Анализ влияния спейсерных слоев на нелинейные искажения вольт-амперных характеристик рНЕМТ на основе соединения GaAlAs/InGaAs

© Е.А. Тарасова¹, С.В. Хазанова¹, О.Л. Голиков¹, А.С. Пузанов¹, С.В. Оболенский¹, В.Е. Земляков²

¹ Нижегородский государственный университет им. Н.И. Лобачевского,

603600 Нижний Новгород, Россия

² Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ),

124498 Москва, Зеленоград, Росси

E-mail: tarasova@rf.unn.ru

Поступила в Редакцию 12 апреля 2021 г. В окончательной редакции 19 апреля 2021 г. Принята к публикации 19 апреля 2021 г.

Работа посвящена результатам моделирования электрофизических параметров pHEMT структур на основе соединения AlGaAs/InGaAs/GaAs с помощью самосогласованного решения уравнения Шредингера и Пуассона. На основании численных расчетов предложен метод анализа нелинейных искажений передаточных вольт-амперных характеристик исследуемых транзисторов. Проведена оценка влияния спейсерных слоев и степени легирования δ-слоя на нелинейность вольт-амперных характеристик.

Ключевые слова: AlGaAs/InGaAs/GaAs pHEMT, нелинейные искажения, спейсерные слои.

DOI: 10.21883/FTP.2021.10.51436.35

1. Введение

Известно. что применение гетероструктуры AlGaAs/InGaAs/GaAs позволяет создать двумерный электронный газ в канале полевого транзистора с высокой подвижностью электронов (HEMT — High Electron Mobility Transistor) [1]. Так как параметры кристаллической решетки слоев не совпадают, такой транзистор называется псевдоморфным (рНЕМТ). Для увеличения концентрации электронов в канале используется δ -легирование прилегающих к каналу областей широкозонного полупроводника. Для надежного пространственного разделения δ-слоя и квантовой ямы, образующей канал полевого транзистора, а также в других технологических пелях (например, снижения микрошероховатости гетерограницы), используют дополнительные тонкие спейсерные слои из нелегированного AlGaAs.

Концентрация электронов и их подвижность в канале полевого транзистора в конечном счете задают его передаточную вольт-амперную характеристику, крутизну передаточной характеристики и старшие производные, определяющие нелинейные свойства полупроводникового прибора. Известно [2], что усилители мощности на основе полевых транзисторов обладают линейностью только при небольших уровнях входного сигнала, при возрастании его мощности появляются нелинейные интермодуляционные искажения, приводящие к искажению выходного сигнала. Таким образом, корректный расчет исходных зависимостей концентрации электронов в канале полевого транзистора с двумерным электронным газом с учетом спейсерных слоев, изменяющих расстояние от поверхности затвора и δ-слоя до квантовой ямы, является важным для оптимизации структуры по критерию максимизации коэффициента усиления в линейном режиме.

Величина подвижности электронов рассчитывалась исходя из рассеяния на оптических фононах в 2D-газе [3]. Предполагалось, что наличие спейсерных слоев исключает влияние рассеяния электронов на заряженных примесях. Также учитывался эффект всплеска скорости электронов в коротких структурах [4,5].

2. Объект исследования

В работе проводится расчет электрофизических параметров рНЕМТ структур на основе соединения Al_{0.23}Ga_{0.77}As/GaAs/In_{0.17}Ga_{0.83}As со слоевой концентрацией электронов в канале $1.5 \cdot 10^{12} - 2.4 \cdot 10^{12}$ см⁻². Анализировалось влияние как тонких GaAs спейсерных слоев вокруг слоя с δ -легированием, так и спейсерных слоев вблизи канального слоя. Рассматривалось три варианта структуры: в первом случае не учитывались тонкие спейсерные слои из GaAs около δ -слоя (табл. 1), во втором случае учитывались все спейсерные слои (табл. 2), в третьем варианте проводился учет спейсерных слоев, прилегающих к δ -слою, но не учитывался спейсерный слой из GaAs вблизи канального слоя (табл. 3).

В данной работе для каждого из трех вариантов структур последовательно рассчитывались: зонные диаграммы и концентрация носителей заряда в канале исследуемых структур в зависимости от приложенного к затвору напряжения; ток, протекающий через транзистор в режиме насыщения и интермодуляционные искажения в модельном усилителе для двух вариантов уровня легирования δ -слоя: $5 \cdot 10^{24}$ или $8 \cdot 10^{24}$ м⁻³.

Таблица	1.	Параметры	исследуемой	полупроводниковой	структуры.	Вариант	1.	Расстояние	от	затвора	до	верхней	границы
квантовой	ямі	ы — 24.7 нм											

	Толщина, нм	Концентрация легирующей примеси, м ⁻³
Барьерный слой Al _{0.23} Ga _{0.77} As	13	_
δ-слой Al _{0.23} Ga _{0.77} As	3	$5 \cdot 10^{24} \ (8 \cdot 10^{24})$
Спейсерный слой Al _{0.23} Ga _{0.77} As	7	_
Спейсерный слой GaAs	1.5	—
Канальный слой In _{0.23} Ga _{0.77} As (квантовая яма)	10	-
Буферная гетероструктура GaAs	44	_
Подложка GaAs	100	-

Таблица 2. Параметры исследуемой полупроводниковой структуры. Вариант 2. Расстояние от затвора до верхней границы квантовой ямы — 25.3 нм

	Толщина, нм	Концентрация легирующей примеси, м ⁻³
Барьерный слой Al _{0.23} Ga _{0.77} As	13	_
Спейсерный слой GaAs	0.4	$5 \cdot 10^{22}$
δ-слой Al _{0.23} Ga _{0.77} As	3	$5 \cdot 10^{24} \ (8 \cdot 10^{24})$
Спейсерный слой GaAs	0.4	$5 \cdot 10^{22}$
Спейсерный слой Al _{0.23} Ga _{0.77} As	7	_
Спейсерный слой GaAs	1.5	-
Канальный слой In0.23Ga0.77As (квантовая яма)	10	-
Буферная гетероструктура GaAs	44	_
Подложка GaAs	100	-

Таблица 3. Параметры исследуемой полупроводниковой структуры. Вариант 3. Расстояние от затвора до верхней границы квантовой ямы — 23.8 нм

	Толщина, нм	Концентрация легирующей примеси, м ⁻³
Барьерный слой Al _{0.23} Ga _{0.77} As	13	_
Спейсерный слой GaAs	0.4	$5 \cdot 10^{22}$
δ-слой Al _{0.23} Ga _{0.77} As	3	$5 \cdot 10^{24} \ (8 \cdot 10^{24})$
Спейсерный слой GaAs	0.4	$5 \cdot 10^{22}$
Спейсерный слой Al _{0.23} Ga _{0.77} As	7	—
Канальный слой In _{0.23} Ga _{0.77} As (квантовая яма)	10	-
Буферная гетероструктура GaAs	44	_
Подложка GaAs	100	-

3. Методика расчетов параметров исследуемой структуры

С помощью процедуры самосогласованного решения уравнений Шредингера и Пуассона в работе были проведены расчеты энергетического спектра, огибающие волновых функций и профиль распределения концентрации носителей заряда. Используемая численная схема решения основана на дискретизации в координатном пространстве с использованием как однородной, так и неоднородной сетки. Итерационная процедура самосогласованного решения данных уравнений позволяет находить профили потенциала и уровни размерного квантования с высокой точностью (до 10^{-5} эВ) [6,7] при плавном изменении внешнего напряжения, приложенного в направлении роста структуры. Таким образом, в работе было получено семейство зонных диаграмм структуры и концентраций носителей заряда при различных напряжениях на затворе транзистора в диапазоне от 0 до 1 В с шагом 0.05 В.

4. Результаты расчетов

Результаты расчетов зонной диаграммы и профиля распределения электронов для исследуемых структур для всех трех вариантов (указанных в табл. 1–3) для концентрации $5 \cdot 10^{24} \,\mathrm{m^{-3}}$ приведены на рис. 1, для концентрации $8 \cdot 10^{24} \,\mathrm{m^{-3}}$ — на рис. 2.

Полученные результаты использовались для аналитического расчета статических передаточных вольт-амперных характеристик (BAX) транзистора на исследуемой гетероструктуре. ВАХ рассчитывались с помощью выражений для расчета скорости носителей заряда в канале и выражения для расчета плотности тока в канале транзистора:

$$I = W \cdot dg \cdot n \cdot V; \quad V = \frac{\mu E}{1 + \mu E / V_{\text{sat}}}, \tag{1}$$

где I — ток, W — ширина затвора транзистора, n — концентрация носителей заряда, μ — подвижность носителей заряда, e — заряд электрона, dg — толщина обедненной подзатворной области транзистора,

Рис. 1. Результаты расчетов зонной диаграммы и профиля распределения электронов исследуемой структуры для различных комбинаций спейсерных слоев. Степень легирования δ -слоя $5 \cdot 10^{24} \text{ м}^{-3}$.

Рис. 2. Результаты расчетов зонной диаграммы и профиля распределения электронов исследуемой структуры для различных комбинаций спейсерных слоев. Степень легирования δ -слоя $8 \cdot 10^{24} \text{ м}^{-3}$.

Рис. 3. Результаты аналитического расчета передаточных вольт-амперных характеристик исследуемого рНЕМТ для различных комбинаций спейсерных слоев. Сплошные кривые (1, 2, 3) соответствуют легированию δ -слоя $5 \cdot 10^{24}$ м⁻³. Штрихпунктирные кривые (4, 5, 6) соответствуют легированию δ -слоя $8 \cdot 10^{24}$ м⁻³. (Цветной вариант рисунка представлен в электронной версии статьи).

Рис. 4. Результаты аналитического расчета крутизны передаточных вольт-амперных характеристик исследуемого рНЕМТ для степени легирования различных комбинаций спейсерных слоев. Сплошные кривые (1, 2, 3) — легирование δ -слоя $5 \cdot 10^{24} \text{ м}^{-3}$. Штрихпунктирные кривые (4, 5, 6) — легирование δ -слоя $8 \cdot 10^{24} \text{ м}^{-3}$.

 V_{sat} — скорость насыщения. Учитывались полученная из численных расчетов интегральная концентрация носителей заряда в канале исследуемого НЕМТ при различных напряжениях на затворе и эффект всплеска скорости в канале транзистора согласно [4,5]. Зависимость толщины обедненной области в канале транзистора в зависимости от напряжения затвора рассчитывалась согласно [8].

Результаты аналитических расчетов передаточных вольт-амперных характеристик и крутизны ВАХ для трех вариантов структуры с различной степенью легирования δ -слоя приведены на рис. 3 и 4 соответственно. Различия в полученных результатах объясняются разницей в расстоянии от затвора до верхней границы квантовой ямы для каждого из трех рассмотренных вариантов.

5. Методика расчета интермодуляционных искажений

Известно, что интермодуляционные искажения 3-го порядка существенно ограничивают коэффициент усиления приемников, так как для двух близко расположенных частот ω_1 и ω_2 только продукты интермодуляции 3-го порядка $2\omega_1 - \omega_2$ и $2\omega_2 - \omega_1$ наряду с исходными сигналами проходят выходной фильтр усилителя [2].

Для безынерционного усилителя связь между входом x(t) и выходом y(t) описывается в виде

$$y(t) \approx \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t)$$
(2)

и представляет собой разложение в ряд Тейлора в окрестности точки смещения [2].

Из приведенного выше выражения видно, что амплитуда выходных продуктов интермодуляции 3-го порядка увеличивается сильнее, чем амплитуда выходного сигнала на основных частотах ω_1 и ω_2 . Таким образом, при повышении амплитуды входного сигнала амплитуда продуктов интермодуляции 3-го порядка в конечном итоге станет равной амплитуде основных тонов на выходе. Уровень, при котором это происходит называется точкой пересечения 3-го порядка (third-order intercept point) по входу (input third-order intercept point — IIP3) и выходу (output third-order intercept point — OIP3) (см. вставку на рис. 5). Нетрудно получить, что

$$A_{IIP3} = \sqrt{\frac{3}{4} \left| \frac{\alpha_1}{\alpha_3} \right|}.$$
 (3)

В монографии [2] приведено выражение для точки пересечения 3-го порядка по входу усилителя, построенного по схеме с общим истоком, для квадратичной

Рис. 5. Результаты расчетов IP3 трех вариантов исследуемой структуры для двух степеней легирования. Сплошные кривые (*1, 2, 3*) — легирование δ -слоя 5 · 10²⁴ м⁻³. Штрихпунктирные кривые (*4, 5, 6*) — легирование δ -слоя 8 · 10²⁴ м⁻³.

Физика и техника полупроводников, 2021, том 55, вып. 10

зависимости тока, протекающего через транзистор от напряжения на затворе в виде $I_D = K \cdot (U_G - V_{TH})^2$:

$$A_{IIP3} = \frac{(1+R\cdot S)^2}{K} \sqrt{\frac{2\cdot S}{3\cdot R}},\tag{4}$$

где *R* — нагрузочное сопротивление, *S* — крутизна ВАХ.

В данной работе указанное выражение расширено на случай, когда зависимость тока, протекающего через транзистор, от напряжения на затворе носит кубический характер

$$\mathbf{A}_{IIP3} = \sqrt{\left| \frac{8 \cdot S(1 + R \cdot S)^4}{(1 + R \cdot S) \frac{d^2 S}{dU_G^2} - 3 \cdot R \left(\frac{dS}{dU_G}\right)^2} \right|}.$$
 (5)

Результаты аналитических расчетов интермодуляционных искажений A_{IIP3} согласно формуле (5) для всех трех вариантов структуры с различной степенью легирования δ -слоя приведены на рис. 5.

6. Заключение

Результаты проведенных расчетов подтверждают исходный тезис о значительном влиянии спейсерных слоев на величину нелинейных интермодуляционных искажений в полевых транзисторах с двумерным электронным газом:

1. В случае отсутствия спейсерного слоя GaAs толщиной 0.4 нм A_{IIP3} монотонно уменьшается с ростом напряжения на затворе транзистора. Увеличение уровня легирования δ -слоя приводит к уменьшению A_{IIP3} при малых напряжениях на затворе и увеличению A_{IIP3} при больших напряжениях на затворе.

2. При наличии одного спейсерного слоя GaAs толщиной 0.4 нм A_{IIP3} имеет максимум в зависимости от напряжения на затворе, при котором влияние нелинейных искажений минимально. Увеличение уровня легирования δ -слоя приводит к уменьшению A_{IIP3} в точке максимума, но выравниванию относительно динамического диапазона (~ 0.2 B).

3. Аналогично при наличии двух спейсерных слоев GaAs толщиной 0.4 нм A_{IIP3} имеет максимум в зависимости от напряжения на затворе, но при этом увеличение уровня легирования δ -слоя приводит к увеличению A_{IIP3} , т. е. улучшению характеристик транзистора. Также отметим слабую зависимость изменения положения точки максимума от уровня легирования δ -слоя.

Таким образом, по-видимому, оптимальной с точки зрения максимизации коэффициента усиления полевого транзистора в линейном режиме является структура с двумя спейсерными слоями GaAs толщиной 0.4 нм, окружающими δ -слой, так как в этом случае при сравнимой величине A_{IIP3} с другими вариантами стабильность характеристик значительно выше.

Финансирование работы

Работа выполнена в рамках базовой части государственного задания, проект 0729-2020-0057.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- T. Mimura. IEEE Trans. Microware Theory and Techniques, 50 (3), 780 (2002).
- [2] B. Razavi. *RF Microelectronics* (Hamilton Printing Company in Castleton, N.Y., 2012).
- [3] M. Lundstrom. *Fundamentals of carrier transport* (Cambridge University Press, 2000).
- [4] Ю. Пожела. Физика быстродействующих транзисторов (Вильнюс, Мокслас, 1989).
- [5] М. Шур. Современные приборы на основе арсенида галлия (М., Мир, 1991).
- [6] С.В. Хазанова, В.Е. Дегтярев, С.В. Тихов, Н.В. Байдусь. ФТП, **49** (1), 53 (2015).
- [7] С.В. Хазанова, В.Е. Дегтярев, Н.Н. Григорьева, О.Л. Голиков. Физические и физико-химические основы ионной имплантации (РИУ ННГУ им. Н.И. Лобачевского, 2018).
- [8] Е.А. Тарасова, С.В. Оболенский, С.В. Хазанова, Н.Н. Григорьева, О.Л. Голиков, А.Б. Иванов, А.С. Пузанов. ФТП, 54 (9), 968 (2020).

Редактор Г.А. Оганесян

The analysis of the influence of space layers on nonlinear distortions of phemt I–V characteristics based on GaAIAs/InGaAs

E.A. Tarasova¹, S.V. Khazanova¹, O.L. Golikov¹, A.S. Puzanov¹, S.V. Obolensky¹, V.E. Zemlyakov²

 ¹ Lobachevsky State University of Nizhny Novgorod (NNSU),
 603950 Nizhny Novgorod, Russia
 ² National Research University of Electronic Technology (MIET),
 124498 Moscow, Zelenograd, Russia

Abstract The work is devoted to the results of modeling of the parameters of pHEMT structures based on the AlGaAs/InGaAs/GaAs compound using a self-consistent solution of the Schrödinger and Poisson equation. Based on numerical calculations, a method for analyzing nonlinear distortions of transfer I–V characteristics is proposed. The influence of the spacer layers and the degree of doping of the δ -layer on the nonlinearity of the I–V characteristic is estimated.