05

Отрицательная динамическая диэлектрическая проницаемость керамического мультиферроика LuFe₂O₄ с кислородной нестехиометрией при совместном воздействии температуры и электрического поля

© Г.М. Гаджиев¹, А.Г. Гамзатов¹, Р.А. Алиев¹, Н.С. Абакарова¹, М. Маркелова², А.Р. Кауль²

¹ Институт физики ДФИЦ РАН, Махачкала, Россия ² Московский государственный университет, Москва, Россия E-mail: hadzhygm@mail.ru

Поступила в Редакцию 8 июля 2021 г. В окончательной редакции 13 июля 2021 г. Принята к публикации 16 июля 2021 г.

> Представлены температурные зависимости (в диапазоне температур 100–380 K) диэлектрической постоянной и электропроводности керамического мультиферроика LuFe₂O₄ с кислородной нестехиометрией, измеренные на переменном токе (1, 10, 100 kHz, 1 MHz) и в статическом электрическом поле (0–7.1 V/mm) Обсуждается закономерность инверсии знака динамической диэлектрической проницаемости, обусловленной проявлением в образцах твердотельной индуктивности.

> Ключевые слова: отрицательная диэлектрическая проницаемость, твердотельная индуктивность, мультиферроик.

DOI: 10.21883/FTT.2021.12.51656.30s

Высокие требования к устройствам записи и хранения данных высокой плотности, инициировали у научного сообщества интерес к поиску и исследованию функциональных материалов, в которых намагниченность может быть изменена статическим электрическим полем и наоборот. К числу таких материалов относится мультиферроидное соединение LuFe2O4. Многочисленные экспериментальные данные свидетельствуют о том, что при температуре ~ 340 К в данных соединениях возникает зарядовое упорядочение (ЗУ), а при $T \approx 240 \, {\rm K}$ — магнитное упорядочение (возникновение намагниченности вследствие упорядочения магнитных моментов катионов железа в соединении) [1-6]. Соединение LuFe₂O₄ привлекает внимание исследователей из-за необычного механизма возникновения электрической поляризации, обусловленного процессами электронной корреляции и геометрической фрустрацией зарядов (Fe²⁺/Fe³⁺) в области температур между 350 и 500 К [1]. Близость температур зарядового и магнитного упорядочений к комнатной делает мультиферроик LuFe2O4 многообещающим материалом для применения в вышеуказанных приложениях.

В литературе нет полного согласия относительно мультиферроидных свойств LuFe₂O₄ [7–10] несмотря на большой объем экспериментальных фактов, указывающих на взаимосвязь зарядового и магнитного упорядочений в этом соединении [3,11,12]. В вводной части работы [13] проведен обзор последних исследований, где раскрываются актуальные проблемы физики муль-

тиферроизма в соединениях LuFe₂O₄. Для краткого ознакомления с положением дел в этой области, отсылаем читателя к этой статье. Диэлектрические свойства LuFe₂O₄ определяются балансом между поляризацией и проводимостью, обусловленной двойным обменом зарядами между катионами железа разной валентности (Fe²⁺/Fe³⁺) [14]. Отклонение от кислородной стехиометрии δ , температура *T*, электрическое поле *E* и частота измерительного поля ω являются факторами, нарушающими этот баланс, а значит, и саму мультиферроичность LuFe₂O₄ [11,15]. Для установления влияния внешних воздействий на параметры материалов на основе соединения LuFe₂O₄ важно исследовать их диэлектрическую проницаемость ε и электропроводность как функции вышеперечисленных параметров.

Известно, что динамическая диэлектрическая проницаемость, в отличие от статической ($\omega \rightarrow 0$), может иметь не только положительное, но и отрицательное значение [16,17]. На данный момент в работах, посвященных исследованию зависимости ε ($T, E = \text{const}, \omega = \text{const}$) составов LuFe₂O₄ как поликристаллического, так и монокристаллического вида, ничего не сообщалось об отрицательной диэлектрической постоянной в определенных областях параметров. Возможно, авторы [8], исследовавшие образцы, подготовленные с применением технологии, аналогичной нашей, не обнаружили инверсии знака на температурно-частотной зависимости ε из-за меньших значений измерительного переменного и постоянного электрического полей. Важно отметить,

что они не рассматривают температурную область выше комнатной.

В настоящей статье мы сообщаем о закономерностях инверсии знака динамической диэлектрической постоянной керамического LuFe₂O_{4± δ} с кислородной нестехиометрией при совместном воздействии температуры (T = 100-380 K) и электрического поля (E = 0-7.1 V/mm).

В работе использовались керамические образцы LuFe₂O₄, подготовленные по методике так называемого "бумажного синтеза". На начальном этапе синтеза происходит растворная гомогенизация — готовим стехиометрический раствор нитратов всех катионов, которые входят в состав образца. Далее этим раствором пропитывали обеззоленные бумажные фильтры. После этого они высушиваются и сжигаются. Полученная при этом зола отжигается на воздухе при температуре 600°С. Затем золу перетирают и спрессовывают в таблетки диаметром ~ 6 mm и толщиной около 1.5 mm [18]. На противоположные грани круглого сечения методом магнетронного распыления были нанесены серебряные контакты диаметром 3 mm. Измерения выполнены на LCR-измерителях AM-3001 (АКТАКОМ) и Е7-12. Скорость нагрева образцов имела величину ~ 2 K/min. Температура контролировалась медь-константановой термопарой, ошибка измерения температуры в области 100-350 К не превышала 1 К. Амплитуда тестирующего синусоидального напряжения составляла 0.25 V. Реальная часть комплексной диэлектрической проницаемости объектов исследования определялась как отношение измеренной электрической емкости С образца к геометрической емкости контактов к нему Со, а мнимая часть — через удельную электропроводность ($\sigma = \varepsilon_0 \varepsilon'' \omega$, ε_0 — диэлектрическая постоянная, ε'' — мнимая часть диэлектрической проницаемости). Исследовались образцы LuFe₂O_{4+δ} с разным индексом кислородной нестехиометрии ($\delta = 0.07$ и -0.05), обозначенные в дальнейшем КL-1 и КL-2, соответственно. Положительное значение δ означает более окисленное состояние LuFe₂O_{4+ δ}, т.е. соотношение $Fe^{3+}/Fe^{2+} > 1$; отрицательное значение δ означает более восстановленное состояние LuFe₂O_{4+ δ}, т.е. $Fe^{3+}/Fe^{2+} < 1.$

На рис. 1,2 представлены температурно-частотные зависимости диэлектрической проницаемости и удельной электропроводности KL-1 и KL-2, измеренные в постоянном электрическом поле и без поля при разных частотах тестового сигнала. Зависимости $\varepsilon(T)$ для KL-1 и KL-2 на всех частотах измерительного переменного напряжения без внешнего поля проходят через выраженный максимум при увеличении температуры в области $\sim 200-380$ К. При этом полуширина максимумов $\varepsilon(T)$ кислород-дефицитного образца KL-2 заметно шире, чем у кислород-избыточного образца KL-1. Отличительной особенностью результатов измерений является обнаружение большой отрицательной диэлектрической проницаемости и ее частотной дисперсии в используемом

Характеристики температурных спектров диэлектрической проницаемости LuFe₂O₄ с избытком (KL-1) и дефицитом (KL-2) кислорода

Образец	ω , kHz	$T_{\rm max}, {\rm K}$ $U = 0 {\rm V}$	$T_{\rm max}, {\rm K}$ $U = 5 {\rm V}$	T_{inv}, \mathbf{K} $U = 0 \mathbf{V}$	T_{inv}, \mathbf{K} $U = 5 \mathbf{V}$	T_{inv}, \mathbf{K} $U = 8 \mathbf{V}$
KL-1	1	308	164	335	267	-
	10	304	251	325	261	-
	100	310	254	328	260	-
	1000	270	268	289	289	-
KL-2	1	328	-	379	260	239
	10	334	_	380	266	239
	100	334	-	373	268	239
	1000	310293	312	310	310	

диапазоне ω . Положения максимумов ($T_{\text{max}} \approx 308 \text{ K}$) и инверсии знака ($T_{inv} \approx 330 \text{ K}$) температурных спектров $\varepsilon(T)$ при частотах меньше 1 MHz без поля (рис. 1) не претерпевают заметных изменений при увеличении ω . Приложение постоянного электрического поля поверх измерительного синусоидального, приводит к сдвигу положения максимума и точки инверсии знака ε в сторону низких температур на зависимости $\varepsilon(T)$ для $\omega < 1$ MHz (рис. 1).

Для кислород-дефицитного образца KL-2 (рис. 2) наблюдается похожая картина, смещение T_{inv} с увеличением электрического поля происходит по закону $T_{inv} = T_0 - 34.3U + 2.1U^2$ $(T_0 = T_{inv}$ при U = 0)на частотах меньше 1 MHz. Характеристики кривых $\varepsilon(T, E = \text{const}, \omega = \text{const})$ для KL-1 и KL-2 приведены в таблице. Следует обратить внимание на зависимости $\varepsilon(T, E, \omega)$ при $E = 5.7 \,\text{V/mm}$ (что соответствует приложенному к образцу напряжению 8 V) на частотах 1 и 10 kHz (рис. 2): с повышением температуры в области ~ 239-300 К диэлектрическая проницаемость становится отрицательной и резко увеличивается по абсолютному значению, проходя через острый максимум при $T = 243 \,\mathrm{K}$ (температура магнитного упорядочения) для частот 1 и 10 kHz. На частоте 1 MHz включение постоянного электрического поля приводит к несущественному уменьшению значения $\varepsilon(T)$ для KL-1 и KL-2 в области максимума. В целом характер зависимости $\varepsilon(T)$ для KL-1 и KL-2 занимает промежуточное положение между $\varepsilon(T)$ для сегнетоэлектриков с размытым фазовым переходом и сегнетоэлектриков-релаксоров.

Температурно-частотные зависимости σ для KL-1 и KL-2 при U = 0 имеют типично полупроводниковый характер [16]. При низких температурах (T < 250 K) σ не зависит от температуры, а при T > 250 K на σ практически не влияет частота измерительного напряжения меньше 1 MHz. На частоте 1 MHz $\sigma(T)$ для KL-1 и KL-2 демонстрирует тенденцию к формированию

Рис. 1. Температурные зависимости диэлектрической проницаемости и удельной электропроводности LuFe₂O_{4+ δ}. Указаны частоты измерительного синусоидального напряжения *f* и значения постоянного напряжения (в поле последнего графика).

Рис. 2. Температурные зависимости диэлектрической проницаемости и удельной электропроводности LuFe₂O_{4- δ}. Указаны частоты измерительного синусоидального напряжения *f* и значения постоянного напряжения (в поле последнего графика).

выраженного пика. Наложение электрического поля приводит к существенной модификации $\sigma(T)$ кроме случая $\omega = 1$ MHz.

Отрицательная емкость проявляется в структурах с инерционно-релаксационной проводимостью при усло-

вии, что реактивная составляющая полной проводимости превышает максвелловский ток смещения [17]. Поскольку в диэлектриках проводимость носит поляронный характер, она может "отставать" от приложенного поля при более низкой частоте E(t), чем в полупроводни-

ках [16]. Такая проводимость характерна для образцов с индуктивным типом импеданса (отставание тока по фазе от E(t)). Следовательно, в таких структурах данные об индуктивности могут быть получены исходя из значений отрицательной емкости. При замещении параллельной цепочки из элементов R и C (эквивалентной образцу при емкостном типе импеданса) последовательной схемой с элементами R и L (моделирующей индуктивные свойства образца) можно показать [19], что $L = R^2(-C)/(1 + \omega^2 R^2 C^2)$. При $\omega RC \ll 1$ индуктивность можно приблизить функцией $L = R^2(-C)$, а для $\omega RC \gg 1$ получаем оценку $L = 1/\omega^2(-C)$.

Индуктивность кроме размеров и формы образца зависит также и от магнитной проницаемости материала $\mu = B/B_0$ (B, B₀ — магнитная индукция в веществе и вакууме соответственно), которая характеризует магнитные свойства среды. Следовательно, нельзя исключить механизм, при котором формирование острого (по абсолютной величине) максимума $\varepsilon(T)$ для частот 1 и 10 kHz при U = 8 V (рис. 2), кроме прочих причин, происходит также и вследствие развития магнитного упорядочения в образце. На эту мысль наводят совпадение температуры данного максимума $T = 243 \,\mathrm{K}$ с температурой магнитного упорядочения и пропорциональность $(-C) \propto L \propto B$. Тогда уместно предположить, что всплески $\varepsilon(T)$ (для $\omega = 1$ и 10 kHz, U = 8 V), наблюдаемые при $T \approx 240 \, {\rm K}$ (рис. 2), обусловлены движением границ доменов электрической поляризации с характерным временем релаксации, соизмеримым с полупериодом тестового сигнала [8]. Ясно, что когда четверть периода измерительного напряжения на частоте 100 kHz много меньше времени релаксации данного механизма проводимости, то она (проводимость) будет вносить вклад в поляризацию, как это и видно на рис. 2 для $\varepsilon(T)$ в окрестности температуры 240 К.

Таким образом, полученные данные свидетельствуют об опосредованной взаимосвязи статического электрического поля и магнитных свойств мультиферроика LuFe₂O_{4+ δ} ($\delta = -0.05$). Подбором величин электрического поля (от 0 до ~ 7.1 V/mm, что соответствует приложенному к образцу напряжению 0–10 V), температуры (~ 250–400 K) и частоты измерительного напряжения можно контролируемым способом менять индуктивные свойства керамик и тонких пленок LuFe₂O₄. Полученные результаты создают предпосылки возможности использования данных материалов в элементах памяти, а также использования их в качестве твердотельных индуктивностей при планарной технологии производства интегральных микросхем.

Список литературы

 N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, Sh. Mori, Y. Horibe, H. Kitô. Nature 436, 1136 (2005). doi: 10.1038/nature04039

2003

- [2] J. Wen, G. Xu, G. Gu, S.M. Shapiro. Phys. Rev. B 80, 020403R (2009). https://doi.org/10.1103/PhysRevB.80.020403
- [3] M. Angst, R.P. Hermann, A.D. Christianson, M.D. Lumsden, C. Lee, M.-H. Whangbo, J.-W. Kim, P.J. Ryan, S.E. Nagler, W. Tian, R. Jin, B.C. Sales, D. Mandrus. Phys. Rev. Lett. 101, 227601 (2008).

https://doi.org/10.1103/PhysRevLett.101.227601.

- [4] M.A. Subramanian, T. He, J. Chen, N.S. Rogado, T.G. Calvarese, A.W. Sleight. Adv. Mater. 18, 1737 (2006). doi:10.1002/adma.200600071
- [5] Г.М. Гаджиев, А.Г. Гамзатов, Р.А. Алиев, Н.С. Абакарова, Л.Л. Эмирасланова, М.Н. Маркелова, А.Р. Кауль. ФТТ 62, 5, 678 (2020).
- [6] A.G. Gamzatov, G.M. Gajiev, R.A. Aliev, L.L. Emiraslanova, A.R. Kaul, M. Markelova, S.C. Yu. Appl. Phys. Lett. **112**, *9*, 092902 (2018).
- [7] R.C. Rai, J. Pawlak, J. Hinz, M. Pascolini, M. De Marco. J. Appl. Phys. **124**, 144101 (2018). https://doi.org/10.1063/1.5042514.
- [8] Yu.B. Kudasov, M. Markelova, D.A. Maslov, V.V. Platonov, O.M. Surdin, A. Kaul. Phys. Lett. A 380, 3932 (2016). https://doi.org/10.1016/j.physleta.2016.09.054 1103/ PhysRevB.88.085130.
- [9] V. Markovich, I. Fita, A. Wisniewski, R. Puzniak, C. Martin, G. Jung, G. Gorodetsky. Phys. Rev. B 96, 054416 (2017). https://doi.org/10.1103/PhysRevB.96.054416.
- [10] D. Niermann, F. Waschkowski, J. de Groot, M. Angst, J. Hemberger. Phys. Rev. Lett. **109**, 016405 (2012). https://doi.org/10.1103/PhysRevLett. 109.016405.
- [11] C.-H. Li, F. Wang, Y. Liu, X.-Q. Zhang, Z.-H. Cheng, Y. Sun. Phys. Rev. B **79**, 172412 (2009). https://doi.org/10.1103/PhysRevB.79.172412
- [12] J.S. Wen, G.Y. Xu, G.D. Gu, S.M. Shapiro. Phys. Rev. B 81, 144121 (2010). https://doi.org/10.1103/PhysRevB.81.144121.
- [13] F. Yang, Q. Feng, Zh. Xia, Q. Lu, Yu. Song, Sh. Huang, X. Zhang, D. Jiang, H. Deng, Zh. Zeng, H. Niu, Ch. Cheng, Yu. Hou, Zh. J. Alloys Compd. 860, 158426 (2021). https://doi.org/10.1016/j.jallcom.2020.158426.
- [14] M. Maglione, M.A. Subramanian. Appl. Phys. Lett. 93, 032902 (2008).
- [15] Y.J. Kim, S. Konishi, Y. Hayasaka, I. Kakeya, K. Tanaka. Cryst. Eng. Commun. 22, 1096–1105 (2020). https://doi.org/10.1039/c9ce01666j.
- [16] Ю.М. Поплавко. Физика диэлектриков. Вища школа, Киев (1980). С. 212.
- [17] Н.А. Пенин. ФТП 30, 4, 626 (1996).
- [18] А.Г. Гамзатов, А.М. Алиев, М.Н. Маркелова, Н.А. Бурунова, А.С. Семисалова, Н.С. Перов. ФТТ 58, 6, 1107 (2016). DOI: 10.1134/S1063783416060172
- [19] А.С. Дешевой, Л.С. Гасанов. ФТП 11, 10, 1995 (1977).

Редактор Е.Ю. Флегонтова

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.