02

Спектрально-люминесцентные свойства Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$

© Е.А. Серегина, А.А. Серегин, Г.В. Тихонов

АО "ГНЦ РФ — ФЭИ",

249033 Обнинск, Калужская обл., Россия

e-mail: seregina@ippe.ru

Поступила в редакцию 22.04.2021 г. В окончательной редакции 23.08.2021 г. Принята к публикации 07.09.2021 г.

Измерены спектры поглощения, люминесценции и время жизни Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$ при комнатной температуре. Получены данные о штарковском расщеплении уровней, сечениях поглощения и вынужденного излучения Yb^{3+} . Анализ спектральной зависимости сечения усиления указывает на перспективность раствора $SO_2Cl_2-GaCl_3-Yb^{3+}$ в качестве активной среды жидкостного иттербиевого лазера.

Ключевые слова: иттербий, сульфурилхлорид, поглощение, люминесценция, штарковское расщепление, сечение усиления, диодная накачка.

DOI: 10.21883/OS.2021.12.51735.1883-21

Введение

Основной трудностью в создании и работе твердотельных лазеров (ТТЛ) киловаттной мощности является организация эффективного охлаждения активной среды [1]. При высоких мощностях и высоких температурах в твердотельных лазерных матрицах возникают внутренние напряжения, приводящие к их разрушению. Лазерные среды на неорганических лазерных жидкостях (НЛЖ) не имеют этих недостатков. Использование НЛЖ позволяет создавать лазерные элементы большого объема с большой плотностью активатора и улучшать эффективность охлаждения за счет циркуляции активной среды через резонатор. Отметим, что жидкие лазерные среды значительно дешевле твердотельных матриц, из них можно изготовить элементы практически любых необходимых форм и размеров. В то же время традиционные жидкостные лазеры с поперечной ламповой накачкой имеют большую угловую расходимость лазерного излучения, что сдерживает их широкое применение [2]. Для уменьшения расходимости лазерного излучения в конденсированных средах получили развитие современные методы продольной диодной накачки [3-5], что принципиально важно для создания мощных жидкостных лазеров.

В последние годы появились предложения по диодной накачке неодимсодержащих НЛЖ [3], а также примеры лазерных устройств на основе жидкостных лазеров с диодной накачкой [6–8]. С точки зрения уменьшения тепловых нагрузок лазерные среды, активированные трехвалентными ионами иттербия (Yb^{3+}) , являются более перспективными. Ионы Yb^{3+} имеют меньшую разницу в энергиях квантов накачки и генерации по сравнению с ионами Nd^{3+} . Излучательные переходы в Yb^{3+} происходят с нижних штарковских под-

уровней единственного возбужденного состояния ${}^2F_{5/2}$ на группу штарковских подуровней основного состояния ${}^2F_{7/2}$ [9].

Отдельные сведения о спектрально-люминесцентных свойствах Yb^{3+} в НЛЖ можно найти в работах Батяева И.М. с сотрудниками [10-13]. К сожалению, в этих работах не приведены сечения поглощения и вынужденного излучения, времена жизни возбужденного состояния Yb³⁺, за исключением времени затухания люминесценции Yb^{3+} в образце $SO_2Cl_2-GaCl_3-Yb^{3+}$, $\tau = 260\,\mu s$ [12]. Недостаток информации и возросший интерес к НЛЖ, активированным ионами Yb³⁺, побудил начать работы по синтезу и исследованию свойств иттербия в апротонных неорганических растворителях [14]. Результаты исследования спектрально-люминесцентных представлены для растворов $POCl_3-ZrCl_4-Yb^{3+}$ [15] и $SOCl_2-GaCl_3-Yb^{3+}$ [16] с соотношением $[GaCl_3]/[Yb^{3+}] = 12$. В этих работах получены данные о сечении поглощения и вынужденного излучения, о квантовом выходе люминесценции, о штарковском расщеплении верхнего $4F_{5/2}$ - и основного $4F_{7/2}$ состояний Yb3+, показана перспективность использования этих растворов в качестве активных сред жидкостных лазеров с диодной накачкой. Следует отметить, что НЛЖ отличаются по сложности синтеза, по токсичности и коррозионной активности [14,17,18]. НЛЖ на основе тионилхлорида ($SOCl_2$) и сульфурилхлорида (SO_2Cl_2) существенно менее токсичны, чем лазерные среды на основе оксихлорида фосфора (POCl₃). Настоящая работа посвящена исследованию спектральных и люминесцентных свойств наименее токсичных и агрессивных лазерно-активных жидкостей $SO_2Cl_2-GaCl_3-Yb^{3+}$.

Эксперимент

Отличительной особенностью SO_2Cl_2 относительно $SOCl_2$ является устойчивость к окислительным процессам благодаря высшей степени окисления серы. Это свойство расширяет возможности сульфурилхлорида в случае введения в него компонент, склонных к восстановлению, и за счет меньшей агрессивности к конструкционным материалам и другим веществам.

Для приготовления растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$ применили четыре разных способа синтеза, использовали сульфурилхлорид 98.5%, "Асгоs", дополнительно очищенный методом двукратной дистилляции; галлий(III) хлорид, $GaCl_3$, 99.999%, "Ланхит"; соединения иттербия(III): оксид, Yb_2O_3 , 99.999%, "Ланхит"; хлорид, $YbCl_3$, 99.99%, "Ланхит", а также приготовленные из Yb_2O_3 перхлорат, $Yb(ClO_4)_3$; трифторацетат, $Yb(CF_3COO)_3$; трифторметансульфонат $Yb(CF_3SO_2O)_3$.

Готовые растворы заливали в специальные спектрометрические кюветы через патрубки, которые запаивали для герметизации образцов и проведения дальнейших исследований. В зависимости от концентрации Yb^{3+} использовали кюветы (в том числе фирмы Hellma) из оптического кварца или термостойкого стекла с толщиной оптического слоя $0.2,\ 0.5$ или $1.0\ cm$.

Измерения спектрально-люминесцентных характеристик растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$ проводили при комнатной температуре. Электронные спектры поглощения (ЭСП) регистрировали спектрофотометром CARY 500 в диапазоне длин волн $900-1100\,\mathrm{nm}$ в области полосы поглощения Yb^{3+} . Спектры люминесценции и время жизни τ_{lum} возбужденного состояния $^2F_{5/2}$ ионов Yb^{3+} измеряли на спектрофлуориметре РТІ QuantaMaster 8000 фирмы HORIBA. Для возбуждения Yb^{3+} при измерении спектров люминесценции использовали ксеноновую лампу OB-75X Arc Lamp, при измерении τ_{lum} — импульсную ксеноновую лампу Туре L4633, HAMMAMATSU с длительностью импульса 2μ s и частотой $200\,\mathrm{Hz}$.

Кювету с исследуемой жидкостью помещали в блок образцов. Свет от источника возбуждения проходил через монохроматор № 1 и подавался перпендикулярно поверхности кюветы. Для возбуждения Yb^{3+} длину волны $\lambda_{\rm exc}$ устанавливали, как правило, 940 \pm 5 nm. Люминесценция образца направлялась на вход монохроматора № 2, расположенного под углом 90° к монохроматору № 1. Детектор излучения (фотодиод на основе кристалла InGaAs — модель DSS — IGA020L/100 KHZ) имеет два режима работы: режим сканирования излучения по длинам волн и режим работы с импульсными сигналами для регистрации временных распределений интенсивности люминесценции образца. В режиме сканирования ширину входных и выходных щелей монохроматоров устанавливали одинаковыми: для возбуждения — 5 nm, для регистрации люминесценции — 1 nm. Спектры люминесценции измеряли в диапазоне длин

волн 945—1200 nm. При импульсном возбуждении образцов кинетику затухания люминесценции измеряли на $\lambda=980\pm5$ nm при ширине щелей монохроматора № 1 10 nm, монохроматора № 2 5 nm и частоте следования импульсов возбуждения 200 Hz.

Управление работой спектрофлуориметра осуществлялось с помощью программы FelixGX 4.2.2.

Результаты и обсуждение

На рис. 1 показана структура уровней Yb^{3+} . Под действием окружающих Yb^{3+} лигандов происходит расщепление основного состояния $^2F_{7/2}$ на четыре подуровня (1-4) и возбужденного состояния $^2F_{5/2}$ на три подуровня (5-7).

Устойчивые растворы $SO_2Cl_2-GaCl_3-Yb^{3+}$ с концентрацией $[Yb^{3+}]>0.05$ mol/l и квантовым выходом люминесценции $\eta>0.5$ были приготовлены из $Yb(CF_3COO)_3$, $YbCl_3$, и $Yb(ClO_4)_3$. Типичные спектры поглощения и люминесценции таких растворов представлены на рис. 2. Значительные отличия спектров Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из разных исходных соединений иттербия, указывают, что лиганды исходного соединения могут удерживаться в координационной сфере Yb^{3+} и существенным образом влиять на интенсивности переходов между штарковскими подуровнями состояний $^2F_{7/2}$ и $^2F_{5/2}$.

В процессе изготовления образцов из растворов перхлората иттербия выпадал неидентифицированный осадок. В связи с этим не удалось получить достоверную информацию о молярных коэффициентах поглощения Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(ClO_4)_3$. Поэтому основное внимание было уделено растворам $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленным из $Yb(CF_3COO)_3$ и $YbCl_3$ с соотношением $[GaCl_3]/[Yb^{3+}]=12$.

На рис. З представлены результаты измерения au_{lum} Yb^{3+} . Для растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$ с $[Yb^{3+}]=0.1$ mol/1 кинетика затухания люминесценции подчинялась экспоненциальному закону независимо

Рис. 1. Схематическая структура уровней Yb^{3+} в конденсированных средах.

Рис. 2. Спектры поглощения (a) и люминесценции (b) растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (1), $YbCl_3$ (2) и $Yb(ClO_4)_3$ (3).

0.8

0.6

Рис. 3. Кинетика затухания люминесценции растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (*1*), $\tau_{\rm lum}=545\,\mu s;$ $YbCl_3$ (*2*), $\tau_{\rm lum}=722\,\mu s.$ $[Yb^{3+}]=0.1$ mol/l; l=0.5 cm.

0.4
0.2
0.850 900 950 1000 1050 1100
λ, nm

Рис. 4. Оптическая плотность растворов

Рис. 4. Оптическая плотность растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (I), $YbCl_3$ (2). $[Yb^{3+}]=0.1$ mol/l; I=1 cm.

от исходного соединения иттербия. Следует отметить, что в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, как и в $SOCl_2-GaCl_3-Yb^{3+}$, при $[Yb^{3+}]<0.2\ mol/l$ и длине оптического пути $l=0.5\ cm$ перепоглощения света не наблюдали [16].

На рис. 4 приведены спектральные зависимости оптической плотности $A(\lambda)$ растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ и $YbCl_3$, с $[Yb^{3+}]=0.1$ mol/l. Видно, что исходные соединения существенным образом влияют на поглощение иттербия в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$.

Сечение поглощения света $\sigma_a(\lambda)$ связано с оптической плотностью $A(\lambda)$ соотношением

$$\sigma_a(\lambda) = \ln 10A(\lambda)/lN_t,\tag{1}$$

где l — длина оптического пути; N_t — концентрация ${\rm Yb^{3+}\ b\ 1\ cm^{-3}}$ раствора. Зная спектральную зависимость

сечения поглощения света $\sigma_a(\lambda)$, рассчитали излучательное время жизни τ_r возбужденного состояния $^2F_{5/2}$, используя известное выражение [19]

$$1/\tau_r = A_{if} = \frac{g_f}{g_i} \frac{8\pi n^2 c}{\lambda_0^4} \int \sigma_{fi}(\lambda) d\lambda, \qquad (2)$$

где A_{if} — вероятность спонтанного излучения, g_i и g_f — вырождение начального и конечного состояний ${\rm Yb}^{3+}$ ($g_i=8$ для $^2F_{7/2}$ и $g_f=6$ для $^2F_{5/2}$); n — показатель преломления лазерной жидкости; $c=3\cdot 10^{10}\,{\rm cm/s}$ — скорость света; λ_0 — длина волны, соответствующая максимуму интенсивности полосы поглощения; $\sigma_{fi}(\lambda)$ — сечение поглощения с длиной волны λ

Излучательное время жизни Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ и $YbCl_3$, составило 640 и 750 μ s, и квантовый выход

Рис. 5. Спектральные зависимости сечений поглощения (1) и излучения (2,3) Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (a) и из $YbCl_3$ (b); расчет σ_e — по формуле Фюхтбауэра—Ладенбурга (2) и методом взаимности МакКамбера (3).

люминесценции $\eta = 0.85$ и 0.96 соответственно, что указывает на высокое качество приготовления образцов.

Сечение вынужденного излучения $\sigma_e(\lambda)$ ионов Yb³⁺ определяли двумя способами: с использованием выражения Фюхтбауэра—Ладенбурга и методом взаимности МакКамбера [20–23]. В первом способе входными параметрами служили спектральная зависимость интенсивности люминесценции $I(\lambda)$, теоретическое время жизни τ_r и показатель преломления среды n,

$$\sigma_e(\lambda) = \frac{\lambda^5}{8\pi c n^2} \frac{1}{\tau_r} \frac{I(\lambda)}{\int \lambda I(\lambda) d\lambda}.$$
 (3)

С использованием выражений (1)-(3) были проведены расчеты и получены спектральные зависимости сечений поглощения $\sigma_a(\lambda)$ и сечений вынужденного излучения $\sigma_e(\lambda)$ ионов иттербия в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ и $YbCl_3$ (рис. 5). Для обоих видов растворов наибольшие значения сечений поглощения и люминесценции зарегистрированы на длине волны $\lambda_m = 979 \pm 1\,\mathrm{nm}$ и соответствуют переходам между штарковскими подуровнями $1 \to 5$ и $5 \to 1$. При этом значения $\sigma_a(\lambda_m)$ и $\sigma_e(\lambda_m)$ для растворов из Yb(CF₃COO)₃ в 2 раза больше, чем для растворов из YbCl₃. В других областях спектров значения $\sigma_a(\lambda)$ и $\sigma_e(\lambda)$ ионов Yb³⁺ в растворах SO₂Cl₂-GaCl₃-Yb³⁺, приготовленных из разных исходных соединений иттербия, отличаются не столь значительно. Следует отметить, что состав исходного соединения иттербия существенно влияет на спектральные зависимости $\sigma_a(\lambda)$ и $\sigma_e(\lambda)$ Yb³⁺ в растворах SO_2Cl_2 -GaCl₃-Yb³⁺.

Для определения сечения вынужденного излучения $\sigma_e(\lambda)$ ионов Yb^{3+} методом взаимности МакКамбера необходима информация о положении штарковских подуровней как верхнего $^2F_{5/2}$ -, так и нижнего $^2F_{7/2}$ -состояний Yb^{3+} в растворах SO_2Cl_2 -Ga Cl_3 - Yb^{3+} . Данные о положении штарковских подуровней состояния $^2F_{5/2}$ получали из анализа спектральных зависимостей $\sigma_a(\lambda)$

ионов Yb^{3+} . С этой целью спектры $\sigma_a(\lambda)$ аппроксимировали линейной комбинацией функций либо Гаусса, либо Лоренца. Процедура аппроксимации спектров подробно описана в работах [15,16].

Наилучшая аппроксимация $\sigma_a(\lambda)$ была получена описанием спектров суммой шести функций Лоренца. На рис. 6 показаны результаты разложения спектров $\sigma_a(\lambda)$ ионов Yb³+ в растворах SO₂Cl₂—GaCl₃—Yb³+. Здесь спектры поглощения Yb³+ представляют собой суперпозицию полос поглощения, обусловленных не менее чем тремя переходами с нижнего наиболее населенного подуровня I и тремя переходами с ближайшего к I подуровня 2 основного состояния ${}^2F_{7/2}$ на три подуровня 5, 6 и 7 возбужденного состояния ${}^2F_{5/2}$. В табл. 1 приведены длины волн в максимумах этих полос поглощения и их дисперсии.

Информацию о штарковском расщеплении основного состояния $^2F_{7/2}$ получали из совместного анализа спектров поглощения и люминесценции ионов Yb³+. Спектры люминесценции, нормированные на единицу, с высокой точностью аппроксимировали четырьмя функциями Лоренца, которые соответствовали переходам с нижнего подуровня 5 возбужденного состояния $^2F_{5/2}$ на нижележащие подуровни I, Z, Z и Z0 основного состояния Z1 огновного состояния Z2 приведены параметры функций Лоренца, описывающие наилучшим образом спектры люминесценции Yb³+ в Z1 в Z2 приведень параметры функций Лоренца, описывающие наилучшим образом спектры люминесценции Yb³+ в Z2 приведень параметры функций Z3 на Z4 в Z4 в Z5 на Z6 на Z6 на Z6 на Z6 на Z6 на Z6 на Z7 на Z6 на Z6 на Z6 на Z7 на Z8 на Z9 н

Энергию штарковских подуровней состояния $^2F_{7/2}$ определяли вычитанием длины волны люминесценции ν_c , соответствующей переходу $I,\ 2,\ 3$ и $4,\$ из энергии подуровня $5.\$ B табл. 3 приведены значения энергий штарковских подуровней основного $^2F_{7/2}$ - и возбужденного $^2F_{5/2}$ -состояний Yb^{3+} .

Зная положение всех подуровней состояний ${}^2F_{7/2}$ и ${}^2F_{5/2}$, определили их населенности при комнатной температуре. При термодинамическом равновесии распределение населенностей по подуровням N_i описывается

Рис. 6. Спектральные зависимости сечений поглощения Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (a) и $YbCl_3$ (b): экспериментальные данные (1); 2 — сумма разложений по лоренцовым функциям; 3 — разложения по лоренцовым функциям, соответствующим электронным переходам с подуровня 1 на штарковские подуровни 5, 6, 7; 4 — линии, соответствующие переходам $2 \rightarrow 5$, 6, 7.

Таблица 1. Параметры функций Лоренца, описывающих наилучшим образом спектры сечений поглощения Yb^{3+} в $SO_2Cl_2-GaCl_3-Yb^{3+}$

Переходы между подуровнями	Параметры	Исходное соединение Yb ³⁺		
состояний ${}^2F_{7/2} \rightarrow {}^2F_{5/2}$		Yb(CF ₃ COO) ₃	YbCl ₃	
$I \rightarrow 7$	$\lambda_c,\mathrm{nm} \ u_c,\mathrm{cm}^{-1}$	928.2 10773.0	941.3 10623.6	
	w , nm Δv_c , cm $^{-1}$	14.3 167.5	9.6 108.3	
$2 \rightarrow 7$	$\lambda_c,\mathrm{nm} \ u_c,\mathrm{cm}^{-1}$	940.4 10634.0	947.9 10549.6	
	w , nm Δv_c , cm $^{-1}$	17.6 201.2	9.9 110.2	
$I \rightarrow 6$	$\lambda_c,\mathrm{nm} \ u_c,\mathrm{cm}^{-1}$	953.0 10493.0	956.4 10445.9	
	$w,{ m nm} \ \Delta u_c,{ m cm}^{-1}$	21 232.7	12.2 133.4	
2 → 6	$\lambda_c,\mathrm{nm} \ u_c,\mathrm{cm}^{-1}$	966.0 10352.0	966.4 10347.8	
	$w, { m nm} \ \Delta u_c, { m cm}^{-1}$	17.5 187.8	14.4 154.2	
<i>1</i> → <i>5</i>	$\lambda_c,\mathrm{nm} \ u_c,\mathrm{cm}^{-1}$	978.5 10219.5	979.8 10206	
	$w, { m nm} \ \Delta u_c, { m cm}^{-1}$	5.0 52.2	15.3 159.3	
2 → 5	$\lambda_c,\mathrm{nm} \ u_c,\mathrm{cm}^{-1}$	992.0 10081.5	997.8 10022.0	
	$w,\mathrm{nm} \ \Delta u_c,\mathrm{cm}^{-1}$	30.5 308.8	19.8 198.8	

Таблица 2. Параметры функций Лоренца, описывающих наилучшим образом спектры люминесценции Yb^{3+} в $SO_2Cl_2-GaCl_3-Yb^{3+}$

Переходы между подуровнями	Параметры	Исходное соединение Yb ³⁺	
состояний ${}^2F_{7/2} ightharpoonup F_{5/2}$		Yb(CF ₃ COO) ₃	YbCl ₃
$5 \rightarrow I$	λ_c , nm; ν_c , cm ⁻¹	978.8 10216.5	980.2 10202
	w, nm $\Delta v_c, cm^{-1}$	4.5 47	13.0 135.3
<i>5</i> → <i>2</i>	λ_c , nm; $ u_c$, cm ⁻¹	989.0 10111.2	
	$w,{ m nm} \ \Delta u_c,{ m cm}^{-1}$	24.8 253.6	19.2 194.3
$5 \rightarrow 3$	λ_c , nm; $ u_c$, cm $^{-1}$	1008.8 9912.5	1005.4 9946.3
	w , nm Δv_c , cm $^{-1}$	28.7 282	18.8 186
$5 \rightarrow 4$	λ_c , nm; $ u_c$, cm $^{-1}$	1039 9624.5	1020.5 9799.0
	$w,\mathrm{nm} \ \Delta v_c,\mathrm{cm}^{-1}$	30.3 280.7	17.7 170

Рис. 7. Спектры люминесценции Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (a) и $YbCl_3$ (b): экспериментальные данные (I); сумма разложений по лоренцовым функциям (2); разложения по лоренцовым функциям, соответствующим электронным переходам с подуровня 5 возбужденного состояния на штарковские подуровни I, 2, 3 и 4 основного состояния (3). $[Yb^{3+}] = 0.1$ mol/l; I = 0.2 cm.

выражением

$$N_i = N_t d_i \exp(-\Delta E/kT) / \sum_{i=1}^{7} d_i \exp(-\Delta E_i/kT),$$

где N_t — концентрация Yb^{3+} в растворе, d_i — вырождение i-го подуровня, $\Delta E_i = E_i - E_1$ — разность в энергиях между i-м подуровнем и подуровнем I основного состояния $^2F_{7/2}$, k — постоянная Больцмана, T —

температура среды в кельвинах. Для всех подуровней Yb^{3+} вырождение $d_i=2$. В табл. 3 приведены рассчитанные населенности подуровней I-4 основного состояния $^2F_{7/2}$ иона Yb^{3+} при комнатной температуре. Энергия возбужденного состояния $^2F_{5/2}$ более $10000\,\mathrm{cm}^{-1}$, и поэтому населенность его штарковских подуровней 5-7 практически равна нулю.

Метод взаимности МакКамбера применяют для расчета сечений вынужденного излучения как для активи-

рованных ионами РЗЭ твердотельных матриц [23–25], так и для НЛЖ [15,16]. В этом методе устанавливается связь между сечениями вынужденного излучения σ_e и сечениями поглощения σ_a в терминах энергетических уровней E_k и их вырождений d_k . Выражение для расчета σ_e имеет следующий вид:

$$\sigma_e(v) = \sigma_a(v) \frac{Z_l}{Z_u} \exp((E_i - E_j)/kT), \tag{4}$$

где

$$Z_{l} = \sum_{k=1}^{4} d_{k} \exp\left(-\frac{E_{k}}{kT}\right) \tag{5}$$

И

$$Z_u = \sum_{k=5}^{7} d_k \exp\left(-\frac{E_k}{kT}\right). \tag{6}$$

Здесь Z_l и Z_u — статистические суммы нижнего и верхнего состояний соответственно; $d_k=2$ для всех подуровней основного и возбужденного состояний Yb^{3+} .

Далее, используя измеренные в работе спектральные зависимости сечений поглощения σ_a и выражения (4)-(6), рассчитали сечения вынужденного излучения Yb^{3+} . Результаты расчета σ_e методом взаимности показаны на рис. 5 вместе с расчетами по формуле Фюхтбауэра–Ладенбурга для Yb^{3+} в растворах SO_2Cl_2 — $GaCl_3$ — Yb^{3+} , приготовленных из $Yb(CF_3COO)_3$ (рис. 5, a) и из $YbCl_3$ (рис. 5, b). На рисунках видно, что результаты расчетов обоими методами хорошо согласуются между собой.

Спектральные зависимости сечений поглощения $\sigma_a(\lambda)$ и вынужденного излучения $\sigma_e(\lambda)$ ионов Yb³+ перекрываются в широкой области спектра (рис. 5). Другими словами, при возбуждении лазерной среды одновременно происходит и излучение, и поглощение света, что может приводить к увеличению порога или даже прекращению генерации в зависимости от соотношения $\sigma_e(\lambda)$ и $\sigma_a(\lambda)$ при заданной интенсивности накачки. Поэтому для количественных оценок генерационных характеристик иттербиевой среды важно получить данные о спектральной зависимости сечения усиления Yb³+.

Для расчета спектральной зависимости сечения усиления $\sigma_g(\lambda)$ использовали ранее полученные нами выражения из работы [16]:

$$\sigma_g(\lambda) = \beta [\sigma_e(\lambda) + \sigma_a(\lambda)] - \sigma_a(\lambda), \tag{7}$$

где β — относительная инверсная населенность верхнего уровня ${}^2F_{5/2}$ в процессе накачки. По формуле (7) рассчитали спектральные зависимости сечения усиления $\sigma_g(\lambda)$ для разных значений относительной инверсной населенности β . На рис. 8 представлены результаты этих расчетов для растворов SO_2Cl_2 — $GaCl_3$ — Yb^{3+} , приготовленных из $Yb(CF_3COO)_3$ и из $YbCl_3$. Из рисунка видно, что в обоих растворах с увеличением β область усиления расширяется и максимальные значения $\sigma_g(\lambda)$ растут. При этом положения максимумов сечений усиления

Таблица 3. Энергия и населенности подуровней состояния ${}^2F_{7/2}$ иона Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ и $YbCl_3$

№ подуровней	Yb(CF ₃ COO) ₃		YbCl ₃		
	E_i , cm ⁻¹	N_i/N_t	E_i , cm ⁻¹	N_i/N_t	
1	3	0.53	4	0.52	
2	108	0.32	146	0.26	
3	307	0.12	260	0.15	
4	595	0.03	407	0.07	
5	10220	$8.7 \cdot 10^{-23}$	10206	$9.2 \cdot 10^{-23}$	
6	10493	$8.7 \cdot 10^{-23}$	10206	$9.2 \cdot 10^{-23}$	
7	10773	$5.8 \cdot 10^{-24}$	10624	$1.2 \cdot 10^{-23}$	

смещаются в коротковолновую область. При мощности накачки $\beta \geq 0.6$ наряду с широким максимумом $\sigma_g(\lambda)$ в области длин волн 1000-1010 nm появляется еще один максимум на $\lambda = 980 \pm 1$ nm.

На основе расчетов сечения усиления при заданном значении инверсной населенности β можно выбрать как длину волны, так и границы области возможной перестройки длины волны лазерного излучения, что важно для создания жидкостных перестраиваемых иттербиевых лазеров.

Практический интерес представляет сравнение сечений усиления в области максимумов для разных НЛЖ. Результаты сравнения $\sigma_g(\lambda)$ на длинах волн λ_1 (первый максимум) и λ_2 (второй максимум) при относительной инверсной населенности $\beta=0.75$ приведены в табл. 4. Из таблицы видно, что сечения усиления Yb^{3+} в растворах на основе тионилхлорида и сульфурилхлорида изменяются в диапазоне от $1.5 \cdot 10^{-20}$ до $0.9 \cdot 10^{-20}$ стемограния yb^{3+} в растворах на основе оксихлорида фосфора.

Полученные в работе значения сечений усиления растворов $SO_2Cl_2-GaCl_3-Yb^{3+}$ близки к рекомендованным данным для фторидных и некоторых оксидных монокристаллов [21,26] и для разупорядоченных кристаллов типа кальций—ниобий—галлиевый гранат (KNGG:Yb^{3+}) [24,27], которые используют в качестве активных сред твердотельных лазеров. Сравнительно большое сечение усиления, малые токсичность и агрессивность делают растворы $SO_2Cl_2-GaCl_3-Yb^{3+}$ перспективными для создания прокачных жидкостных лазеров с диодной накачкой.

Заключение

Измерены спектры поглощения, люминесценции и время жизни возбужденного состояния Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$. Получены экспериментальные данные о сечениях поглощения $\sigma_a(\lambda)$ и вынужденного излучения $\sigma_e(\lambda)$ переходов $^2F_{7/2} \leftrightarrow ^2F_{5/2}$. Сечения в максимумах составили $\sigma_a(978.5 \, \mathrm{nm}) = 2.86 \cdot 10^{-20} \, \mathrm{cm}^2$

Рис. 8. Спектральные зависимости сечений усиления Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$, приготовленных из $Yb(CF_3COO)_3$ (*a*) и из $YbCl_3$ (*b*), при разных значениях относительной инверсной населенности β : 0.15 (*I*), 0.3 (*2*), 0.45 (*3*), 0.6 (*4*), 0.75 (*5*), 0.9 (*6*).

Таблица 4. Сечение усиления лазерного излучения при относительной инверсной населенности $\beta = 0.75$ для разных НЛЖ

нлж	Соединение иттербия	λ_1 , nm	$\sigma_{g1} \cdot 10^{20}, \text{cm}^2$	λ_2 , nm	$\sigma_{g2}\cdot 10^{20}$, cm ²	Источник
POCl ₃ -ZrCl ₄ -Yb ³⁺	Yb(CF ₃ COO) ₃	977.6	0.844	1004.0	0.560	[15]
SOCl ₂ -GaCl ₃ -Yb ³⁺	Yb(CF ₃ COO) ₃	980.5	1.070	1000.5	1.082	[16]
	YbCl ₃	980.0	0.871	1000.5	0.860	
SO ₂ Cl ₂ -GaCl ₃ -Yb ³⁺	Yb(CF ₃ COO) ₃	979.0	1.557	1006.0	0.880	
	YbCl ₃	980.4	0.817	1002.6	0.991	

и $\sigma_e(978.8\,\mathrm{nm}) = 3.01 \cdot 10^{-20}\,\mathrm{cm}^2$ в растворах, приготовленных из $Yb(CF_3COO)_3$, и $\sigma_a(979.8 \text{ nm}) =$ $= 1.37 \cdot 10^{-20} \,\mathrm{cm}^2$ и $\sigma_e(980.2 \,\mathrm{nm}) = 1.55 \cdot 10^{-20} \,\mathrm{cm}^2$ в растворах, приготовленных из YbCl3. Квантовый выход люминесценции Yb^{3+} в растворах $SO_2Cl_2-GaCl_3-Yb^{3+}$ из Yb(CF₃COO)₃ и YbCl₃ составил 0.85 и 0.96 соответственно. Определена структура штарковских подуровней основного ${}^2F_{7/2}$ - и возбужденного ${}^2F_{5/2}$ -состояний при комнатной температуре. Для разных значений относительной инверсной населенности возбужденного состояния ${}^2F_{5/2}$ получены спектральные зависимости сечений усиления. Установлено, что сечения усиления $\sigma_{\rm g}(\lambda)~{
m Yb^{3+}}$ в ${
m SO_2Cl_2-GaCl_3-Yb^{3+}}$ различны для растворов, приготовленных из Yb(CF₃COO)₃ и YbCl₃, зависят от плотности накачки и представляют собой широкую полосу в области длин волн от 980 до 1040 nm.

Таким образом, неорганические жидкости $SO_2Cl_2-GaCl_3-Yb^{3+}$ можно рекомендовать для создания активных сред прокачных лазеров в области длин волн 980-1040 nm. Для эффективной генерации необходимо обеспечить высокие плотности энергии накачки и равномерную прокачку лазерной жидкости через резонатор.

Благодарности

Авторы благодарят А.В. Подкопаева и Я.В. Кривошеева за помощь в проведении измерений.

Финансирование работы

Исследования проведены при финансовой поддержке Российского фонда фундаментальных исследований и Правительства Калужской области (научный проект № 19-43-400004).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Глухих И.В., Димаков С.А., Курунов Р.Ф., Поликарпов С.С., Фролов С.В. // ЖТФ. 2011. Т. 81. № 8. С. 70.
- [2] Аникеев Ю.Г., Жаботинский М.Е., Кравченко В.Б. Лазеры на неорганических жидкостях. М.: Наука, 1986. 248 с.
- [3] Ault Earl R., Comaskey Brian J., Kuklo Thomas C. High Average Power Laser Using a Transverse Flowing Liquid Host: U.S. Patent 6600766 B1. 2003.

- [4] *Кузнецов И.И., Мухин И.Б., Вадимова О.Л., Пала- шов О.В.* // Квант. электрон. 2015. Т. 43. № 3. С. 207.
- [5] Бульканов А.М., Николаев Д.А., Цветков В.Б., Шаматова А.И., Щербаков И.А. // Квант. электрон. 2018. Т. 48. № 5. С. 468.
- [6] Zheng X., Yi S., Chunling L., Mi L., Xiufang X., Liqing L., Yali W., Feng Y., Deyong W., Jianfeng J., Bo T., Wenqiang L(U) // High Power Laser and Particle Beams. 2006. V. 18, N 12. P. 1941.
- [7] Zheng X., Mi L., Chunling L., Yali W. // Acta Optica Sinica. 2010. V. 30. N 9. P. 2620. doi 10.3788/AOS20103009.2620
- [8] Mi L., Yali W., Chunling L., Jiao W., Liqing L. // Acta Optica Sinica. 2011. V. 31. N 2. P. 135. doi 10.3788/AOS20113102.0214004
- [9] Boulon G. // J. Alloys and Compounds. 2008. V. 451. P. 1. doi 10.1016/j.jallcom.2007.04.148
- [10] Батяев И.М., Данильчук Н.В., Кабацкий Ю.А., Шаповалов В.Н., Шилов С.М. // ЖПС. 1989. Т. 51. № 6. С. 929—932.
- [11] Батяев И.М., Данильчук Н.В., Кабацкий Ю.А., Шаповалов В.Н., Шилов С.М. // ЖПС. 1990. Т. 53. № 2. С. 336.
- [12] *Батяев И.М., Морев С.Ю.* // Опт. и спектр. 1995. Т. 79. № 6. С. 954.
- [13] Батяев И.М., Морев С.Ю. // Опт. и спектр. 1996. Т. 80. № 1. С. 85.
- [14] Тихонов Г.В., Бабкин А.С., Серёгина Е.А., Серёгин А.А. // Неорг. матер. 2017. Т. 53. № 10. С. 1122. doi 10.7868/S0002337X17100165; Tikhonov G.V., Babkin A.S., Seregina E.A., Seregin A.A. // Inorganic Materials. 2017. V. 53. № 10. Р. 1097. doi 10.1134/S0020168517100168
- [15] Бабкин А.С., Серёгина Е.А., Серёгин А.А. Тихонов Г.В. // Опт. и спектр. 2018. Т. 125. № 4. С. 507. doi 10.21883/OS.2018.10.46703.157-18; Babkin A.S., Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2018. V. 125. N 4. P. 528. doi 10.1134/S0030400X18100053
- [16] Серёгина Е.А., Серёгин А.А., Тихонов Г.В. // Опт. и спектр. 2020. Т. 128. № 10. С. 1441. doi 10.21883/OS.2020.10.50012.305-20; Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2020. V. 128. N 10. P. 1551. doi 10.1134/S0030400X20100240
- [17] *Мочалов И.В., Бондарева Н.П., Бондарев А.С., Маркосов С.А.* // Квант. электрон. 1982. Т. 9. № 5. С. 1024.
- [18] Батяев И.М. // ЖТФ. 1994. Т. 64. № 6. С. 125.
- [19] Boulon G., Guyot Y., Canbano H., Hraiech S., Yoshikawa A. // J. Opt. Soc. Am. B. 2008. V. 25. N 5. P. 884.
- [20] Mc Cumber D.E. // Phys. Rev. 1964. V. 136. P. A954.
- [21] De Loach Laura D., Payne Stephen A., Chase L.L., Smith Larry K., Kway Wayne L, Krupke William F. // IEEE J. Quantum Electron. 1993. V. 29. N 4. P. 1179.
- [22] Мелькумов М.А., Буфетов И.А., Кравцов К.С., Шубин А.В., Дианов Е.М. // Квант. электрон. 2004. Т. 34. № 9. С. 843.
- [23] *Мелькумов М.А., Буфетов И.А., Кравцов К.С., Шу- бин А.В., Дианов Е.М.* // Препринт № 5. НЦВО ИОФ РАН. М., 2004.
- [24] *Шукшин В.Е.* // Труды ИОФ им. А.М. Прохорова РАН. 2008. Т. 64. С. 3.
- [25] Демеш М.П., Гусакова Н.В., Ясюкевич А.С., Кулешов Н.В., Григорьев С.В., Крот Ю.А., Костына М.Б., Шехов-цов А.Н. // Приборы и методы измерений. 2015. Т. 6. № 2. С. 211.

- [26] Басиев Т.Т., Васильев С.В., Дорошенко М.Е., Конюшкин В.А., Кузнецов С.В., Осико В.В., Федоров П.П. // Квант. электрон. 2007. Т. 37. № 10. С. 934.
- [27] Воронько Ю.К., Кочурихин В.В., Соболь А.А., Ушаков С.Н., Шукшин В.Е. // Неорг. матер. 2004. Т. 40. № 10. С. 1234.