02 Спектрально-люминесцентные свойства Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$

© Е.А. Серегина, А.А. Серегин, Г.В. Тихонов

АО "ГНЦ РФ — ФЭИ", 249033 Обнинск, Калужская обл., Россия e-mail: seregina@ippe.ru

Поступила в редакцию 22.04.2021 г. В окончательной редакции 23.08.2021 г. Принята к публикации 07.09.2021 г.

Измерены спектры поглощения, люминесценции и время жизни Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$ при комнатной температуре. Получены данные о штарковском расщеплении уровней, сечениях поглощения и вынужденного излучения Yb^{3+} . Анализ спектральной зависимости сечения усиления указывает на перспективность раствора $SO_2Cl_2-GaCl_3-Yb^{3+}$ в качестве активной среды жидкостного иттербиевого лазера.

Ключевые слова: иттербий, сульфурилхлорид, поглощение, люминесценция, штарковское расщепление, сечение усиления, диодная накачка.

DOI: 10.21883/OS.2021.12.51735.1883-21

Введение

Основной трудностью в создании и работе твердотельных лазеров (ТТЛ) киловаттной мощности является организация эффективного охлаждения активной среды [1]. При высоких мощностях и высоких температурах в твердотельных лазерных матрицах возникают внутренние напряжения, приводящие к их разрушению. Лазерные среды на неорганических лазерных жидкостях (НЛЖ) не имеют этих недостатков. Использование НЛЖ позволяет создавать лазерные элементы большого объема с большой плотностью активатора и улучшать эффективность охлаждения за счет циркуляции активной среды через резонатор. Отметим, что жидкие лазерные среды значительно дешевле твердотельных матриц, из них можно изготовить элементы практически любых необходимых форм и размеров. В то же время традиционные жидкостные лазеры с поперечной ламповой накачкой имеют большую угловую расходимость лазерного излучения, что сдерживает их широкое применение [2]. Для уменьшения расходимости лазерного излучения в конденсированных средах получили развитие современные методы продольной диодной накачки [3-5], что принципиально важно для создания мощных жидкостных лазеров.

В последние годы появились предложения по диодной накачке неодимсодержащих НЛЖ [3], а также примеры лазерных устройств на основе жидкостных лазеров с диодной накачкой [6–8]. С точки зрения уменьшения тепловых нагрузок лазерные среды, активированные трехвалентными ионами иттербия (Yb³⁺), являются более перспективными. Ионы Yb³⁺ имеют меньшую разницу в энергиях квантов накачки и генерации по сравнению с ионами Nd³⁺. Излучательные переходы в Yb³⁺ происходят с нижних штарковских подуровней единственного возбужденного состояния ${}^{2}F_{5/2}$ на группу штарковских подуровней основного состояния ${}^{2}F_{7/2}$ [9].

Отдельные сведения о спектрально-люминесцентных свойствах Yb³⁺ в НЛЖ можно найти в работах Батяева И.М. с сотрудниками [10-13]. К сожалению, в этих работах не приведены сечения поглощения и вынужденного излучения, времена жизни возбужденного состояния Yb³⁺, за исключением времени затухания люминесценции Yb³⁺ в образце SO₂Cl₂-GaCl₃-Yb³⁺, $\tau = 260 \, \mu s$ [12]. Недостаток информации и возросший интерес к НЛЖ, активированным ионами Yb³⁺, побудил начать работы по синтезу и исследованию свойств иттербия в апротонных неорганических растворителях [14]. Результаты исследования спектрально-люминесцентных Yb^{3+} свойств представлены лля растворов POCl₃-ZrCl₄-Yb³⁺ [15] и SOCl₂-GaCl₃-Yb³⁺ [16] с соотношением $[GaCl_3]/[Yb^{3+}] = 12$. В этих работах получены данные о сечении поглощения и вынужденного излучения, о квантовом выходе люминесценции, о штарковском расщеплении верхнего $4F_{5/2}$ - и основного $4F_{7/2}$ состояний Yb³⁺, показана перспективность использования этих растворов в качестве активных сред жидкостных лазеров с диодной накачкой. Следует отметить, что НЛЖ отличаются по сложности синтеза, по токсичности и коррозионной активности [14,17,18]. НЛЖ на основе тионилхлорида (SOCl₂) и сульфурилхлорида (SO₂Cl₂) существенно менее токсичны, чем лазерные среды на основе оксихлорида фосфора (POCl₃). Настоящая работа посвящена исследованию спектральных и люминесцентных свойств наименее токсичных и агрессивных лазерно-активных жидкостей SO₂Cl₂-GaCl₃-Yb³⁺.

Эксперимент

Отличительной особенностью SO_2Cl_2 относительно $SOCl_2$ является устойчивость к окислительным процессам благодаря высшей степени окисления серы. Это свойство расширяет возможности сульфурилхлорида в случае введения в него компонент, склонных к восстановлению, и за счет меньшей агрессивности к конструкционным материалам и другим веществам.

Для приготовления растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$ применили четыре разных способа синтеза, использовали сульфурилхлорид 98.5%, "Асгоз", дополнительно очищенный методом двукратной дистилляции; галлий(III) хлорид, GaCl₃, 99.999%, "Ланхит"; соединения иттербия(III): оксид, Yb₂O₃, 99.999%, "Ланхит"; хлорид, YbCl₃, 99.99%, "Ланхит", а также приготовленные из Yb₂O₃ перхлорат, Yb(ClO₄)₃; трифторацетат, Yb(CF₃COO)₃; трифторметансульфонат Yb(CF₃SO₂O)₃.

Готовые растворы заливали в специальные спектрометрические кюветы через патрубки, которые запаивали для герметизации образцов и проведения дальнейших исследований. В зависимости от концентрации Yb³⁺ использовали кюветы (в том числе фирмы Hellma) из оптического кварца или термостойкого стекла с толщиной оптического слоя 0.2, 0.5 или 1.0 ст.

Измерения спектрально-люминесцентных характеристик растворов SO₂Cl₂–GaCl₃–Yb³⁺ проводили при комнатной температуре. Электронные спектры поглощения (ЭСП) регистрировали спектрофотометром CARY 500 в диапазоне длин волн 900–1100 nm в области полосы поглощения Yb³⁺. Спектры люминесценции и время жизни $\tau_{\rm lum}$ возбужденного состояния ${}^{2}F_{5/2}$ ионов Yb³⁺ измеряли на спектрофлуориметре PTI QuantaMaster 8000 фирмы HORIBA. Для возбуждения Yb³⁺ при измерении спектров люминесценции использовали ксеноновую лампу OB-75X Arc Lamp, при измерении $\tau_{\rm lum}$ — импульсную ксеноновую лампу Туре L4633, HAMMAMATSU с длительностью импульса 2 μ s и частотой 200 Hz.

Кювету с исследуемой жидкостью помещали в блок образцов. Свет от источника возбуждения проходил через монохроматор № 1 и подавался перпендикулярно поверхности кюветы. Для возбуждения Yb³⁺ длину волны λ_{exc} устанавливали, как правило, 940 \pm 5 nm. Люминесценция образца направлялась на вход монохроматора № 2, расположенного под углом 90° к монохроматору № 1. Детектор излучения (фотодиод на основе кристалла InGaAs — модель DSS — IGA020L/100 KHZ) имеет два режима работы: режим сканирования излучения по длинам волн и режим работы с импульсными сигналами для регистрации временных распределений интенсивности люминесценции образца. В режиме сканирования ширину входных и выходных щелей монохроматоров устанавливали одинаковыми: для возбуждения — 5 nm, для регистрации люминесценции — 1 nm. Спектры люминесценции измеряли в диапазоне длин

волн 945–1200 nm. При импульсном возбуждении образцов кинетику затухания люминесценции измеряли на $\lambda = 980 \pm 5$ nm при ширине щелей монохроматора № 1 10 nm, монохроматора № 2 5 nm и частоте следования импульсов возбуждения 200 Hz.

Управление работой спектрофлуориметра осуществлялось с помощью программы FelixGX 4.2.2.

Результаты и обсуждение

На рис. 1 показана структура уровней Yb³⁺. Под действием окружающих Yb³⁺ лигандов происходит расщепление основного состояния ${}^{2}F_{7/2}$ на четыре подуровня (*1*-4) и возбужденного состояния ${}^{2}F_{5/2}$ на три подуровня (*5*-7).

Устойчивые растворы SO₂Cl₂–GaCl₃–Yb³⁺ с концентрацией [Yb³⁺] > 0.05 mol/l и квантовым выходом люминесценции η > 0.5 были приготовлены из Yb(CF₃COO)₃, YbCl₃, и Yb(ClO₄)₃. Типичные спектры поглощения и люминесценции таких растворов представлены на рис. 2. Значительные отличия спектров Yb³⁺ в растворах SO₂Cl₂–GaCl₃–Yb³⁺, приготовленных из разных исходных соединений иттербия, указывают, что лиганды исходного соединения могут удерживаться в координационной сфере Yb³⁺ и существенным образом влиять на интенсивности переходов между штарковскими подуровнями состояний ²F_{7/2} и ²F_{5/2}.

В процессе изготовления образцов из растворов перхлората иттербия выпадал неидентифицированный осадок. В связи с этим не удалось получить достоверную информацию о молярных коэффициентах поглощения Yb³⁺ в растворах SO₂Cl₂–GaCl₃–Yb³⁺, приготовленных из Yb(ClO₄)₃. Поэтому основное внимание было уделено растворам SO₂Cl₂–GaCl₃–Yb³⁺, приготовленным из Yb(CF₃COO)₃ и YbCl₃ с соотношением [GaCl₃]/[Yb³⁺] = 12.

На рис. 3 представлены результаты измерения τ_{lum} Yb³⁺. Для растворов SO₂Cl₂-GaCl₃-Yb³⁺ с [Yb³⁺] = 0.1 mol/l кинетика затухания люминесценции подчинялась экспоненциальному закону независимо

Рис. 1. Схематическая структура уровней Yb^{3+} в конденсированных средах.

Рис. 2. Спектры поглощения (*a*) и люминесценции (*b*) растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из Yb(CF₃COO)₃ (*I*), YbCl₃ (*2*) и Yb(ClO₄)₃ (*3*).

Рис. 3. Кинетика затухания люминесценции растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (*1*), $\tau_{lum} = 545 \,\mu s$; $YbCl_3$ (*2*), $\tau_{lum} = 722 \,\mu s$. $[Yb^{3+}] = 0.1 \text{ mol/l}$; l = 0.5 cm.

от исходного соединения иттербия. Следует отметить, что в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, как и в $SOCl_2-GaCl_3-Yb^{3+}$, при $[Yb^{3+}] < 0.2 \text{ mol}/1$ и длине оптического пути l = 0.5 сm перепоглощения света не наблюдали [16].

На рис. 4 приведены спектральные зависимости оптической плотности $A(\lambda)$ растворов SO₂Cl₂-GaCl₃-Yb³⁺, приготовленных из Yb(CF₃COO)₃ и YbCl₃, с [Yb³⁺] = 0.1 mol/l. Видно, что исходные соединения существенным образом влияют на поглощение иттербия в растворах SO₂Cl₂-GaCl₃-Yb³⁺.

Сечение поглощения света $\sigma_a(\lambda)$ связано с оптической плотностью $A(\lambda)$ соотношением

$$\sigma_a(\lambda) = \ln 10A(\lambda)/lN_t, \qquad (1)$$

где l — длина оптического пути; N_t — концентрация Yb^{3+} в 1 сm⁻³ раствора. Зная спектральную зависимость

Рис. 4. Оптическая плотность растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (1), $YbCl_3$ (2). $[Yb^{3+}] = 0.1 \text{ mol/l}; l = 1 \text{ cm}.$

сечения поглощения света $\sigma_a(\lambda)$, рассчитали излучательное время жизни τ_r возбужденного состояния ${}^2F_{5/2}$, используя известное выражение [19]

$$1/\tau_r = A_{if} = \frac{g_f}{g_i} \frac{8\pi n^2 c}{\lambda_0^4} \int \sigma_{fi}(\lambda) d\lambda, \qquad (2)$$

где A_{if} — вероятность спонтанного излучения, g_i и g_f — вырождение начального и конечного состояний Yb³⁺ ($g_i = 8$ для ${}^2F_{7/2}$ и $g_f = 6$ для ${}^2F_{5/2}$); n — показатель преломления лазерной жидкости; $c = 3 \cdot 10^{10}$ cm/s — скорость света; λ_0 — длина волны, соответствующая максимуму интенсивности полосы поглощения; $\sigma_{fi}(\lambda)$ — сечение поглощения с длиной волны λ .

Излучательное время жизни Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ и $YbCl_3$, составило 640 и 750 μ s, и квантовый выход

Рис. 5. Спектральные зависимости сечений поглощения (1) и излучения (2,3) Yb³⁺ в растворах SO₂Cl₂-GaCl₃-Yb³⁺, приготовленных из Yb(CF₃COO)₃ (a) и из YbCl₃ (b); расчет σ_e — по формуле Фюхтбауэра-Ладенбурга (2) и методом взаимности МакКамбера (3).

люминесценции $\eta = 0.85$ и 0.96 соответственно, что указывает на высокое качество приготовления образцов.

Сечение вынужденного излучения $\sigma_e(\lambda)$ ионов Yb³⁺ определяли двумя способами: с использованием выражения Фюхтбауэра–Ладенбурга и методом взаимности МакКамбера [20–23]. В первом способе входными параметрами служили спектральная зависимость интенсивности люминесценции $I(\lambda)$, теоретическое время жизни τ_r и показатель преломления среды n,

$$\sigma_e(\lambda) = \frac{\lambda^5}{8\pi c n^2} \frac{1}{\tau_r} \frac{I(\lambda)}{\int \lambda I(\lambda) d\lambda}.$$
 (3)

С использованием выражений (1)-(3) были проведены расчеты и получены спектральные зависимости сечений поглощения $\sigma_a(\lambda)$ и сечений вынужденного излучения $\sigma_e(\lambda)$ ионов иттербия в растворах SO₂Cl₂–GaCl₃–Yb³⁺, приготовленных из Yb(CF₃COO)₃ и YbCl₃ (рис. 5). Для обоих видов растворов наибольшие значения сечений поглощения и люминесценции зарегистрированы на длине волны $\lambda_m = 979 \pm 1 \,\mathrm{nm}$ и соответствуют переходам между штарковскими подуровнями $1 \to 5$ и $5 \to 1$. При этом значения $\sigma_a(\lambda_m)$ и $\sigma_e(\lambda_m)$ для растворов из Yb(CF₃COO)₃ в 2 раза больше, чем для растворов из YbCl₃. В других областях спектров значения $\sigma_a(\lambda)$ и $\sigma_e(\lambda)$ ионов Yb³⁺ в растворах SO₂Cl₂-GaCl₃-Yb³⁺, приготовленных из разных исходных соединений иттербия, отличаются не столь значительно. Следует отметить, что состав исходного соединения иттербия существенно влияет на спектральные зависимости $\sigma_a(\lambda)$ и $\sigma_e(\lambda)$ Yb³⁺ в растворах SO_2Cl_2 -GaCl₃-Yb³⁺.

Для определения сечения вынужденного излучения $\sigma_e(\lambda)$ ионов Yb³⁺ методом взаимности МакКамбера необходима информация о положении штарковских подуровней как верхнего ²F_{5/2}-, так и нижнего ²F_{7/2}-состояний Yb³⁺ в растворах SO₂Cl₂-GaCl₃-Yb³⁺. Данные о положении штарковских подуровней состояния ²F_{5/2} получали из анализа спектральных зависимостей $\sigma_a(\lambda)$

ионов Yb³⁺. С этой целью спектры $\sigma_a(\lambda)$ аппроксимировали линейной комбинацией функций либо Гаусса, либо Лоренца. Процедура аппроксимации спектров подробно описана в работах [15,16].

Наилучшая аппроксимация $\sigma_a(\lambda)$ была получена описанием спектров суммой шести функций Лоренца. На рис. 6 показаны результаты разложения спектров $\sigma_a(\lambda)$ ионов Yb³⁺ в растворах SO₂Cl₂–GaCl₃–Yb³⁺. Здесь спектры поглощения Yb³⁺ представляют собой суперпозицию полос поглощения, обусловленных не менее чем тремя переходами с нижнего наиболее населенного подуровня 1 и тремя переходами с ближайшего к 1 подуровня 2 основного состояния ²F_{7/2} на три подуровня 5, 6 и 7 возбужденного состояния ²F_{5/2}. В табл. 1 приведены длины волн в максимумах этих полос поглощения и их дисперсии.

Информацию о штарковском расщеплении основного состояния ${}^{2}F_{7/2}$ получали из совместного анализа спектров поглощения и люминесценции ионов Yb³⁺. Спектры люминесценции, нормированные на единицу, с высокой точностью аппроксимировали четырьмя функциями Лоренца, которые соответствовали переходам с нижнего подуровня 5 возбужденного состояния ${}^{2}F_{5/2}$ на нижележащие подуровни 1, 2, 3 и 4 основного состояния ${}^{2}F_{7/2}$ (рис. 7). В табл. 2 приведены параметры функций Лоренца, описывающие наилучшим образом спектры люминесценции Yb³⁺ в SO₂Cl₂–GaCl₃–Yb³⁺.

Энергию штарковских подуровней состояния ${}^{2}F_{7/2}$ определяли вычитанием длины волны люминесценции v_c , соответствующей переходу *1*, *2*, *3* и *4*, из энергии подуровня *5*. В табл. 3 приведены значения энергий штарковских подуровней основного ${}^{2}F_{7/2}$ - и возбужденного ${}^{2}F_{5/2}$ -состояний Yb³⁺.

Зная положение всех подуровней состояний ${}^{2}F_{7/2}$ и ${}^{2}F_{5/2}$, определили их населенности при комнатной температуре. При термодинамическом равновесии распределение населенностей по подуровням N_i описывается

Рис. 6. Спектральные зависимости сечений поглощения Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (*a*) и $YbCl_3$ (*b*): экспериментальные данные (*1*); 2 — сумма разложений по лоренцовым функциям; 3 — разложения по лоренцовым функциям, соответствующим электронным переходам с подуровня *1* на штарковские подуровни *5*, *6*, *7*; 4 — линии, соответствующие переходам $2 \rightarrow 5$, *6*, *7*.

Переходы между подуровнями	Параметры	Исходное соединение Ув ³⁺	
состояний ${}^2F_{7/2} \rightarrow {}^2F_{5/2}$		Yb(CF ₃ COO) ₃	YbCl ₃
$l \rightarrow 7$	$\lambda_c, \mathrm{nm} \ u_c, \mathrm{cm}^{-1}$	928.2 10773.0	941.3 10623.6
	w, nm $\Delta u_c, cm^{-1}$	14.3 167.5	9.6 108.3
$2 \rightarrow 7$	$\lambda_c, \operatorname{nm}_{ u_c, \operatorname{cm}^{-1}}$	940.4 10634.0	947.9 10549.6
	w, nm $\Delta u_c, cm^{-1}$	17.6 201.2	9.9 110.2
$1 \rightarrow 6$	$\lambda_c, \mathrm{nm} \ u_c, \mathrm{cm}^{-1}$	953.0 10493.0	956.4 10445.9
	w, nm $\Delta u_c, cm^{-1}$	21 232.7	12.2 133.4
$2 \rightarrow 6$	$\lambda_c, nm u_c, cm^{-1}$	966.0 10352.0	966.4 10347.8
	$w, \operatorname{nm} \ \Delta u_c, \operatorname{cm}^{-1}$	17.5 187.8	14.4 154.2
$1 \rightarrow 5$	λ_c, nm ν_c, cm^{-1}	978.5 10219.5	979.8 10206
	$w, { m nm} \ \Delta u_c, { m cm}^{-1}$	5.0 52.2	15.3 159.3
$2 \rightarrow 5$	$\lambda_c, nm u_c, cm^{-1}$	992.0 10081.5	997.8 10022.0
	$w, \operatorname{nm} \ \Delta u_c, \operatorname{cm}^{-1}$	30.5 308.8	19.8 198.8

Таблица 1. Параметры функций Лоренца, описывающих наилучшим образом спектры сечений поглощения Yb³⁺ в SO₂Cl₂-GaCl₃-Yb³⁺

Таблица 2. Параметры функций Лоренца, описывающих наилучшим образом спектры люминесценции Yb³⁺ в SO₂Cl₂-GaCl₃-Yb³⁺

Переходы между подуровнями	Параметры	Исходное соединение Yb ³⁺	
состояний ${}^2F_{7/2} \rightarrow {}^2F_{5/2}$		Yb(CF ₃ COO) ₃	YbCl ₃
$5 \rightarrow I$	$\lambda_c, \mathrm{nm}; \ u_c, \mathrm{cm}^{-1}$	978.8 10216.5	980.2 10202
	w, nm $\Delta v_c, cm^{-1}$	4.5 47	13.0 135.3
$5 \rightarrow 2$	$\lambda_c, \mathrm{nm}; \ u_c, \mathrm{cm}^{-1}$	989.0 10111.2	994 10060.2
	$w, { m nm} \ \Delta u_c, { m cm}^{-1}$	24.8 253.6	19.2 194.3
$5 \rightarrow 3$	λ_c , nm; $ u_c$, cm ⁻¹	1008.8 9912.5	1005.4 9946.3
	$w, \operatorname{nm} \ \Delta u_c, \operatorname{cm}^{-1}$	28.7 282	18.8 186
$5 \rightarrow 4$	λ_c , nm; $ u_c$, cm ⁻¹	1039 9624.5	1020.5 9799.0
	$w, \operatorname{nm} \ \Delta u_c, \operatorname{cm}^{-1}$	30.3 280.7	17.7 170

Рис. 7. Спектры люминесценции Yb³⁺ в растворах SO₂Cl₂-GaCl₃-Yb³⁺, приготовленных из Yb(CF₃COO)₃ (*a*) и YbCl₃ (*b*): экспериментальные данные (*1*); сумма разложений по лоренцовым функциям (*2*); разложения по лоренцовым функциям, соответствующим электронным переходам с подуровня 5 возбужденного состояния на штарковские подуровни *1*, *2*, *3* и *4* основного состояния (*3*). [Yb³⁺] = 0.1 mol/l; l = 0.2 cm.

выражением

$$N_i = N_t d_i \exp(-\Delta E/kT) / \sum_{i=1}^7 d_i \exp(-\Delta E_i/kT),$$

где N_t — концентрация Yb³⁺ в растворе, d_i — вырождение *i*-го подуровня, $\Delta E_i = E_i - E_1$ — разность в энергиях между *i*-м подуровнем и подуровнем *I* основного состояния ²F_{7/2}, *k* — постоянная Больцмана, *T* — температура среды в кельвинах. Для всех подуровней Yb^{3+} вырождение $d_i = 2$. В табл. 3 приведены рассчитанные населенности подуровней 1-4 основного состояния ${}^2F_{7/2}$ иона Yb^{3+} при комнатной температуре. Энергия возбужденного состояния ${}^2F_{5/2}$ более 10000 сm⁻¹, и поэтому населенность его штарковских подуровней 5-7 практически равна нулю.

Метод взаимности МакКамбера применяют для расчета сечений вынужденного излучения как для активи-

рованных ионами РЗЭ твердотельных матриц [23–25], так и для НЛЖ [15,16]. В этом методе устанавливается связь между сечениями вынужденного излучения σ_e и сечениями поглощения σ_a в терминах энергетических уровней E_k и их вырождений d_k . Выражение для расчета σ_e имеет следующий вид:

$$\sigma_e(\nu) = \sigma_a(\nu) \frac{Z_l}{Z_u} \exp((E_i - E_j)/kT), \qquad (4)$$

где

$$Z_l = \sum_{k=1}^{4} d_k \exp\left(-\frac{E_k}{kT}\right) \tag{5}$$

И

$$Z_u = \sum_{k=5}^{\gamma} d_k \exp\left(-\frac{E_k}{kT}\right).$$
 (6)

Здесь Z_l и Z_u — статистические суммы нижнего и верхнего состояний соответственно; $d_k = 2$ для всех подуровней основного и возбужденного состояний Yb³⁺.

Далее, используя измеренные в работе спектральные зависимости сечений поглощения σ_a и выражения (4)–(6), рассчитали сечения вынужденного излучения Yb³⁺. Результаты расчета σ_e методом взаимности показаны на рис. 5 вместе с расчетами по формуле Фюхтбауэра–Ладенбурга для Yb³⁺ в растворах SO₂Cl₂–GaCl₃–Yb³⁺, приготовленных из Yb(CF₃COO)₃ (рис. 5, *a*) и из YbCl₃ (рис. 5, *b*). На рисунках видно, что результаты расчетов обоими методами хорошо согласуются между собой.

Спектральные зависимости сечений поглощения $\sigma_a(\lambda)$ и вынужденного излучения $\sigma_e(\lambda)$ ионов Yb³⁺ перекрываются в широкой области спектра (рис. 5). Другими словами, при возбуждении лазерной среды одновременно происходит и излучение, и поглощение света, что может приводить к увеличению порога или даже прекращению генерации в зависимости от соотношения $\sigma_e(\lambda)$ и $\sigma_a(\lambda)$ при заданной интенсивности накачки. Поэтому для количественных оценок генерационных характеристик иттербиевой среды важно получить данные о спектральной зависимости сечения усиления Yb³⁺.

Для расчета спектральной зависимости сечения усиления $\sigma_g(\lambda)$ использовали ранее полученные нами выражения из работы [16]:

$$\sigma_g(\lambda) = \beta[\sigma_e(\lambda) + \sigma_a(\lambda)] - \sigma_a(\lambda), \tag{7}$$

где β — относительная инверсная населенность верхнего уровня ${}^{2}F_{5/2}$ в процессе накачки. По формуле (7) рассчитали спектральные зависимости сечения усиления $\sigma_{g}(\lambda)$ для разных значений относительной инверсной населенности β . На рис. 8 представлены результаты этих расчетов для растворов SO₂Cl₂–GaCl₃–Yb³⁺, приготовленных из Yb(CF₃COO)₃ и из YbCl₃. Из рисунка видно, что в обоих растворах с увеличением β область усиления расширяется и максимальные значения $\sigma_{g}(\lambda)$ растут. При этом положения максимумов сечений усиления

Таблица 3. Энергия и населенности подуровней состояния ${}^{2}F_{7/2}$ иона Yb³⁺ в растворах SO₂Cl₂-GaCl₃-Yb³⁺, приготовленных из Yb(CF₃COO)₃ и YbCl₃

№ подуровней	Yb(CF ₃ COO) ₃		YbCl ₃	
	E_i , cm ⁻¹	N_i/N_t	E_i , cm ⁻¹	N_i/N_t
1	3	0.53	4	0.52
2	108	0.32	146	0.26
3	307	0.12	260	0.15
4	595	0.03	407	0.07
5	10220	$8.7 \cdot 10^{-23}$	10206	$9.2 \cdot 10^{-23}$
6	10493	$8.7 \cdot 10^{-23}$	10206	$9.2 \cdot 10^{-23}$
7	10773	$5.8\cdot10^{-24}$	10624	$1.2\cdot10^{-23}$

смещаются в коротковолновую область. При мощности накачки $\beta \ge 0.6$ наряду с широким максимумом $\sigma_g(\lambda)$ в области длин волн 1000–1010 nm появляется еще один максимум на $\lambda = 980 \pm 1$ nm.

На основе расчетов сечения усиления при заданном значении инверсной населенности β можно выбрать как длину волны, так и границы области возможной перестройки длины волны лазерного излучения, что важно для создания жидкостных перестраиваемых иттербиевых лазеров.

Практический интерес представляет сравнение сечений усиления в области максимумов для разных НЛЖ. Результаты сравнения $\sigma_g(\lambda)$ на длинах волн λ_1 (первый максимум) и λ_2 (второй максимум) при относительной инверсной населенности $\beta = 0.75$ приведены в табл. 4. Из таблицы видно, что сечения усиления Yb³⁺ в растворах на основе тионилхлорида и сульфурилхлорида изменяются в диапазоне от $1.5 \cdot 10^{-20}$ до $0.9 \cdot 10^{-20}$ сm², что примерно в 1.5 раза больше сечения усиления Yb³⁺ в растворах на основе оксихлорида фосфора.

Полученные в работе значения сечений усиления растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$ близки к рекомендованным данным для фторидных и некоторых оксидных монокристаллов [21,26] и для разупорядоченных кристаллов типа кальций-ниобий-галлиевый гранат (KNGG:Yb^{3+}) [24,27], которые используют в качестве активных сред твердотельных лазеров. Сравнительно большое сечение усиления, малые токсичность и агрессивность делают растворы $SO_2Cl_2-GaCl_3-Yb^{3+}$ перспективными для создания прокачных жидкостных лазеров с диодной накачкой.

Заключение

Измерены спектры поглощения, люминесценции и время жизни возбужденного состояния Yb³⁺ в растворах SO₂Cl₂-GaCl₃-Yb³⁺. Получены экспериментальные данные о сечениях поглощения $\sigma_a(\lambda)$ и вынужденного излучения $\sigma_e(\lambda)$ переходов ${}^2F_{7/2} \leftrightarrow {}^2F_{5/2}$. Сечения в максимумах составили $\sigma_a(978.5 \text{ nm}) = 2.86 \cdot 10^{-20} \text{ cm}^2$

Puc. 8. Спектральные зависимости сечений усиления Yb³⁺ в растворах SO₂Cl₂-GaCl₃-Yb³⁺, приготовленных из Yb(CF₃COO)₃ (*a*) и из YbCl₃ (*b*), при разных значениях относительной инверсной населенности β: 0.15 (*I*), 0.3 (*2*), 0.45 (*3*), 0.6 (4), 0.75 (5), 0.9 (6).

Таблица 4. Сечение усиления лазерного излучения при относительной инверсной населенности $\beta = 0.75$ для разных НЛЖ

НЛЖ	Соединение иттербия	λ_1 , nm	$\sigma_{g1} \cdot 10^{20}, \mathrm{cm}^2$	λ_2 , nm	$\sigma_{g2} \cdot 10^{20}$, cm ²	Источник
$POCl_3 - ZrCl_4 - Yb^{3+}$	Yb(CF ₃ COO) ₃	977.6	0.844	1004.0	0.560	[15]
$SOCl_2 - GaCl_3 - Yb^{3+}$	Yb(CF ₃ COO) ₃	980.5	1.070	1000.5	1.082	[16]
	YbCl ₃	980.0	0.871	1000.5	0.860	
$SO_2Cl_2{-}GaCl_3{-}Yb^{3+}$	Yb(CF ₃ COO) ₃	979.0	1.557	1006.0	0.880	
	YbCl ₃	980.4	0.817	1002.6	0.991	

и $\sigma_e(978.8\,\mathrm{nm}) = 3.01 \cdot 10^{-20}\,\mathrm{cm}^2$ в растворах, приготовленных из Yb(CF₃COO)₃, и $\sigma_a(979.8 \text{ nm}) =$ $= 1.37 \cdot 10^{-20} \,\mathrm{cm}^2$ и $\sigma_e(980.2\,\mathrm{nm}) = 1.55 \cdot 10^{-20} \,\mathrm{cm}^2$ в растворах, приготовленных из YbCl₃. Квантовый выход люминесценции Yb³⁺ в растворах SO₂Cl₂-GaCl₃-Yb³⁺ из Yb(CF₃COO)₃ и YbCl₃ составил 0.85 и 0.96 соответственно. Определена структура штарковских подуровней основного ${}^{2}F_{7/2}$ - и возбужденного ${}^{2}F_{5/2}$ -состояний при комнатной температуре. Для разных значений относительной инверсной населенности возбужденного состояния ${}^{2}F_{5/2}$ получены спектральные зависимости сечений усиления. Установлено, что сечения усиления $\sigma_{g}(\lambda)$ Yb³⁺ в SO₂Cl₂-GaCl₃-Yb³⁺ различны для растворов, приготовленных из Yb(CF₃COO)₃ и YbCl₃, зависят от плотности накачки и представляют собой широкую полосу в области длин волн от 980 до 1040 nm.

Таким образом, неорганические жидкости $SO_2Cl_2 - GaCl_3 - Yb^{3+}$ можно рекомендовать для создания активных сред прокачных лазеров в области длин волн 980–1040 nm. Для эффективной генерации необходимо обеспечить высокие плотности энергии накачки и равномерную прокачку лазерной жидкости через резонатор.

Благодарности

Авторы благодарят А.В. Подкопаева и Я.В. Кривошеева за помощь в проведении измерений.

Финансирование работы

Исследования проведены при финансовой поддержке Российского фонда фундаментальных исследований и Правительства Калужской области (научный проект № 19-43-400004).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Глухих И.В., Димаков С.А., Курунов Р.Ф., Поликарпов С.С., Фролов С.В. // ЖТФ. 2011. Т. 81. № 8. С. 70.
- [2] Аникеев Ю.Г., Жаботинский М.Е., Кравченко В.Б. Лазеры на неорганических жидкостях. М.: Наука, 1986. 248 с.
- [3] Ault Earl R., Comaskey Brian J., Kuklo Thomas C. High Average Power Laser Using a Transverse Flowing Liquid Host: U.S. Patent 6600766 B1. 2003.

- [4] Кузнецов И.И., Мухин И.Б., Вадимова О.Л., Палашов О.В. // Квант. электрон. 2015. Т. 43. № 3. С. 207.
- [5] Бульканов А.М., Николаев Д.А., Цветков В.Б., Шаматова А.И., Щербаков И.А. // Квант. электрон. 2018. Т. 48. № 5. С. 468.
- [6] Zheng X., Yi S., Chunling L., Mi L., Xiufang X., Liqing L., Yali W., Feng Y., Deyong W., Jianfeng J., Bo T., Wenqiang L(U) // High Power Laser and Particle Beams. 2006. V. 18. N 12. P. 1941.
- Zheng X., Mi L., Chunling L., Yali W. // Acta Optica Sinica.
 2010. V. 30. N 9. P. 2620. doi 10.3788/AOS20103009.2620
- [8] Mi L., Yali W., Chunling L., Jiao W., Liqing L. // Acta Optica Sinica. 2011. V. 31. N 2. P. 135. doi 10.3788/AOS20113102.0214004
- [9] Boulon G. // J. Alloys and Compounds. 2008. V. 451. P. 1. doi 10.1016/j.jallcom.2007.04.148
- [10] Батяев И.М., Данильчук Н.В., Кабацкий Ю.А., Шаповалов В.Н., Шилов С.М. // ЖПС. 1989. Т. 51. № 6. С. 929–932.
- [11] Батяев И.М., Данильчук Н.В., Кабацкий Ю.А., Шаповалов В.Н., Шилов С.М. // ЖПС. 1990. Т. 53. № 2. С. 336.
- [12] Батяев И.М., Морев С.Ю. // Опт. и спектр. 1995. Т. 79. № 6. С. 954.
- [13] Батяев И.М., Морев С.Ю. // Опт. и спектр. 1996. Т. 80. № 1. С. 85.
- [14] Тихонов Г.В., Бабкин А.С., Серёгина Е.А., Серёгин А.А. // Неорг. матер. 2017. Т. 53. № 10. С. 1122. doi 10.7868/S0002337X17100165; Tikhonov G.V., Babkin A.S., Seregina E.A., Seregin A.A. // Inorganic Materials. 2017. V. 53. N 10. Р. 1097. doi 10.1134/S0020168517100168
- [15] Бабкин А.С., Серёгина Е.А., Серёгин А.А. Тихонов Г.В. // Опт. и спектр. 2018. Т. 125. № 4. С. 507. doi 10.21883/OS.2018.10.46703.157-18; Babkin A.S., Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2018. V. 125. N 4. P. 528. doi 10.1134/S0030400X18100053
- [16] Серёгина Е.А., Серёгин А.А., Тихонов Г.В. // Опт. и спектр. 2020. Т. 128. № 10. С. 1441. doi 10.21883/OS.2020.10.50012.305-20; Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2020. V. 128. N 10. P. 1551. doi 10.1134/S0030400X20100240
- [17] Мочалов И.В., Бондарева Н.П., Бондарев А.С., Маркосов С.А. // Квант. электрон. 1982. Т. 9. № 5. С. 1024.
- [18] Батяев И.М. // ЖТФ. 1994. Т. 64. № 6. С. 125.
- Boulon G., Guyot Y., Canbano H., Hraiech S., Yoshikawa A. // J. Opt. Soc. Am. B. 2008. V. 25. N 5. P. 884.
- [20] Mc Cumber D.E. // Phys. Rev. 1964. V. 136. P. A954.
- [21] De Loach Laura D., Payne Stephen A., Chase L.L., Smith Larry K., Kway Wayne L, Krupke William F. // IEEE J. Quantum Electron. 1993. V. 29. N 4. P. 1179.
- [22] Мелькумов М.А., Буфетов И.А., Кравцов К.С., Шубин А.В., Дианов Е.М. // Квант. электрон. 2004. Т. 34. № 9. С. 843.
- [23] Мелькумов М.А., Буфетов И.А., Кравцов К.С., Шубин А.В., Дианов Е.М. // Препринт № 5. НЦВО ИОФ РАН. М., 2004.
- [24] Шукшин В.Е. // Труды ИОФ им. А.М. Прохорова РАН. 2008. Т. 64. С. 3.
- [25] Демеш М.П., Гусакова Н.В., Ясюкевич А.С., Кулешов Н.В., Григорьев С.В., Крот Ю.А., Костына М.Б., Шеховцов А.Н. // Приборы и методы измерений. 2015. Т. 6. № 2. С. 211.

- [26] Басиев Т.Т., Васильев С.В., Дорошенко М.Е., Конюшкин В.А., Кузнецов С.В., Осико В.В., Федоров П.П. // Квант. электрон. 2007. Т. 37. № 10. С. 934.
- [27] Воронько Ю.К., Кочурихин В.В., Соболь А.А., Ушаков С.Н., Шукшин В.Е. // Неорг. матер. 2004. Т. 40. № 10. С. 1234.