.141
- [30] Sheik-Bahae M., Said A.A., Wei T.H., Hagan D.J., Van Stryland E.W. // IEEE J. Quantum Electron. 1990. V. 26.
 P. 760. doi 10.1109/3.53394
- [31] Liu X., Guo S., Wang H., Hou L. // Opt. Commun. 2001.
 V. 197. P. 431. doi 10.1016/s0030-4018(01)01406-7
- [32] Sheik-Bahae M., Hutchings D.C., Hagan D.J., Van Stryland E.W. // IEEE J. Quantum Electron. 1991. V. 27. N 6.
 P. 1296. doi 10.1109/3.89946
- [33] Zhu M., Aikens C.M., Hollander F.J., Schatz G.C., Jin R. // J. Am. Chem. Soc. 2008. V. 130. N 18. P. 5883. doi 10.1021/ja801173r