19,11

Тепловые и магнитокалорические свойства манганитов La_{0.7}Sr_{0.3-x}Ba_xMnO₃

© А.Б. Гаджиев¹, А.Г. Гамзатов¹, А.Б. Батдалов¹, З.А. Хуршилова², А.М. Алиев¹

¹ Институт физики им. Х.И. Амирханова ДФИЦ РАН, Махачкала. Россия

² Дагестанский государственный медицинский университет,

Махачкала, Россия

E-mail: mr.gadzhiev.93@mail.ru, gamzatov_adler@mail.ru

Поступила в Редакцию 8 июля 2021 г. В окончательной редакции 13 июля 2021 г. Принята к публикации 16 июля 2021 г.

Приведены результаты исследования влияния частичного замещения ионов Sr^{2+} ионами Ba^{2+} на теплофизические и магнитокалорические свойства манганита $La_{0.7}Sr_{0.3-x}Ba_xMnO_3$ (x = 0; 0.02; 0.05 и 0.10) в интервале температур 100–400 К и в магнитном поле до 1.8 Т. Показано, что такое замещение приводит к значительному уменьшению T_C . В поведении температуропроводности $\eta(T)$ и теплопроводности $\kappa(T)$ вблизи T_C обнаружены минимумы, которые связаны как с рассеянием фононов на локальных искажениях кристаллической решетки, так и на спиновых флуктуациях. Абсолютные значения теплопроводности убывают с ростом параметра беспорядка. Магнитокалорический эффект проявляет слабую зависимость от уровня замещения (x).

Ключевые слова: Магнитокалорический эффект, манганиты, фазовые переходы, теплоемкость температурапроводность, теплопроводность.

DOI: 10.21883/FTT.2021.12.51661.28s

1. Введение

Допированные манганиты ($Re_{1-x}A_x$ MnO₃, где Re — редкоземельный элемент, A — щелочноземельный металл), получившие широкую известность благодаря обнаруженному в них эффекту колоссального магнитосопротивления [1,2] все еще остаются в поле зрения исследователей в том числе из-за наблюдавшего в них магнитокалорического эффекта, сравнимого по величине с эффектом в лучших магнитокалорических материалах [3,4]. Магнитокалорический эффект представляет интерес как основа для создания технологии магнитного охлаждения, которой в последнее время уделяется значительное внимание [4]. Кроме того, манганиты являются модельными объектами для исследования фундаментальных свойств сильнокоррелированых электронных систем.

Свойства манганитов в основном определяются соотношением количества разновалентных ионов Mn^{3+}/Mn^{4+} , а так же важную роль в поведении теплофизических параметров играют такие микроскопические параметры как локальные искажения кристаллической решетки, характеризуемые параметром беспорядка $\sigma^2 = \sum x_i r_i^2 - \langle r_A^2 \rangle$ вызванные различаем в ионных радиусах и среднее значение ионных радиусов *A*-катионов $\langle r_A \rangle = 0.7r_{La} + (0.3 - x)r_{Sr} + xr_{Ba}$, где r_{La} , r_{Sr} и r_{Ba} радиусы ионов La, Sr и Ba соответвенно.

Корреляция между изменениями σ^2 и $\langle r_A \rangle$ и теплофизическими свойствами обнаружена при исследовании манганита $\Pr_{0.7} Sr_{0.3-x} Ca_x MnO_3$ [5,6]. Кроме того, было показано, что частичное замещение как в А подрешетке, так и в подрешетке Mn может быть использовано для улучшения магнитокалорических свойств [5-7]. В данной композиции ион Sr²⁺ замещается на ион меньшего радиуса Са²⁺, что создает "химическое давление", приводящее к деформации (сжатию) кристаллической решетки и уменьшению как σ^2 так и $\langle r_A \rangle$. Следствием такого замещения является ослабление обменных взаимодействий и как следствие уменьшение T_C. В данной работе рассматривается противоположная ситуация: ион меньшего радиуса Sr²⁺ замещается на ион большего радиуса Ba²⁺, что должно привести к расширению кристаллической решетки и соответствующим изменениям в значениях σ^2 , и $\langle r_A \rangle$. При расчетах брали значения ионных радиусов, соответствующие значению координационного числу 8: $r_{\text{La}} = 1.18 \text{ Å}, r_{\text{Sr}} = 1.26 \text{ Å},$ $r_{\rm Ba} = 1.42 \, {\rm A} \, [8].$

В настоящей работе приводятся результаты экспериментального исследования влияния частичного замещения Sr на Ba на теплоемкость, теплопроводность, температуропроводность и магнитокалорический эффект в системе La_{0.7}Sr_{0.3-x}Ba_xMnO₃ (x = 0; 0.02; 0.05 и 0.10) в интервале температур 100-400 K и в магнитных полях до 1.8 T.

2. Образцы и эксперимент

Образцы были изготовлены по стандартной керамической технологии [9]. Теплоёмкость и температуропроводность измерялись методом ас-калориметрии и эти данные использовались для определения теплопроводности, которые связаны соотношением $\kappa = \frac{d}{M} C_P \eta$, где d — плотность образца, М — его молярная масса, C_P — теплоемкость, η — температуропроводность, κ теплопроводность. Прямые измерения адиабатического изменения температуры ΔT_{ad} при изменении магнитного поля проводились модуляционным методом [10]. Суть метода заключается в том, что к образцу прикладывается переменное магнитное поле, которое благодаря магнитокалорическому эффекту индуцирует периодическое изменение температуры образца. Это изменение температуры регистрируется синхронным детектором посредством дифференциальной термопары, один спай которой приклеен к исследуемому образцу, другой — к медному блоку. Частота изменения переменного магнитного поля в данном эксперименте составляла 0.2 Hz. Данная методика позволяет регистрировать изменение температуры с точностью не хуже 10⁻³ К. Переменное магнитное поле напряженностью 1.8 Т создавалось источником магнитного поля производства фирмы АМТиС. В качестве термодатчиков использовались медь-константановые и хромель-константановые термопары.

3. Результаты и обсуждения

Для установления связи между физическими свойствами и микроскопическими параметрами σ^2 и $\langle r_A \rangle$ были рассчитаны значения последних в зависимости от *x*, которые приведены в таблице, температура Кюри определена по максимуму аномалии теплоемкости.

Из таблицы видно, что замещение иона меньшего радиуса (Sr) на ион большего радиуса (Ba) приводит к росту среднего ионного радиуса $\langle r_A \rangle$ и параметра беспорядка σ^2 . Следует отметить, что $\langle r_A \rangle$ и σ^2 поразному сказываются на магнитные и теплофизические свойства манганита. Рост среднего ионного радиуса сопровождается увеличением угла Mn–O–Mn, что приводит к росту T_C — это означает усиление интенсивности обменных взаимодействий. В то же время, искажение кристаллической решетки вызванное разбросом в ионных радиусах *A*-катионов, которые ассоциируются с σ^2 , в данном случае вызывают увеличение объема элементарной ячейки и удлинению длин связей Mn–O [11–13], что должно привести к ослаблению обменных взаимодействий и уменьшению T_C . В общем

Некоторые параметры системы La_{0.7}Sr_{0.3-x}Ba_xMnO₃

x	T_C , K	$\langle r_A \rangle$, Å	σ^2 , Å ²
0	362	1.2040	$1.2 \cdot 10^{-3}$
0.02	343	1.2072	$2.1 \cdot 10^{-3}$
0.05	324	1.2120	$2.9\cdot 10^{-3}$
0.10	280	1.2200	$5.3 \cdot 10^{-3}$

2029

Рис. 1. Температурная зависимость теплоемкости для $La_{0.7}Sr_{0.3-x}Ba_xMnO_3$ при H = 0 (точки) и при H = 1.8 Т (пунктирные линии). Для наглядности кривые C_P смещены на указанные единицы C_P .

случае, когда при замещении меняется и $\langle r_A \rangle$ и σ^2 зависимость $T_C = f(\langle r_A \rangle, \sigma^2)$ имеет сложный характер. Можно предположить, что наблюдаемое уменьшение величины T_C с ростом *x* связано с превалированием влияния параметра беспорядка σ^2 над ростом среднего ионного радиуса.

Рассмотрим более подробно, как такое замещение сказывается на поведении таких макроскопических параметров, как теплоёмкость, температуропроводность, теплопроводность и магнитокалорический эффект. На рис. 1 представлены результаты измерения температурной зависимости теплоемкости для системы $La_{0.7}Sr_{0.3-x}Ba_xMnO_3$ при H = 0 и H = 1.8 Т. Для всех образцов наблюдается ярко выраженные аномалии, связанные с фазовым переходом ферромагнетикпарамагнетик (ФМ-ПМ), с максимумом при температурах *T_C* = 362, 343, 324 и 280 К для *x* = 0, 0.02, 0.05 и 0.1 соответственно. Как видим, из рисунка, магнитное поле подавляет аномалии и смещает температуру максимума в сторону высоких температур. Увеличение концентрации Ва приводит к смещению Т_С в сторону низких температур. Связано это с уменьшением обменного взаимодействия между ионами марганца вследствие увеличения расстояния между магнитоактивными атомами при замещении ионов стронция ионами бария с большим ионным радиусом.

Из данных теплоемкости были получены температурные зависимости аномальной части теплоемкости и изменения энтропии фазового перехода при H = 0, которые приведены на рис. 2, *a* и *b*. Аномальная часть теплоемкости определялась как $\Delta C_P(T) = C_P - C_{\rm ph}$, где $C_{\rm ph}$ решеточный вклад, полученный путем экстраполяции дебаевской кривой теплоемкости, C_P — измеренная величина теплоемкости. Как видно из рис. 2, *a*, максимальное значение скачка теплоемкости в области фазового перехода составляет $\Delta C_P \approx 28$ J/mol·K для образца с x = 0

Рис. 2. *а*) Температурная зависимость аномальной части теплоемкости (*a*) и изменения энтропии фазового перехода при H = 0 (*b*).

Рис. 3. Температурная зависимость МКЭ (a) и изменения магнитной части энтропии ΔS_M в магнитном поле 1.8 T (b).

и минимальное значение $\Delta C_P \approx 12 \text{ J/mol} \cdot \text{K}$ наблюдается для образца с x = 0.1, то есть с ростом замещения величины скачка ΔC_P значительно уменьшается.

На рис. 2, *b* приведены температурные зависимости изменения энтропии, связанные с разупорядочением магнитной системы при фазовом переходе ферромагнетик-парамагнетик, которые определялись по формуле: $\Delta S^*(T) = \int (\Delta C_P/T) dT$. Значения ΔS^* для системы La_{0.7}Sr_{0.3-*x*}Ba_{*x*}MnO₃ изменяются от 1.20 до 2.38 J/K, что значительно меньше идеальных значений для модели Изинга ($\Delta S^* = R \ln 2 = 5.7$ J/K) и Гейзенберга ($\Delta S^* = R \ln 4 = 11.52$ J/K) [10]. Такого рода расхождения экспериментальных данных и теоретических оценок ΔS^* характерны для манганитов многократно обсуждались в литературе [7,15–17].

На рис. 3, *а* приведена температурная зависимость МКЭ для La_{0.7}Sr_{0.3-x}Ba_xMnO₃ в магнитном поле 1.8 Т. Как видим из рисунка с ростом концентрации Ва

температура максимума эффекта смещается в сторону низких температур, что хорошо согласуется с данными теплоемкости (рис. 1), и расчетами микроскопических параметров. Максимальная величина МКЭ в поле 1.8 Т равна $\Delta T_{ad} = 0.86$ К и наблюдается для образца La_{0.7}Sr_{0.28}Ba_{0.02}MnO₃ при T = 343 К. Следует отметить, для образцов с x = 0, 0.02 и 0.05 величина МКЭ слабо меняется с допированием и колеблется в пределах $\Delta T_{ad} \sim 0.8$ К. При этом T_C смещается более чем на 40 К. Это означает, что путем регулирования уровня замещения можно получить нужную T_C в широкой области температур, при этом слабо меняя величину МКЭ, что является важным преимуществом для магнитокалорических материалов.

На рис. 3, *b* приведены результаты исследования температурной зависимости изменения магнитной части энтропии, которые были получены из данных по теплоемкости в поле и прямых измерений МКЭ с помощью

Рис. 4. Температурные зависимости температуропроводности при H = 0 и H = 1.8 T (*a*) и теплопроводности (*b*) для La_{0.7}Sr_{0.3-x}Ba_xMnO₃ при H = 0.

формулы $\Delta S_M = \Delta T_{ad}C_P(T, H)/T$, где ΔT_{ad} — экспериментальные данные прямых измерений, $C_P(T, H)$ температурная зависимость теплоемкости в магнитном поле 1.8 T [18]. Полученные значения ΔT_{ad} и ΔS_m находятся в пределах, приведённых в литературе для других манганитов [3,5].

Рассмотрим более подробно механизмы теплопереноса. Многочисленные экспериментальные работы показали, что фононный механизм теплопередачи является доминирующим в манганитах [19-21]. В таком случае для анализа механизмов рассеяния фононов можно воспользоваться данными по температуропроводности. Температуропроводность характеризует скорость изменения температуры в нестационарных тепловых процессах и связана с длиной свободного пробега фононов $l_{\rm ph}$ соотношением $\eta = \frac{1}{3} l_{\rm ph} v_s$, где v_s — скорость распространения звука. Предполагая, что v_s слабо зависит от температуры по измерениям $\eta(T)$ можно проследить за ходом изменения $l_{\rm ph}(T)$ и делать соответствующие выводы о механизме рассеивания фононов. На зависимости $\eta(T)$ (рис. 4, a) для всех образцов близи T_C наблюдаются минимумы, которые в магнитном поле сглаживаются. Такие аномалии уже наблюдались для ряда манганитов и связывались с рассеянием фононов на локальных искажениях кристаллической решетки, вызванных эффектом Яна-Теллера [19,21]. Вид минимумов и их глубина, в зависимости от концентрации Ва и магнитного поля говорят о том, что при интерпретации результатов по теплопереносу необходимо рассматривать несколько механизмов, которые приводят к изменению скорости рассеяния носителей тепла.

В случае рассеяния фононов только на искажениях Яна—Теллера на зависимости $\eta(T)$ наблюдался бы только излом без минимума. Вид аномалий на зависимости $\eta(T)$ вблизи T_C говорит о том, что кроме искажений Яна—Теллера необходимо рассматривать и другие механизмы рассеяния фононов. Из рисунка видно, что глубина минимума растет по мере уменьшения искажений

кристаллической структуры (σ^2) и усиления магнитных флуктуации, на основании чего можно предположить, что имеет место и рассеяние фононов на спиновых флуктуациях. Пригодность такой модели для объяснения поведения $\kappa(T)$ вблизи T_C была продемонстрирована экспериментально при исследовании теплопроводности манганита (La_{1-x}N_{dx})_{0.7}Pb_{0.3}Ca_xMnO₃ [22], а теоретически была обоснована в работа [23]

Зависимость $\kappa(T)$ приведена на рисунке 4 (b). Видно, что абсолютная величина теплопроводности растет по мере уменьшения параметра беспорядка (σ^2) и имеет характерный для манганитов температурный ход [19,21]. Переход в ферромагнитную фазу сопровождается ростом величины κ . Уменьшение κ с ростом σ^2 указывает на значительную роль локальных искажений в ограничении фононного потока тепла.

4. Заключение

Проведено исследования влияния замещения иона Sr^{2+} на ион Ba^{3+} на магнитные, тепловые и магнитокалорические свойства манганита $\mathrm{La}_{0.7}\mathrm{Sr}_{0.3-x}\mathrm{Ba}_x\mathrm{MnO}_3$ (x = 0; 0.02; 0.05; 0.10). Показано, что такое замещение проводит к росту как параметра беспорядка σ^2 так и среднего ионного радиуса *A*-катионов $\langle r_A \rangle$, и ослаблению интенсивности обменных взаимодействий. Аномальная часть теплоемкости и изменения энтропии фазового перехода убывает с ростом концентрации Ва. Теплопроводность носит преимущественно фононный характер и убывает по абсолютной величине по мере роста параметра беспорядка σ^2 .

Для объяснения наблюдаемых аномалий в поведении температурапроводности и теплопроводности при T_C необходимо привлечь как рассеяние фононов на локальных искажениях кристаллической решетки, вызванные эффектом Яна—Теллера, так и взаимодействие фононов со спиновыми флуктуациями. Для исследования МКЭ

применялся метод модуляции магнитного поля. Полученные данные указывают на слабую зависимость эффекта от уровня замещения, что представляет определенный практический интерес.

Благодарности

Авторы выражают благодарность S.-C. Yu за предоставленные для исследования образцы.

Финансирование работы

Работа выполнена при частичной финансовой поддержке гранта РФФИ № 20-58-54006.

Конфликт интересов

Авторы не имеют конфликтов интересов.

Список литературы

- V. Markovich, A. Wisniewski, H. Szymczak. Handb. Magn. Mater. 22, 1–201 (2014).
- [2] E. Dagotto, T. Hott, A. Moreo. Phys. Rep. 344, 1 (2001).
- [3] M.F. Phan, S.C Yu. J. Magn. Magn. Mater. 308, 325 (2007).
- [4] V. Franco, J.-S. Blazquez, J.J. Ipus, J.Y. Low, L.M. Mareno-Ramiros, A. Conde. Prog. Mater. Sci. 93, 112–232 (2018).
- [5] A.B. Batdalov, A.G. Gamzatov, A.M. Aliev, N. Abdulkadirova, P.D.H. Yen, T.D. Thanh, N.T. Dung, S.-C. Yu. J. Alloys Comp. 782, 729 (2019).
- [6] A.G. Gamzatov, A.M. Aliev, P.D.H. Yen, K.X. Hau, Kh.E. Kamaludinova, T.D. Thanh, N.T. Dung, S.-C. Yu. J. Magn. Magn. Mater. 474, 477–481 (2019).

- [7] A.G. Gamzatov, A.B. Batdalov, A.M. Aliev, Z. Khurshilova, M. Ellouze, F. Ben Jemma. J. Magn. Magn. Mater. 443, 352 (2017).
- [8] J.L. Cohn. J. Supercond. 13, 291 (2000).
- [9] А.Б. Гаджиев, А.Г. Гамзатов, А.Б. Батдалов, А.М. Алиев, Д. Нанто, Б. Курниаван, С.-Ч. Юу, Д.-Х. Ким. Челябинский физ.-мат. журн. 6, 1, 87–94 (2021).
- [10] А.М. Алиева, А.Б. Батдалова, В.С. Калитка. Письма в ЖЭТФ **90**, *10*, 736 (2009).
- [11] C. Martin, A. Maignan, M. Hervieu, B. Raveau. Phys. Rev. 60, 12190 (1999).
- [12] А.И. Абрамович, Л.И. Королева, А.В. Мичурин, О.Ю. Горбенко, А.Р. Кауль, М.Х. Машаев, Р. Шимчак, Б. Кжиманска. ФТТ 44, 5, 888 (2002).
- [13] Lide M. Rodriges, J. Paul. Attfild. Phys. Rev. 54, 15622 (1996).
- [14] Y. Moritomo, A. Machida, E. Nishibori, M. Takata, M. Sakata. Phys. Rev. 64, 214409 (2001).
- [15] A.G. Gamzatov, A.M. Aliev, A.B. Batdalov, H. Ahmadvand, H. Salamati, P. Kameli. J. Mater. Sci. 49, 294 (2014).
- [16] М.Н. Хлопкин, Г.Х. Панова, А.А. Шиков, В.Ф. Синянский, Д.А. Шулятев. ФТТ 42, 111 (2000).
- [17] А.Г. Гамзатов, А.Б. Батдалов, А.М. Алиев, М. Ellouze, F. Jemma. ФТТ 59, 10 (2017).
- [18] Vitalij K. Pecharsky, Karl A. Gschneinder Jr. J. Magn. Magn. Mater 200, 44 (1999).
- [19] J.L. Cohn, J.J. Neumeier, C.P. Popoviciu, K.J. McClellan, Th. Leventouri. Phys. Rev. 56, 8495 (1997).
- [20] D.W. Visser, A.P. Ramírez, M.A. Subramanian. Phys. Rev. Lett. 78, 3947 (1997).
- [21] A.M. Aliev, A.B. Batdalov, A.G. Gamzatov. Low Temp. Phys. 36, 171 (2010).
- [22] M. Tachibana, E. Takayama-Muromachi. Appl. Phys. Lett. 92, 2507 (2008).
- [23] K. Kawasaki. Prog. Theor. Phys. 29, 801 (1963).

Редактор К.В. Емцев

Продолжение публикации материалов семинара в ФТТ № 01/22