04,05

Влияние переходов Ландау–Зинера на форму ас-восприимчивости

© Р.Т. Галеев

Казанский физико-технический институт им. Е.К. Завойского, ФИЦ Казанский научный центр РАН, Казань, Россия

E-mail: galeev_rt@rambler.ru

Поступила в Редакцию 19 апреля 2021 г. В окончательной редакции 8 июля 2021 г. Принята к публикации 13 июля 2021 г.

Рассмотрена модельная спиновая система S = 1 с сильно анизотропным *g*-фактором. Проведены численные расчеты отклика системы на переменное магнитное поле низкой частоты. Анализируется влияние переходов Ландау–Зинера на отклик системы, при прохождении через окрестность антипересечения уровней энергии. Рассчитывается *ac*-восприимчивость и анализируется влияние таких переходов на положение максимума *ac*-восприимчивости.

Ключевые слова: антипересечение уровней энергии, переходы Ландау–Зинера, тунннелирование намагниченности, *ac*-восприимчивость, релаксация намагниченности.

DOI: 10.21883/FTT.2021.11.51588.093

1. Введение

Скорость релаксации в молекулярных магнитах [1] оценивают в основном методом ас-восприимчивости (низкочастотной восприимчивости) [2]. Если ас-восприимчивость представить в зависимости от частоты переменного магнитного поля, то частота, при которой восприимчивость (χ'') проходит через максимум, соответствует скорости релаксации $\omega \sim 1/T$. Моделируя ас-восприимчивость, пользуются модифицированными (обобщенными) уравнениями Дебая, которые позволяют оценить распределение времен релаксации в системе [3-5]. Однако измерение может приходиться на области, где имеется антипересечение уровней энергии. В этом случае уравнения Дебая не учитывают особенности, связанные с прохождением таких областей. Поэтому мы провели численные расчеты отклика спиновой системы на переменное магнитное поле низкой частоты и получили из отклика ас-восприимчивость системы. Нами была рассмотрена система с сильно анизотропным g-фактором, в которой в нулевом поле имеется антипересечение уровней энергии. При прохождении окрестности антипересечения уровней энергии отклик становится нелинейным из-за переходов Ландау-Зинера (туннелирования намагниченности) [6,7]. В нашей работе показано, как указанные переходы влияют на форму ас-восприимчивости. Отметим также, что здесь мы не учитываем туннелирование намагниченности, которое происходит за счет флуктуаций случайных магнитных полей в области антипересечения [8-10]. В настоящей работе анализируется только влияние подаваемого переменного магнитного поля, которое используется при измерении ас-восприимчивости.

2. Модель

Рассмотрим модельную систему со спином S = 1 и спин-гамильтонианом

$$H = g_z \beta H_1 \sin(\omega t) S_z + d\left(S_z^2 - \frac{1}{3}S(S+1)\right) + e(S_x^2 - S_y^2), \quad (1)$$

где β — магнетон Бора, H_1 — амплитуда переменного магнитного поля, ω — частота переменного поля, d и e — параметры расщепления в нулевом поле. Когда $e \neq 0$ уровни энергии рассматриваемой системы имеют антипересечение вблизи нулевого поля (см. рис. 1).

Релаксация населенностей в системе описывается следующим уравнением для матрицы плотности, записанной в базисе собственных функций спин-гамильтониана (1) (см. например [11]):

$$\frac{\partial}{\partial t}\rho_{nn} = -\rho_{nn}\sum_{k\neq n} w_{nk} + \sum_{k\neq n} w_{kn}\rho_{kk},$$

$$n = 1, 2, 3; \quad k = 1, 2, 3,$$
(2)

где кинетические коэффициенты связаны соотношением

$$w_{kn} = w_{nk} \exp\bigl((E_k - E_n)/kT\bigr),$$

 E_k, E_n — энергии состояний k и n. Мы полагаем, что $w_{kn} = (1/3)k_1 \exp((E_k - E_n)/2kT)$. Множитель k_1 — феноменологический параметр, который описывает релаксацию с постоянной скоростью. Множитель $\exp((E_k - E_n)/2kT)$ приводит к тому, что система релаксирует к равновесным заселенностям

$$p_{0nn} = \exp(E_n/kT)/\sum_k \exp(E_k/kT).$$

Рис. 1. Уровни энергии спиновой системы S = 1 в зависимости от напряженности переменного магнитного поля $H_1 \sin(\omega t)$. На вставке в увеличенном масштабе показана окрестность антипересечения уровней. Параметры системы: $g_z = 19$, D = -900 MHz, E = 0.1 MHz, $H_1 = 1$ Oe.

Релаксация когерентностей описывается уравнением

$$\frac{\partial}{\partial t}\rho_{nk} = -k_2\rho_{nk}.\tag{3}$$

Спиновая динамика подчиняется уравнению

$$\frac{\partial}{\partial t}\rho = -\frac{i}{\hbar}\left[H,\rho\right] + R\rho,$$

где R — оператор релаксации. Его явный вид описывается уравнениями (2) и (3). При моделировании учитывалось, что базис собственных функций спингамильтониана (1) меняется со временем вследствие перемешивания состояний в окрестности антипересечения уровней. Поэтому матрица релаксации на каждом интервале времени преобразовывалась в текущий базис собственных функций как $U^{-1}R_0U$, где R_0 — матрица релаксации, записанная в базисе высоких полей (когда в (1) параметр e = 0), U — матрица преобразования в текущий базис. Известно, что скорость релаксации в области антипересечения может существенно увеличиваться (см., например, [12,13]). В данной работе это также учитывалось. Для этого рассматривалась система, у которой вне области антипересечения скорость релаксации населенностей и когерентностей сильно различаются. Тогда в окрестности антипересечения (из-за перемешивания состояний) скорость релаксации населенностей становятся одного порядка со скоростью релаксации когерентностей.

Для численных расчетов уравнение движения использовалось в виде

$$\frac{\partial}{\partial t}\rho = L\rho. \tag{4}$$

При решении уравнения (4) мы поступали следующим образом. Промежуток времени, на котором решалось уравнение, разбивался на N интервалов Δt . Мы считали, что на таких интервалах спин-гамильтониан и оператор релаксации не зависят от времени. Поэтому

$$\rho(t_k + \Delta t) = \exp(L(t_k)\Delta t)\rho(t_k).$$
(5)

Последовательно решая уравнения на всех промежутках $(t_K, t_k + \Delta t)$ можно найти зависимость $\rho(t)$. Наблюдаемой величиной является намагниченность системы. Она определяется как

$$M = -\beta g_z S p(\rho S_z). \tag{6}$$

Уравнение (6) дает временную зависимость намагниченности спиновой системы (1). Через некоторое время зависимость M выходит на стационарное периодическое решение. Выделяя на одном из периодов зависимости M синфазную с переменным полем часть (изменяющуюся как $\sin(\omega t)$) и отстающую по фазе часть сигнала (изменяющуюся как $-\cos(\omega t)$), находим χ' и χ'' соответственно. Для этого мы умножили сигнал на функцию $\sin(\omega t)$ для нахождения χ' и на функцию ($-\cos(\omega t)$) для нахождения χ'' , а затем проинтегрировали полученную функцию на периоде

$$\chi' \propto \int_{t_N - 2\pi/w}^{t_N} M(t) \sin(\omega t) dt,$$
$$\chi'' \propto \int_{t_N - 2\pi/w}^{t_N} M(t) \cos(\omega t) dt.$$
(7)

Делая указанные преобразования, мы численно рассчитали зависимости χ' и χ'' от частоты переменного поля.

3. Обсуждение результатов

Далее мы приводим результаты численных расчетов временной зависимости намагниченности (6) и полученных из них по (7) *ас*-восприимчивости χ' и χ'' . Рассмотрим вначале случай, когда нет антипересечения уровней энергии.

Рис. 2. a — зависимость намагниченности (M) от времени (t) при частоте переменного магнитного поля $\omega = 10^3$ rad/s; b — зависимость χ' и χ'' от частоты переменного магнитного поля; c — график Cole-Cole. Параметры системы: $k_1 = 10^3$ s⁻¹, $k_2 = 10^6$ s⁻¹, остальные параметры такие же, как к рис. 1.

На рис. 2, *а* представлен отклик системы на переменное магнитное поле. Через время $t > 1/k_1$ устанавливается динамическое равновесие. Рассчитывая отклик для различных частот переменного поля и делая преобразования (7) после установления динамического равновесия, можно получить зависимость *ac*-восприимчивости для различных частот переменного поля. На рис. 2, *b* представлены синфазная (χ') и антифазная (χ'') восприимчивости. Видно, что максимум восприимчивости (χ'') совпадает с ($\omega = k_1$). Это позволяет по пику величины χ'' оценить время релаксации намагниченности. На рис. 2, *c* представлен график зависимости величины χ'' от величины χ' (график Cole-Cole [3]). Он представляет собой полуокружность.

Рассмотрим далее случай, когда имеется антипересечение уровней энергии (см. рис. 1). Допустим для определенности, что скорость релаксации населенностей k_1 и скорость гибели когерентности k_2 соотносятся как $k_2/k_1 \sim 10$. На рис. 3, *а*, *b* сплошными линиями показаны временные зависимости намагниченности для системы, описываемой гамильтонианом (1) при различных частотах переменного магнитного поля. На рисунках видны моменты прохождения антипересечения уровней энергии (сравните рис. 2, a и рис. 3, a, b). В этих местах происходят переходы Ландау-Зинера (туннелирование намагниченности), и сигнал резко меняется. Отклик системы перестает быть линейным. На рис. 3, с сплошной линией в увеличинном виде показан момент таких переходов Появление осциляций при туннелировании намагниченности связано с возникновением когерентности между состояниями Ψ_1 и Ψ_2 (см. рис. 1), частота осцилляций равна величине антипересечения выраженной в частотных единицах (со временем частота меняется, поскольку по мере удаления от нулевого поля увеличивается расщепление между состояниями Ψ_1 и Ψ_2). На рис. 3, *a*, *b*, *c* пунктирными линиями показана временная зависимость намагниченности при увеличении отношения k_2/k_1 . Видно, что эффективность переходов Ландау-Зинера при этом понижается.

Puc. 3. ависимость намагниченности (*M*) от времени при различных частотах (ω) переменного магнитного поля. Сплошные линии рассчитаны при $k_1 = 10^3 \text{ s}^{-1}$, $k_2 = 10^4 \text{ s}^{-1}$, пунктирные линии при $k_1 = 10^3 \text{ s}^{-1}$, $k_2 = 5 \cdot 10^5 \text{ s}^{-1}$. Параметры системы: $a - \omega = 0.5 \cdot 10^3$ rad/s, $b - \omega = 5 \cdot 10^3$ rad/s, остальные параметры такие же, как к рис. 1.

Рассмотрим теперь *ас*-восприимчивость. На рис. 4, *a*, *b*, *c* показаны графики *ас*-восприимчивости χ', χ'' и график Cole-Cole, соответственно. Они рассчитаны для различных значений величины антипересечения $\Delta = 2e$.

При $\Delta = 0$ максимальное значение зависимости χ'' достигается при $\omega = k_1$ (см. рис. 4, *b* линия № 1). При значениях $\Delta \neq 0$ появляется туннелирование намагниченности. Туннелирование приводит к тому, что искажается форма зависимости χ'' . Из рисунков видно, что сначала максимальное значение χ'' смещается в область высоких частот (рис. 4, *b* линия № 2). Затем, с ростом величины Δ , отчетливо начинают проявляться два пика (рис. 4, *b* линии № 4, 5). Один пик на частоте $\omega = k_1/2$, и он не сдвигается с дальнейшим ростом Δ . Положение второго пика зависит от величины Δ , и с ростом величины Δ этот пик смешается в область больших частот $\omega > k_1$.

Как отмечалось выше, по пику χ'' оценивают скорость релаксации системы. Поэтому формально $\omega \sim k_1/2$

указывает на то, что скорость релаксации в системе замедлилась в два раза, хотя в действительности скорости k_1, k_2 при моделировании не изменялись. График Cole-Cole также сильно меняется с ростом величины антипересечения Δ . Появляется узкий пик и широкая линия (рис. 4, *с* линия № 5). Такие изменения обычно интерпретируются как присутствие двух механизмов релаксации населенностей с разным распределением времен релаксации (см, например, [4]).

Рассмотрим, как меняется *ac*-восприимчивось при разных соотношениях k_2/k_1 . Как видно из рис. 5, *b* при $k_2/k_1 = 10$ частотная зависимость χ'' имеет два пика (низкочастотный и высокочастотный). С увеличением величины k_2/k_1 низкочастотный пик сдвигается из области $w = k_1/2$ в область $w = k_1$, а высокочастотный пик перестает проявляться.

Отметим также, что рассмотренные эффекты продемонстрированы только для одной определенной скорости релаксации, амплитуды переменного поля, и для 1860

Puc. 4. *a* — зависимость χ' от частоты, *b* — зависимость χ'' от частоты, *c* — график Cole-Cole. Параметры расчета: $k_1 = 10^3 \text{ s}^{-1}$, $k_2 = 10^4 \text{ s}^{-1}$; $I - \Delta = 0, 2 - \Delta = 0.05 \text{ MHz}$, $3 - \Delta = 0.1 \text{ MHz}$, $4 - \Delta = 0.15 \text{ MHz}$, $5 - \Delta = 0.2 \text{ MHz}$, остальные параметры такие же, как к рис. 1.

определенных значений величины антипересечения Δ . Но полученные результаты можно перенести на ситуации с другими скоростями релаксации k_1 . Для этого нужно обратиться к вероятности перехода Ландау– Зинера [6,7]. Для нашей системы эту величину можно представить в виде $P = \exp(-\pi\Delta^2/(4V_E\hbar))$, где Δ величина антипересечения, V_E — скорость изменения энергии взаимодействия с переменным магнитным полем $H_1 \sin(\omega t)$. Если учесть, что вблизи нуля $\sin(\omega t) \approx \omega t$, то с учетом (1) приближенное значение $P \approx \exp(-\pi\Delta^2/(4g_z\beta H_1\omega\hbar))$.

Чтобы величина P не изменилась при уменьшении частоты переменного поля, величина Δ^2 также должна пропорционально уменьшиться. Например, при скорости релаксации равной $k_{1a} = 1000$ l/s и $\Delta_a = 0.2$ MHz (см. рис. 5, b), высокочастотный пик наблюдается на частоте $\omega \sim 5 \cdot k_{1a}$. Тогда, при более медленных скоростях релаксации k_{1b} в спиновой системе, пик на частоте $\omega \sim 5 \cdot k_{1b}$ будет наблюдаться при $\Delta_b = \Delta_a / \sqrt{k}$, где $k = k_{1a}/k_{1b}$. Вероятность перехода, как мы видим, зависит от величины $\pi\Delta^2/(4g_z\beta H_1\omega\hbar)$. При увеличении амплитуды переменного поля H_1 при заданной частоте ω , указанная величина будет уменьшаться, и положение высокочастотного пика будет при меньшей частоте переменного поля, т. е. форма *ac*-восприимчивости будет зависеть от амплитуды поля.

4. Заключение

Мы рассмотрели спиновую систему, основное состояние которой имеет в нулевом поле антипересечение уровней энергии (некрамерсовый дублет). Предполагалось, что система имеет сильно анизотропный *g*-фактор (подобно тому, как это бывает, например, для редкоземельных ионов), и все численные расчеты проделаны для случая, когда переменное магнитное поля направлено вдоль оси, совпадающей с направлением наибольшей компоненты *g*-фактора. Для этой системы

Puc. 5. a — зависимость χ' от частоты, b — зависимость χ'' от частоты, c — график Cole-Cole. Параметры расчета: $\Delta = 0.15$ MHz, $k_1 = 10^3 \text{ s}^{-1}$; $l - k_2 = 10^4 \text{ s}^{-1}$, $2 - k_2 = 10^5 \text{ s}^{-1}$, $3 - k_2 = 2 \cdot 10^5 \text{ s}^{-1}$, $4 - k_2 = 5 \cdot 10^5 \text{ s}^{-1}$, остальные параметры такие же, как к рис. 1.

были рассчитаны изменения намагниченности под влиянием переменного магнитного поля низкой частоты. Из этих зависимостей получены значения χ', χ'' . Рассмотрено влияние переходов Ландау-Зинера на положение максимума χ'' . Показано, что положение максимума восприимчивости может зависить от величины антипересечения Д. Когда скорости релаксации такие что $k_2/k_1 \sim 10$, то в частотной зависимости χ'' и на графике Cole-Cole могут четко проявиться два пика зависимости. Пик на частоте в два раза меньшей скорости релаксации $k_1/2$ и пик на высокой частоте $\omega > k_1$. Наличие двух пиков в графике Cole-Cole обычно объясняется наличием двух механизмов релаксации с разным распределением времен релаксации. Однако, проявление двух пиков в приведенных модельных зависимостях связано с нелинейностью отклика спиновой системы при туннелировании намагниченности.

Таким образом, измерение *ac*-восприимчивости в области антипересечения уровней может приводить к некоторой ошибке в определении времени релаксации по пику χ'' компоненты. А искажения, вносимые в представление данных Cole-Cole, такие как асимметрия линии и появления двух пиков, могут искажать данные по распределению времен релаксации в системе.

Благодарности

Автор благодарен коллегам по работе за полезные обсуждения и замечания.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- R. Sessoli, D. Gatteschi, A. Caneschi, M. Novak. Nature 365, 141 (1993).
- [2] D. Gatteschi, R. Sessoli, J. Villain. Molecular Nanomagnets. Oxford University Press (2006). 395 p.

- [3] K.S. Cole, R.H. Cole. J. Chem. Phys. 9, 341 (1941).
- [4] Y.N. Guo, G.V. Xu, Y. Guo, J. Tang. Dalton Transact. 40, 9953 (2011).
- [5] D. Reta, N.F. Chilton. Phys. Chem. Phys. 21, 23567 (2019).
- [6] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Наука, М. (1989). 768 с.
- [7] C. Zener. Proc. R. Soc. Lond. A 137, 696 (1932).
- [8] D. Gatteschi, R. Sessoli. Angewandte Chem. Int. Ed. 42, 268 (2003).
- [9] A. Fort, A. Rettori, J. Villain, D. Gatteschi, R. Sessoli. Phys. Rev. L 80, 612 (1998).
- [10] Molecular Magnets: Physics and Applications / Eds J. Bartolomé, F. Luis, J.F. Fernández, Springer (2014). 395 p.
- [11] K. Blum. Density Matrix Theory and Applications. Plenum. N.Y. (1981).
- [12] B.Z. Malkin, M.V. Vanyunin, B. Barbara, S. Bertaina. J. Alloys Comp. 451, 473 (2008).
- [13] Y.C. Chen, J.L. Liu, W. Wernsdorfer, D. Liu, L.F. Chibotaru, X.M. Chen, M.L. Tong. Angewandte Chem. Int. Ed. 56, 4996 (2017).

Редактор Т.Н. Василевская

1862