09,04

Особенности спектральных характеристик различных структурных модификаций Lu_{1-x} RE_x BO₃

© С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, Е.Ю. Постнова

Институт физики твердого тела им. Ю.А. Осипьяна РАН, Черноголовка, Россия

E-mail: shmurak@issp.ac.ru

Поступила в Редакцию 30 апреля 2021 г. В окончательной редакции 30 апреля 2021 г. Принята к публикации 7 мая 2021 г.

Проведены исследования структуры, ИК-спектров поглощения и спектров люминесценции синтезированных при 970°С микрокристаллов ортоборатов Lu_{1-x}Eu_xBO₃, Lu_{0.99-x}Tb_xEu_{0.01}BO₃ и Lu_{0.99-x}Y_xEu_{0.01}BO₃ при 0 < x < 0.25. Увеличение x приводит к последовательному изменению структурног состояния ортоборатов. При $x \le 0.07-0.1$ соединения образуют твердый раствор со структурой кальцита и размером микрокристаллов 8–20 μ m, затем становятся двухфазными — наряду со структурой кальцита появляется фаза ватерита. При $x \ge 0.2-0.25$ весь объем образца имеет структуру ватерита. Установлено соответствие между структурой и спектральными характеристиками этих соединений. Исследованы спектры люминесценции при разных длинах волн возбуждающего света, что позволило получить информацию о структуре приповерхностного слоя и объема микрокристаллов ($8-20\mu$ m), так и в виде мелких микрокристаллов ($1-2\mu$ m).

Ключевые слова: люминофоры для светодиодов, ортобораты редкоземельных элементов, рентгенофазовый анализ, ИК-спектроскопия, спектры люминесценции.

DOI: 10.21883/FTT.2021.10.51414.103

1. Введение

Одним из наиболее эффективных способов направленного изменения спектральных характеристик различных полиморфных соединений боратов, молибдатов и вольфраматов, содержащих оптически активные центры, является изменение их структурного состояния, так как каждой структурной модификации соответствует строго определенный спектр свечения [1–11]. Исследование методов направленного управления спектральными характеристиками боратов редкоземельных элементов представляет значительный интерес, так как они могут быть использованы в качестве эффективных люминофоров для светодиодных источников света.

Значительные изменения спектральных характеристик ионов Eu³⁺ в соединениях REBO₃ (Eu) при изменении структурного состояния боратов редкоземельных элементов позволяют использовать их в качестве структурно-чувствительных и оптически активных меток. Так как спектральные характеристики ионов Eu³⁺ существенно зависят от ближайшего окружения [12,13], то, как показано в работах [14–16], если ближний порядок вокруг ионов Eu³⁺ во всем образце одинаков, о чем свидетельствует совпадение спектров люминесценции (СЛ) приповерхностного слоя образца и его объема, то образец является однофазным.

При возбуждении свечения ионов Eu³⁺ в ортоборатах LuBO₃ (Eu) светом, соответствующим области интенсивного поглощения образца, например, в полосе с

переносом заряда (ППЗ), $\lambda_{ex} = 225-275$ nm [2,3,14–17], можно получить информацию о локальном окружении образца в приповерхностном слое кристалла. При резонансном возбуждении свечения ионов Eu³⁺ в области прозрачности кристалла ($\lambda_{ex} \sim 394$ и ~ 466 nm, электронные переходы ${}^7F_0 \rightarrow {}^5L_6$ и ${}^7F_0 \rightarrow {}^5D_2$ соответственно) [2,3,14–16] мы получаем информацию о ближайшем окружении ионов Eu³⁺ в объеме кристалла. Исследование спектральных характеристик приповерхностного слоя и объема кристалла позволило получить информацию о структуре на поверхности и в объеме микрокристаллов в твердых растворах Lu_{98-x}In_xEu_{0.02}BO₃ и Lu_{0.99-x}Gd_xEu_{0.01}BO₃ [11,18].

Борат лютеция (LuBO₃) имеет две устойчивые структурные модификации: ватерит (пр. гр. C2/c), который образуется при синтезе LuBO₃ при $T = 750 - 850^{\circ}$ С, и кальцит (пр. гр. $R\bar{3}c$), образующийся при $T = 970 - 1100^{\circ}$ С. Ортобораты REBO₃, где RE = Eu, Gd, Tb, Dy и Y имеют только одну структурную модификацию ____ ватерит [19–21]. В работах [22,23] показано, что твердые растворы $Lu_{1-x}RE_xBO_3$ (RE = Eu, Gd, Tb, Dy и Y) при x > 0.15 - 0.2, синтезированные при $T = 970 - 1100^{\circ}$ С (температуре существования кальцитной фазы LuBO₃), кристаллизуются в структуре ватерита. В то же время, в работе [11] установлено, что твердый раствор $Lu_{1-x}In_xBO_3$, состоящий из бората лютеция (LuBO₃), имеющего две устойчивые структурные модификации (ватерит и кальцит) и ортобората индия (InBO₃), имеющего только одну структурную модификацию (кальцит) [24–26], синтезированный при 780° С (температуре существования ватерита LuBO₃) при x > 0.08-0.1 кристаллизуется в структуре кальцита.

Исследования люминесценции соединений Lu_{0.98-x}In_xEu_{0.02}BO₃. при возбуждении в полосе с переносом заряда ($\lambda_{ex} = 250$ nm) и при резонансном возбуждении ионов Eu³⁺ ($\lambda_{ex} = 394$ nm), показали, что структурные преобразования в ортоборатах Lu_{0.98-x}In_xEu_{0.02}BO₃ при увеличении концентрации ионов In³⁺ начинаются в приповерхностном слое микрокристаллов этих образцов [11]. При $x \ge 0.04$ приповерхностный слой имеет структуру кальцита, при дальнейшем увеличении концентрации индия количество фазы кальцита увеличивается и в объеме образца, а при x > 0.1 весь образец имеет структуру кальцита.

Исследование синтезированных при 970°С ортоборатов Lu_{0 99-r}Gd_rEu_{0 01}BO₃ показало, что с ростом концентрации Gd происходят изменения их структуры: при $0 \le x \le 0.05$ твердый раствор ортоборатов является однофазным и имеет структуру кальцита (пр. гр. $R\bar{3}c$); при 0.05 < x ≤ 0.1 наряду со структурой кальцита появляется фаза ватерита (пр. гр. C2/c), а при x > 0.1твердый раствор является также однофазным со структурой ватерита (пр. гр. C2/c) [18]. Одновременно со структурой изменяется и морфология микрокристаллов ортоборатов. При $0 \le x \le 0.05$ наблюдаются крупные микрокристаллы (15-20 µm), в интервале концентраций ионов Gd^{3+} $0.05 < x \le 0.1$ наряду с крупными появляются мелкие микрокристаллы (1-2 µm), количество которых растет при увеличении x, а при x > 0.1наблюдаются преимущественно микрокристаллы размером $1-2\,\mu$ m. В работе [18] показано, что микрокристаллы размером 1-2µm имеют структуру ватерита (пр. гр. C2/c). Крупные микрокристаллы (15–20 μ m) в ортоборатах $Lu_{0.99-x}Gd_xEu_{0.01}BO_3$ при $0.05 < x \le 0.1$ являются двухфазными. Важно отметить, что фаза ватерита появляется при x > 0.05 в объеме крупных микрокристаллов, имеющих структуру кальцита, и при дальнейшем увеличении концентрации ионов Gd³⁺ наблюдается также и на их поверхности.

Таким образом, образование кальцита в микрокристаллах $Lu_{0.98-x}In_xEu_{0.02}BO_3$, имеющих исходную структуру ватерита, при увеличении концентрации In^{3+} происходит вначале в приповерхностных областях образца, в то время как образование ватерита в исходных крупных микрокристаллах $Lu_{0.99-x}Gd_xEu_{0.01}BO_3$, имеющих структуру кальцита, осуществляется при увеличении концентрации Gd⁺ вначале в объеме этих микрокристаллов.

Представляется важным установление того, насколько общей является наблюдаемая в образцах $Lu_{0.99-x}Gd_xEu_{0.01}BO_3$ перестройка структуры при увеличении концентрации Gd^{3+} . Как отмечалось, наряду с $GdBO_3$ ортобораты ряда других редкоземельных элементов (Eu, Tb, Dy, Y и др. [19–21]) в исследуемом нами температурном интервале также имеют только одну структурную модификацию — ватерит. Выяснению изменений структуры, морфологии, ИК-спектров поглощения, а также спектров возбуждения люминесценции и спектров люминесценции твердых растворов $Lu_{1-x}RE_xBO_3$ (RE = Eu, Tb и Y) при увеличении концентрации RE посвящена настоящая работа.

2. Методики эксперимента

2.1. Синтез образцов

Образцы поликристаллических порошков ортобората лютеция, легированного Eu³⁺, Tb³⁺ и Y³⁺, были синтезированы взаимодействием оксидов редкоземельных элементов с расплавом тетрабората калия по реакции

$$(1 - x)Lu_2O_3 + xRE_2O_3$$

+ K₂B₄O₇ = 2Lu_{1-x}RE_xBO₃ + K₂B₂O₄.

Количество тетрабората калия, взятое в реакцию, обеспечивало избыток борсодержащего реагента относительно стехиометрического количества на 10-20%. Исходными соединениями для синтеза ортобората лютеция были тетраборат калия $K_2B_4O_7 \cdot 4H_2O$, оксиды Lu_2O_3 , Eu₂O₃, Tb₂O₃, Y₂O₃ и азотная кислота. Все использованные химические вещества соответствовали квалификации "ЧДА". Ионы Lu³⁺, Eu³⁺ Tb³⁺ и Y³⁺ вводили в реакцию в виде водных растворов их нитратных солей, которые получали растворением исходных оксидов редких земель в азотной кислоте. Синтез микрокристаллических порошков ортобората лютеция, легированного Eu³⁺, Tb³⁺ и Y³⁺, проводился следующим образом. Взвешенное количество кристаллического тетрабората калия (гидрата) и соответствующий объем калиброванного водного раствора нитратов редких земель помещали в керамическую чашку и тщательно перемешивали. Полученную водную суспензию нагревали на плитке и при осторожном кипении отгоняли воду. Полученный твердый продукт отжигали при температуре 600°С в течение 20 min для удаления остаточной влаги и разложения нитратных солей. Твердый продукт-прекурсор перетирали в агатовой ступке и полученный порошок переносили или в керамический тигель объемом 5 ml, или в металлическую цилиндрическую пресс-форму для формования порошка в виде таблеток диаметром 15 mm и толщиной 2.0-2.5 mm при давлении 5 Kbar. Обе формы прекурсора (порошок и таблетка) подвергали высокотемпературному отжигу при $T = 970^{\circ}$ С в течение 2 h. Полученные продукты обрабатывались водным раствором соляной кислоты с концентрацией 5 wt.% в течение 0.2 h. Выделение поликристаллов ортоборатов проводилось фильтрованием полученной водной суспензии с последующей промывкой водой, спиртом и сушкой продукта на фильтре. Полученные порошки поликристаллов ортоборатов окончательно сушились на воздухе при $T = 200^{\circ}$ С в течение 0.5 h.

Процедура прессования проводилась с целью выяснения влияния исходной плотности продукта-прекурсора (порошок или таблетка) на морфологию получившихся микрокристаллов ортоборатов.

2.2. Методы исследований

Рентгенодифракционные исследования проводили с использованием дифрактометра Rigaku SmartLab SE на CuK_{α} -излучении, $\lambda = 1.54178$ Å, 40 kV, 35 mA. Угловой интервал $2\theta = 10-140^{\circ}$. Фазовый анализ образцов и расчет параметров решетки проводили с использованием программ Match и PowderCell 2.4.

ИК-спектры поглощения образцов измерялись на Фурье-спектрометре VERTEX 80v в спектральном диапазоне 400–5000 сm⁻¹ с разрешением 2 cm^{-1} . Для измерений порошки поликристаллов перетирались в агатовой ступке, а затем тонким слоем наносились на кристаллическую шлифованную подложку KBr.

Морфология образцов изучалась с использованием рентгеновского микроанализатора Supra 50VP с пристав-кой для EDS INCA (Oxford).

Спектры фотолюминесценции и спектры возбуждения люминесценции изучались на установке, состоящей из источника света — лампы ДКСШ-150, двух монохроматоров МДР-4 и МДР-6 (спектральный диапазон 200–1000 nm, дисперсия 1.3 nm/mm). Регистрация свечения осуществлялась фотоумножителем ФЭУ-106 (область спектральной чувствительности 200–800 nm) и усилительной системой. Монохроматор МДР-4 использовался для изучения спектров возбуждения люминесценции образцов, монохроматор МДР-6 применялся для изучения спектров люминесценции.

Спектральные и структурные характеристики, а также морфология образцов, исследовались при комнатной температуре.

3. Рентгеноструктурные исследования

Дифрактограммы порошковых образцов исследуемых соединений Lu_{1-x}RE_xBO₃ (RE = Eu.Тв и Ү) представлены на рис. 1. Фазовый состав образцов приведен в табл. 1. Ортобораты $Lu_{1-x}Eu_xBO_3$ при $0 \le x \le 0.07$, $Lu_{0.99-x}Tb_xEu_{0.01}BO_3$ при $0 \le x \le 0.09$, а $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ при $0 \le x \le 0.10$ являются однофазными и имеют структуру кальцита 72-1053) — ромбоэдрическую, (PDF $R\bar{3}c$ (пр. гр. № 167), Z = 6. Твердые растворы Lu_{1-x}Eu_xBO₃ при 0.07 < x < 0.2, Lu_{0.99-x}Tb_xEu_{0.01}BO₃ при 0.09 < x < 0.2, а $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ при 0.1 < x < 0.25 являются двухфазными — наряду со структурой кальцита наблюдается фаза ватерита моноклинная, *C*2/*c* (пр.гр. № 15), *Z* = 12 [27]. Как видно из табл. 1, количество фазы ватерита растет с увеличением концентрации ионов RE³⁺. Соединения $Lu_{1-x}Eu_xBO_3$ и $Lu_{0.99-x}Tb_xEu_{0.01}BO_3$ при $x \ge 0.2$, а

Рис. 1. Дифрактограммы образцов $Lu_{1-x}RE_xBO_3$ (RE = Eu, Tb и Y) ($0 \le x \le 0.25$).

 $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ при $x \ge 0.25$ снова становятся однофазными и имеют структуру ватерита (табл. 1).

Таким образом, в ортоборатах $Lu_{1-x}RE_xBO_3$ (RE = Eu, Tb и Y), как и в соединениях $Lu_{0.99-x}Gd_xEu_{0.01}BO_3$, можно выделить три области концентраций RE, в которых существуют определенные структурные состояния. С ростом концентрации RE происходит последовательная смена двух типов кристаллических фаз. Вначале твердый раствор $Lu_{1-x}RE_xBO_3$

$Lu_{1-x}RE_xBO_3$	Фаза кальцита	Фаза ватерита
(RE = Eu, Tb, Y) RE, at.%	(S.G. № 167), %	(S.G. № 15), %
Eu, 1	100	0
Eu, 7	100	0
Eu, 9	86.5	13.5
Eu, 11.5	36	64
Eu, 15	4	96
Eu, 20	0	100
Tb, 7	100	0
Tb, 9.5	96.5	3.5
Tb, 10.5	79	21
Tb, 12	72	28
Tb, 15	14	86
Tb, 20	0	100
Y, 10	100	0
Y, 15	80	20
Y, 20	10	90
Y, 25	0	100
*Eu, 9	100	0
*Eu, 15	25	75
**Tb, 14	39	61
**Tb, 16	0	100
*Y, 15	52	48
*Y, 20	4.5	95.5

Таблица 1. Влияние концентрации RE^{3+} на содержание фаз кальцита и ватерита в ортоборатах $Lu_{1-x}RE_xBO_3$ (RE = Eu, Tb, Y)

Примечание. * Образцы, подвергнутые прессованию перед отжигом. ** Данные работы [10].

(RE = Eu, Tb и Y) имеет структуру кальцита, затем при увеличении концентрации RE соединение Lu_{1-x}RE_xBO₃ становится двухфазным, наряду со структурой кальцита появляется фаза ватерита, а при дальнейшем увеличении концентрации RE твердый раствор имеет структуру ватерита (табл. 2).

Важно отметить, что интервалы концентраций легирующих редкоземельных элементов (*x*), при которых

Рис. 2. Фазовый состав синтезированных образцов $Lu_{1-x}Eu_xBO_3$ в зависимости от соотношения редких земель в шихте при $0 \le x \le 0.2$.

происходят изменения структурных состояний, в ортоборатах $Lu_{1-x}RE_xBO_3$ (RE = Eu, Tb и Y) заметно больше, чем в $Lu_{0.99-x}Gd_xEu_{0.01}BO_3$ (табл. 2).

Изменение фазового состава Lu_{1-x}Eu_xBO₃ при увеличении концентрации Eu³⁺ приведено на рис. 2. Как видно из рис. 2, предел растворимости ионов Eu³⁺ в кальцитной (ромбоэдрической) модификации LuBO3 составляет ~ 7 at.%, а предел растворимости ионов Lu³⁺ в ватеритной (моноклинной) модификации EuBO3 составляет ~ 80 at.%. Подобные зависимости изменения фазового состава получены для ортоборатов Lu_{0.99-x}Tb_xEu_{0.01}BO₃ и Lu_{0.99-x}Y_xEu_{0.01}BO₃. Пределы растворимости ионов Тb³⁺ и Y³⁺ в ромбоэдрической модификации LuBO₃ составляют ~ 9 и 10 at.%, а пределы растворимости ионов Lu³⁺ в моноклинной модификации TbBO₃ и YBO₃ составляют $\sim 80\,$ и 75 at.% соответственно. Значительные различия в пределах растворимости ионов Eu³⁺, Tb^{3+} , Y^{3+} в LuBO₃ и ионов Lu³⁺ в EuBO₃, TbBO₃, YBO_3 связаны с тем, что ионный радиус Lu^{3+} (0.867 Å) заметно меньше ионных радиусов ионов Eu^{3+} (0.987 Å), Tb^{3+} (0.956 Å), Y^{3+} (0.928 Å) [28].

Следует отметить, что подобные изменения фазового состава наблюдались нами ранее в молибдатах $(Lu_{1-x}Eu_x)_2(MoO_4)_3$ и вольфраматах $(Lu_{1-x}Eu_x)_2(WO_4)_3$ [29,30].

4. Морфология образцов

4.1. Морфология ортоборатов Lu_{1-x}Eu_xBO₃ и Lu_{0.99-x}Tb_xEu_{0.01}BO₃

В образцах Lu_{1-x}Eu_xBO₃ и Lu_{0.99-x}Tb_xEu_{0.01}BO₃ в диапазоне концентраций Eu^{3+} $0 \le x \le 0.07$ и Tb^{3+} $0 \le x \le 0.09$ соответственно, имеющих согласно данным рентгенофазового анализа структуру кальцита (табл. 1), наблюдаются крупные микрокристаллы размером ~ $15-20\,\mu m$ (рис. 3, *a*, *f*). При увеличении концентрации европия (тербия) наряду с крупными микрокристаллами, появляются мелкие микрокристаллы размером $\sim 1-2\,\mu$ m. С ростом концентрации ионов Eu³⁺ (Tb³⁺) количество мелких микрокристаллов увеличивается, а крупных уменьшается, при этом растет количество фазы ватерита (рис. 3, b, c; g, h и k). В образцах Lu_{0.8}Eu_{0.2}BO₃ и Lu_{0.79}Tb_{0.2}Eu_{0.01}BO₃, имеющих структуру ватерита (табл. 1), наблюдается подавляющее большинство мелких микрокристаллов (рис. 3, *d* и *l*).

Таким образом, на основании исследований фазового состава образцов Lu_{0.8}Eu_{0.2}BO₃ и Lu_{0.79}Tb_{0.2}Eu_{0.01}BO₃, можно предположить, что в соединениях Lu_{1-x}Eu_xBO₃ и Lu_{0.99-x}Tb_xEu_{0.01}BO₃, также как и в образцах Lu_{0.99-x}Gd_xEu_{0.01}BO₃ [18], микрокристаллы, размер которых составляет $1-2\mu$ m, имеют структуру ватерита.

Оценка соотношения объемов мелких и крупных микрокристаллов на рис. 3, *b*, *c*, *h*, *k* и *l* (в образцах Lu_{0.91}Eu_{0.09}BO₃, Lu_{0.885}Eu_{0.115}BO₃, Lu_{0.87}Tb_{0.12}Eu_{0.01}BO₃

Таблица 2. Области концентраций RE, в которых существуют определенные структурные состояния ортоборатов $Lu_{1-x}RE_xBO_3$ (RE = Eu, Tb и Y)

Соелинение	Значения x, при которых существуют указанные структуры			
Соединение	Кальцит $(R\bar{3}c)$	Кальцит $(R\bar{3}c)$ + ватерит $(C2/c)$	Ватерит (С2/с)	
$\begin{array}{c} Lu_{1-x}Eu_{x}BO_{3}\\ Lu_{0.99-x}Tb_{x}Eu_{0.01}BO_{3}\\ Lu_{0.99-x}Y_{x}Eu_{0.01}BO_{3}\\ ^{*}Lu_{0.99-x}Gd_{x}Eu_{0.01}BO_{3} \end{array}$	$0 \le x \le 0.07 \\ 0 \le x \le 0.09 \\ 0 \le x \le 0.10 \\ 0 \le x \le 0.05$	$\begin{array}{l} 0.07 < x < 0.2 \\ 0.09 < x < 0.2 \\ 0.1 < x < 0.25 \\ 0.05 < x \leq 0.1 \end{array}$	$x \ge 0.2$ $x \ge 0.2$ $x \ge 0.25$ x > 0.1	

Примечание. * Данные работы [18].

Рис. 3. Морфология образцов $Lu_{1-x}Eu_xBO_3$ и $Lu_{0.99-x}Tb_xEu_{0.01}BO_3$. $a - Lu_{0.93}Eu_{0.07}BO_3$; $b - Lu_{0.91}Eu_{0.09}BO_3$; $c - Lu_{0.885}Eu_{0.115}BO_3$; $d - Lu_{0.8}Eu_{0.2}BO_3$; $e - *Lu_{0.85}Eu_{0.15}BO_3$; $f - Lu_{0.92}Tb_{0.07}Eu_{0.01}BO_3$; $g - Lu_{0.885}Tb_{0.105}Eu_{0.01}BO_3$; $h - Lu_{0.87}Tb_{0.12}Eu_{0.01}BO_3$; $k - Lu_{0.84}Tb_{0.15}Eu_{0.01}BO_3$; $l - Lu_{0.79}Tb_{0.2}Eu_{0.01}BO_3$; $m - *Lu_{0.85}Tb_{0.14}Eu_{0.01}BO_3$; $n - *Lu_{0.83}Tb_{0.16}Eu_{0.01}BO_3$ ($e, m \ u \ n -$ образцы, подвергнутые прессованию перед отжигом).

Рис. 3 (продолжение).

и Lu_{0.84}Tb_{0.15}Eu_{0.01}BO₃) показала, что количество мелких микрокристаллов, представляющих фазу ватерита, составляет ~ 0.4, 6–7, 3–4 и 13–14% соответственно. В то же время, согласно данным рентгенофазового анализа, количество фазы ватерита в этих образцах значительно больше и составляет 13.5, 64, 28 и 86% соответственно (табл. 1). Это свидетельствует о том, что крупные микрокристаллы (15–20 μ m) в соединениях Lu_{1-x}Eu_xBO₃ при 0.07 < x < 0.2 и Lu_{0.99-x}Tb_xEu_{0.01}BO₃ при 0.09 < x < 0.2, также как и в образцах Lu_{0.99-x}Gd_xEu_{0.01}BO₃ при 0.05 < x ≤ 0.1, являются двухфазными и содержат фазы ватерита и кальцита.

Следует отметить, что соотношение между количеством мелких и крупных микрокристаллов существенно зависит от способа синтеза образца. Если перед отжигом при 970°С шихта подвергнута прессованию, то в образцах *Lu_{0.85}Eu_{0.15}BO₃; *Lu_{0.85}Tb_{0.14}Eu_{0.01}BO₃ и *Lu_{0.83}Tb_{0.16}Eu_{0.01}BO₃, содержащих 75, 61 и 100% ватерита, подавляющее большинство микрокристаллов имеет размер $8-12 \mu$ m, а мелких микрокристаллов размером $1-2 \mu$ m во много раз меньше, чем в образцах, предварительно не подвергнутых прессованию (рис. 3, *e*, *m*, *n*). Это свидетельствует о том, что в соединениях *Lu_{0.85}Eu_{0.15}BO₃ и *Lu_{0.85}Tb_{0.14}Eu_{0.01}BO₃, полученных после отжига при 970°С спрессованных таб-

леток, микрокристаллы, размер которых равен $8-12\,\mu m$, являются двухфазными. При $x \ge 0.16$ микрокристаллы (8-12 µm) в образцах *Lu_{0.99-x}Tb_xEu_{0.01}BO₃ имеют структуру ватерита (рис. 3, n), в то время как в предварительно не спрессованных образцах $Lu_{0.99-x}Tb_{x}Eu_{0.01}BO_{3}$ после отжига при 970°С структуру ватерита имеют микрокристаллы размером $1-2\mu m$ (рис. 3, *l*).

4.2. Морфология ортоборатов $Lu_{0.99-x}Y_{x}Eu_{0.01}BO_{3}$

Образцы ортоборатов Lu_{0.99-x}Y_xEu_{0.01}BO₃ при $0 \le x \le 0.1$, которые имеют, согласно данным рентгенофазового анализа структуру кальцита (табл. 1), состоят из крупных микрокристаллов размером $\sim 15-20\,\mu{
m m}$ (рис. 4, *a*). При x > 0.1наблюдаются преимущественно микрокристаллы размером 8-18 µm, а объем мелких микрокристаллов размером 1-2 µm во много раз меньше объема крупных микрокристаллов (рис. 4, *b*, *c* и d). Наибольшее количество микрокристаллов 1-2 µm наблюдается в образцах Lu_{0.84}Y_{0.15}Eu_{0.01}BO₃ (рис. 4, *b*). Оценка соотношения объемов мелких и крупных микрокристаллов в этих образцах на рис. 4, b, показала, что количество мелких микрокристаллов, даже представляющих фазу ватерита, в этих образцах составляет ~ 1%. В то же время, согласно данным рентгенофазового анализа, количество фазы ватерита в этих образцах значительно больше и составляет 20% (табл. 1). Это свидетельствует о том, что крупные микрокристаллы (8-18 µm) в соединении Lu_{0.84}Y_{0.15}Eu_{0.01}BO₃ являются двухфазными и содержат фазы ватерита и кальцита.

Согласно данным рентгенофазового анализа при 0.1 < x < 0.25 соединения $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ являются двухфазными, поэтому микрокристаллы (8-18 µm) этих соединений также являются двухфазными. При $x \ge 0.25$ образцы Lu_{0.99-x}Y_xEu_{0.01}BO₃ имеют структуру ватерита (табл. 1), поэтому и микрокристаллы размером 8-20 µm являются однофазными и имеют структуру ватерита. В этих микрокристаллах наблюдаются множественные нарушения сплошности в виде трещин (рис. 4, *c*, *d* и *e*).

Следует отметить, что, в отличие от ортоборатов $Lu_{1-x}Eu_xBO_3$ и $Lu_{0.99-x}Tb_xEu_{0.01}BO_3$, прессование таблеток Lu_{0.99-x}Y_xEu_{0.01}BO₃ перед отжигом при 970°C практически не влияет на морфологию этих образцов. В подвергнутых прессованию перед отжигом образцах $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ при $0.1 < x \le 0.2$ наблюдаются микрокристаллы размером 8-20 µm, а количество мелких микрокристаллов намного меньше (рис. 4, f, g, h). При 0.1 < x < 0.2, согласно данным рентгенофазового анализа, микрокристаллы (8-20 µm) являются двухфазными (табл. 1). Следует отметить, что эти микрокристаллы имеют многочисленные трещины и дефекты (рис. 4, *f*, *g*, *h*).

Таким образом, морфология ортоборатов $Lu_{0.99-x}Y_{x}Eu_{0.01}BO_{3}$ заметно отличается от морфологии соединений $Lu_{1-x}Eu_{x}BO_{3}$ и $Lu_{0.99-x}Tb_{x}Eu_{0.01}BO_{3}$. Образцы Lu_{0.99-x}Y_xEu_{0.01}BO₃, имеющие структуру ватерита, состоят преимущественно из микрокристаллов размером 8-20 µm, в то время как образцы $Lu_{1-x}Eu_{x}BO_{3}$ и $Lu_{0.99-x}Tb_{x}Eu_{0.01}BO_{3}$ со структурой ватерита состоят из микрокристаллов размером 1-2 µm.

Результаты ИК-спектроскопии 5.

На рис. 5 представлены спектры ИК-поглощения $(0.01 \le x \le 0.2),$ соединений $Lu_{0.99-x}Eu_{x}BO_{3}$ $Lu_{0.99-x}Tb_xEu_{0.01}BO_3$ $(0.07 \le x \le 0.2)$ $Lu_{0.99-x}Y_xEu_{0.01}BO_3 \ (0.1 \le x \le 0.25)$ [23,31,32]. В спектрах ортоборатов Lu_{0.99}Eu_{0.01}BO₃, Lu_{0.92}Tb_{0.07}Eu_{0.01}BO₃ и Lu_{0.89}Y_{0.10}Eu_{0.01}BO₃ (рис. 5, спектры 1, 4 и 7), которые по данным рентгенофазового анализа имеют структуру кальцита и являются однофазными (табл. 1), наблюдаются полосы ИК-поглощения вблизи 1230, 770, 740 и $630 \,\mathrm{cm}^{-1}$, обусловленные колебанием связи В-О в структуре с тригональной координацией атомов бора, характерной для фазы кальцита [23,31,32]. Образцы Lu_{0.8}Eu_{0.2}BO₃, Lu_{0.79}Tb_{0.2}Eu_{0.01}BO₃ И Lu_{0 74}Y_{0 25}Eu_{0 01}BO₃ имеют структуру ватерита (табл. 1). ИК-спектры этих образцов (рис. 5, спектры 3, 6 и 9) содержат полосы поглощения вблизи 570, 720, 880, 940, 1040 и 1100 cm^{-1} , характерные для образцов со структурой ватерита, в которой атомы бора имеют тетраэдрическую координацию атомов [3,23,31,32].

В этих спектрах полосы поглощения также обусловлены колебаниями связей В-О. Они неоднократно наблюдались в спектрах ортоборатов различных редких земель (Gd, Er, Dy, Ho, Yb, Y) со структурой ватерита [33-35]. ИК-спектры ортоборатов Lu_{0.85}Eu_{0.15}BO₃, Lu_{0 87}Tb_{0 12}Eu_{0 01}BO₃ и Lu_{0 84}Y_{0 15}Eu_{0 01}BO₃ соответствуют двухфазному состоянию этих соединений и включают полосы поглощения кальцита (с) и ватерита (v) (рис. 5, спектры 2, 5 и 8). Как было установлено рентгенофазовым анализом, соотношение фаз кальцит/ватерит в этих образцах составляет 4/96, 72/28 и 80/20%, соответственно (табл. 1). Такие соотношения фаз хорошо коррелируют с соотношением интенсивностей соответствующих полос поглощения фаз (c) и (v)в ИК-спектрах (рис. 5, спектры 2, 5 и 8).

6. Спектры люминесценции и спектры возбуждения люминесценции

В спектрах люминесценции ионов Eu³⁺ в образцах LuBO₃(Eu), имеющих структуру кальцита, наблюдаются две узкие полосы с $\lambda_{max} = 589.8$ и 595.7 nm (электронный переход ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) [2,22,23]. Спектр люминесценции ионов Eu³⁺ в ватеритной модификации REBO₃(Eu), где RE (Lu, Tb, Y, Gd) содержит три полосы: в области длин волн 588-596 nm (электронный

Рис. 4. Морфология образцов $Lu_{0.99-x}Y_xEu_{0.01}BO_3$. $a = Lu_{0.89}Y_{0.1}Eu_{0.01}BO_3$; $b = Lu_{0.84}Y_{0.15}Eu_{0.01}BO_3$; $c = Lu_{0.79}Y_{0.2}Eu_{0.01}BO_3$; $d = Lu_{0.74}Y_{0.25}Eu_{0.01}BO_3$; $e = Lu_{0.74}Y_{0.25}Eu_{0.01}BO_3$; $f = *Lu_{0.84}Y_{0.15}Eu_{0.01}BO_3$; $g = *Lu_{0.84}Y_{0.15}Eu_{0.01}BO_3$; $h = *Lu_{0.79}Y_{0.2}Eu_{0.01}BO_3$; $(f, g \ H \ h = ofpasilies, подвергнутые прессованию перед отжигом).$

Рис. 5. Спектры ИК-поглощения ортоборатов l — Lu_{0.99}Eu_{0.01}BO₃; 2 — Lu_{0.8}Eu_{0.2}BO₃; 3 — Lu_{0.85}Eu_{0.15}BO₃; 4 — Lu_{0.92}Tb_{0.07}Eu_{0.01}BO₃; 5 — Lu_{0.79}Tb_{0.2}Eu_{0.01}BO₃; 6 — Lu_{0.87}Tb_{0.12}Eu_{0.01}BO₃; 7 — Lu_{0.89}Y_{0.10}Eu_{0.01}BO₃; 8 — Lu_{0.74}Y_{0.25}Eu_{0.01}BO₃; 9 — Lu_{0.84}Y_{0.15}Eu_{0.01}BO₃.

переход ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$), 608–613 и 624–632 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) [2–4,22]. Согласно данным рентгенофазового анализа, ортобораты Lu_{1-x}Eu_xBO₃ при 0 $\leq x \leq 0.07$, Lu_{0.99-x}Tb_xEu_{0.01}BO₃ при 0 $\leq x \leq 0.09$ и 1625

 $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ при $0 \le x \le 0.1$, имеют структуру кальцита. Структуру ватерита соединения $Lu_{1-x}Eu_xBO_3$ и $Lu_{0.99-x}Tb_xEu_{0.01}BO_3$ имеют при $x \ge 0.2$, а $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ — при $x \ge 0.25$ (табл. 1).

В настоящей работе в образцах бората лютеция, легированного Тb и Y, в качестве оптически активных и структурно чувствительных меток использовались ионы Eu³⁺ в количестве 1 at.%.

6.1. Спектры возбуждения люминесценции ортоборатов

Спектр возбуждения наиболее интенсивной полосы свечения ионов Eu³⁺ в кальцитной модификации $Lu_{1-x}Eu_xBO_3$ ($\lambda_{max} = 589.8 \text{ nm}$) бората лютеция при x = 0.07 представлен на рис. 6, спектр 1. Аналогичные спектры наблюдаются для образцов Lu_{1-x}Eu_xBO₃ при $0 \le x \le 0.07$. Спектры возбуждения люминесценции полос с $\lambda_{max} = 589.8$ и 595.7 nm совпадают. В спектрах возбуждения люминесценции (СВЛ), полученных при 970°С образцов $Lu_{1-x}Eu_xBO_3$ при $0 \le x \le 0.07$, наблюдается широкая коротковолновая полоса в области длин волн 220–290 nm ($\lambda_{ex} \sim 260$ nm) (полоса с переносом заряда — ППЗ) и ряд узких полос в области длин волн 290-500 nm (рис. 6, спектр 1). Наиболее интенсивной в этой области спектра является полоса, соответствующая резонансному возбуждению ионов Eu^{3+} ($\lambda_{ex} = 394 \, nm$ $({}^{7}F_{0} \rightarrow {}^{5}L_{6}))$. Интенсивность полосы с переносом заряда в ~ 10 раз превосходит интенсивность полосы с $\lambda_{\rm ex} = 394\,\rm nm.$ Наличие доминирующей коротковолновой полосы является важной особенностью СВЛ образцов, имеющих структуру кальцита. Иная ситуация наблюдается в образцах Lu_{1-x}Eu_xBO₃ со структурой ватерита.

СВЛ наиболее интенсивной полосы свечения ионов Eu³⁺ ($\lambda_{max} = 593.3 \text{ nm}$) в борате лютеция, легированном 20 at.% Eu, имеющего структуру ватерита (табл. 1), также содержит широкую коротковолновую полосу (ППЗ) с максимумом ~ 247 nm и ряд узких резонансных полос, наиболее интенсивная из которых находится при $\lambda_{ex} = 394 \text{ nm}$, а также наблюдаются полосы ~ 467 и 469 nm (${}^7F_0 \rightarrow {}^5D_2$) (рис. 6, спектр 2). В образцах, содержащих 20 at.% Eu, интенсивность резонансной полосы 394 nm в ~ 1.6 раза больше интенсивности полосы с переносом заряда.

Спектры возбуждения люминесценции основных полос свечения ортоборатов $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ подобны СВЛ соединений $Lu_{1-x}Eu_xBO_3$ (рис. 6, спектры 3, 4). В спектрах возбуждения люминесценции наиболее интенсивной полосы свечения кальцитной модификации образцов $Lu_{0.89}Y_{0.1}Eu_{0.01}BO_3$ ($\lambda_{max} = 589.8$ nm) наибольшую интенсивность имеет ультрафиолетовая полоса (полоса с переносом заряда (ППЗ)) ~ 250 nm (рис. 6, спектр 3). Интенсивность резонансной полосы, соответствующей возбуждению Eu^{3+} -ионов (394 nm) более чем в 30 раз меньше интенсивности ППЗ. Спектр возбуждения люминесценции полосы с $\lambda_{max} = 593.3$ nm образцов $Lu_{0.74}Y_{0.25}Eu_{0.01}BO_3$, имеющих структуру ватерита (табл. 1), содержит широкую коротковолновую полосу (ППЗ) с максимумом ~ 243 nm и ряд узких резонансных полос, наиболее интенсивная из которых находится при 394 nm (рис. 6, спектр 4). Важно отметить, что в ватеритной модификации бората лютеция, легированного 25 at.% Y, интенсивность ППЗ всего лишь в ~ 1.2 раза интенсивнее резонансной полосы возбуждения ионов Eu^{3+} (394 nm).

При возбуждении люминесценции ионов Eu³⁺ светом, соответствующим области интенсивного поглощения образца (в полосе с переносом заряда), мы получаем информацию о ближайшем окружении ионов Eu³⁺ в приповерхностном слое микрокристаллов образца. При возбуждении образца в области прозрачности ($\lambda = 300-500$ nm) мы получаем информацию о ближайшем окружении ионов Eu³⁺ в объеме микрокристаллов образца.

В спектре возбуждения люминесценции (СВЛ) наиболее интенсивной полосы свечения ионов Eu³⁺ кальцитной модификации ортобората Lu_{0.92}Tb_{0.07}Eu_{0.01}BO₃ ($\lambda_{max} = 589.8$ nm) наблюдаются широкая полоса в диапазоне длин волн 220–290 nm (полоса с переносом заряда), узкая полоса с $\lambda_{ex} = 378$ nm и очень слабая резонансная полоса возбуждения ионов Eu³⁺ $\lambda_{ex} = 394$ nm (рис. 6, спектр 5). Следует отметить, что полоса 378 nm наблюдается в СВЛ наиболее интенсивной полосы люминесценции ионов Tb³⁺ в образцах Lu_{0.95}Tb_{0.05}BO₃, имеющих структуру кальцита ($\lambda_{max} = 541.8$ nm ($^{5}D_4 \rightarrow ^{7}F_5$)). Кроме полосы 378 nm в СВЛ ионов Tb³⁺ наблюдаются еще четыре полосы в коротковолновой области спектра с $\lambda_{ex} = 235.7$, 260.2, 273.5 и 284.3 nm (переход $4f^8 \rightarrow 4f^75d^1$) [3,4,23].

Важно отметить, что при возбуждении ионов Tb^{3+} в образцах $Lu_{0.92}Tb_{0.07}Eu_{0.01}BO_3$ ($\lambda_{ex} = 378$ nm (${}^7F_6 \rightarrow {}^5D_3$)) наблюдается свечение ионов Eu^{3+} , это однозначно свидетельствует о переносе энергии от ионов Tb^{3+} к ионам Eu^{3+} . Коротковолновые полосы, наблюдающиеся в СВЛ ионов Tb^{3+} , проявляются в виде слабых особенностей на полосе с переносом заряда в СВЛ ионов Eu^{3+} (рис. 6, спектр 5). Интенсивность резонансной полосы возбуждения свечения ионов Eu^{3+} ($\lambda_{ex} = 394$ nm) в ~ 40 раз слабее ППЗ, в то время как интенсивность полосы 378 nm в ~ 10 раз меньше интенсивности ППЗ.

Спектр возбуждения люминесценции наиболее интенсивной полосы свечения ионов Eu³⁺ ватеритной модификации ортобората Lu_{0.79}Tb_{0.2}Eu_{0.01}BO₃ ($\lambda_{max} = 593.3$ nm) приведен на рис. 6, спектр 6. В СВЛ наблюдается две широкие коротковолновые полосы с $\lambda_{ex} = 242$ и 285 nm и целый ряд узких полос в диапазоне длин волн 360–390 nm, самой интенсивной из которых является полоса 378 nm. Кроме того, в СВЛ Lu_{0.79}Tb_{0.2}Eu_{0.01}BO₃ наблюдается резонансная полоса возбуждения свечения ионов Eu³⁺ ($\lambda_{ex} = 394$ nm), а также полосы 467, 469 nm (${}^7F_0 \rightarrow {}^5D_2$) и 489 nm. В спектре возбуждения наиболее интенсивной полосы люминесценции ионов Tb³⁺ в об-

Рис. 6. Спектры возбуждения люминесценции ортоборатов. $I - Lu_{0.93}Eu_{0.07}BO_3$; $2 - Lu_{0.8}Eu_{0.2}BO_3$; $3 - Lu_{0.89}Y_{0.1}Eu_{0.01}BO_3$; $4 - Lu_{0.74}Y_{0.25}Eu_{0.01}BO_3$; $5 - Lu_{0.92}Tb_{0.07}Eu_{0.01}BO_3$; $6 - Lu_{0.79}Tb_{0.2}Eu_{0.01}BO_3$; $(1, 3, 5 - \lambda_{max} = 589.8 \text{ nm}; 2, 4, 6 - \lambda_{max} = 593.3 \text{ nm}).$

разцах Lu_{0.8}Tb_{0.2}BO₃, имеющих структуру ватерита $(\lambda_{\max} = 542.3 \text{ nm} ({}^{5}D_{4} \rightarrow {}^{7}F_{5})),$ наблюдаются полосы 242 и 285 nm (переход $4f^8 \rightarrow 4f^75d^1$), узкие полосы в области 360-390 nm, полосы 378 и 489 nm $({}^{7}F_{6} \rightarrow {}^{5}D_{4})$ [3,4,23]. Таким образом, также, как и в кальцитной модификации, в ватеритной структуре ортоборатов Lu_{0.79}Tb_{0.2}Eu_{0.01}BO₃ свечение ионов Eu³⁺ наблюдается при возбуждении ионов ${\rm Tb}^{3+}$ ($\lambda_{\rm ex}=242$, 285, 378 и 489 nm), что свидетельствует о переносе энергии от ионов Tb³⁺ к ионам Eu³⁺. Для кальцитной и ватеритной модификаций Lu_{0.99-x} Tb_x Eu_{0.01}BO₃ интенсивность свечения ионов Eu³⁺ при возбуждении светом с $\lambda_{ex} = 378 \, \text{nm}$ в несколько раз выше, чем при резонансном возбуждении Eu $^{3+}$ ($\lambda_{ex}=394\,nm$). Поэтому для получения информации о ближайшем окружении ионов Eu³⁺, находящихся в объеме этих образцов, исследование спектров люминесценции ионов Eu³⁺ будет проводиться при $\lambda_{ex} = 378$ nm.

Следует отметить, что интенсивность полосы 242 nm (I_{242}) в СВЛ ионов Tb³⁺ в образцах Lu_{0.8}Tb_{0.2}BO₃ в 1.3 раза меньше интенсивности полосы 285 nm (I_{285}) [23]. В то же время, I_{242} в СВЛ ионов Eu³⁺ в образ-

Рис. 7. Спектры люминесценции ортоборатов $Lu_{1-x}Eu_xBO_3$. *1*, 2 — $Lu_{0.93}Eu_{0.07}BO_3$; *3*, 4 — $Lu_{0.91}Eu_{0.09}BO_3$; *5*, 6 — $Lu_{0.885}Eu_{0.115}BO_3$; *7*, 8 — $Lu_{0.8}Eu_{0.2}BO_3$; *9*, *10* — * $Lu_{0.85}Eu_{0.15}BO_3$; (*1* — $\lambda_{ex} = 260$ nm, *3* и 9 — $\lambda_{ex} = 250$ nm; *5* и 7 — $\lambda_{ex} = 245$ nm; *2*, *4*, *6*, 8 и *10* — $\lambda_{ex} = 394$ nm). * $Lu_{0.85}Eu_{0.15}BO_3$ — образец, подвергнутый прессованию перед отжигом.

цах Lu_{0.79}Tb_{0.2}Eu_{0.01}BO₃ в 1.24 раза больше I_{285} (рис. 6, спектр 6). Усиление интенсивности полосы 242 nm в 1.6 раза в образцах Lu_{0.79}Tb_{0.2}Eu_{0.01}BO₃ обусловлено, скорее всего тем, что в этих образцах на полосу 242 nm накладывается полоса с переносом заряда, находящаяся в том же интервале длин волн.

На основании исследований спектров возбуждения свечения ионов Eu^{3+} в образцах $Lu_{0.99-x}Tb_xEu_{0.01}BO_3$ можно сделать следующий вывод. Информацию о ближайшем окружении ионов Eu^{3+} в приповерхностном слое и объеме образца можно получить при возбуждении свечения ионов Eu^{3+} светом с $\lambda_{ex} = 250-240$ и 378 nm соответственно.

6.2. Спектры люминесценции ортоборатов Lu_{1-x}Eu_xBO₃ и Lu_{0.99-x}Tb_xEu_{0.01}BO₃

Спектры люминесценции (СЛ) соединений Lu_{1-x}Eu_xBO₃ (x = 0.07, 0.09, 0.115, 0.15 и 0.2) при возбуждении светом ($\lambda_{ex} = 394$ nm), соответствующим резонансному возбуждению ионов Eu³⁺, и в максимуме полосы с переносом заряда ($\lambda_{ex} \sim 260-245$ nm), представлены на рис. 7. Спектры люминесценции образцов Lu_{1-x}Eu_xBO₃ при $0 \le x \le 0.07$, имеющих, согласно

данным рентгенофазового анализа структуру кальцита (табл. 1), идентичны. В этих образцах спектры люминесценции приповерхностного слоя ($\lambda_{ex} = 260 \text{ nm}$), и объема образца ($\lambda_{ex} = 394 \text{ nm}$) совпадают (рис. 7, спектры 1 и 2). Они содержат полосы с $\lambda_{\text{max}} = 589.8$ и 595.7 nm, характерные для кальцитной модификации LuBO₃ (Eu) [2,22,23]. В образцах Lu_{0.91}Eu_{0.09}BO₃ спектр люминесценции приповерхностного слоя ($\lambda_{ex} = 250 \text{ nm}$) содержит полосы с $\lambda_{\text{max}} = 589.8$ и 595.7 nm, характерные для кальцитной модификации Lu_{1-x}Eu_xBO₃ (рис. 7, спектр 3). В то же время, спектр люминесценции объема образца ($\lambda_{ex} = 394 \, \text{nm}$) содержит как полосы, характерные для кальцитной модификации, так и полосы, соответствующие ватеритной структуре этих микрокристаллов (рис. 7, спектр 4). В образцах Lu_{0.91}Eu_{0.09}BO₃, содержащих 13.5% ватерита (табл. 1), количество мелких микрокристаллов размером 1-2 µm, имеющих структуру ватерита, составляет всего $\sim 0.4\%$ (раздел 4.1, рис. 3, b). Поэтому значительная доля ватеритной фазы Lu_{0.91}Eu_{0.09}BO₃ содержится в микрокристаллах размером 15-20 µm. Возникновение в спектре люминесценции при резонансном возбуждении свечения ионов Eu^{3+} ($\lambda_{ex} = 394 \, nm$) полос, 588–596, 608-613 и 624-632 nm свидетельствует о том, что

Рис. 8. Спектры люминесценции ортоборатов $Lu_{0.99-x}Tb_xEu_{0.01}BO_3$. *1*, 2 — $Lu_{0.92}Tb_{0.07}Eu_{0.01}BO_3$; *3*, 4 — $Lu_{0.885}Tb_{0.105}Eu_{0.01}BO_3$; *5*, 6 — $Lu_{0.84}Tb_{0.15}Eu_{0.01}BO_3$; *7*, 8 — $Lu_{0.79}Tb_{0.2}Eu_{0.01}BO_3$: (*1*, 3 и 5 — $\lambda_{ex} = 250$ nm; 7 — $\lambda_{ex} = 245$ nm; *2*, 4, 6 и 8 — $\lambda_{ex} = 378$ nm).

ватеритная модификация в этих образцах формируется в объеме крупных микрокристаллов размером 15-20 µm, в то время как их приповерхностный слой все еще имеет структуру кальцита. При дальнейшем увеличении концентрации европия фаза ватерита появляется и в приповерхностном слое микрокристаллов. В образцах Lu_{0.885}Eu_{0.115}BO₃ спектры люминесценции объема образца и приповерхностного слоя содержат полосы, характерные для фаз кальцита (589.8 и 595.7 nm) и ватерита (588-596, 608-613 и 624-632 nm) (рис. 7, спектры 5, 6). Эти образцы содержат 36% кальцита и 64% ватерита. Спектры люминесценции приповерхностного слоя и объема образца Lu_{0.8}Eu_{0.2}BO₃ содержат только полосы, характерные для ватеритной модификации LuBO₃(Eu) (рис. 7, спектры 7, 8). Эти образцы состоят ИЗ подавляющего большинства микрокристаллов размером 1-2 µm. Это свидетельствует о том, что микрокристаллы $(1-2\mu m)$ ортоборатов $Lu_{1-x}Eu_{x}BO_{3}$ имеют структуру ватерита, также, как и микрокристаллы $Lu_{0.99-x}Gd_xEu_{0.01}BO_3$ размером $1-2\mu m$ [18].

Важно отметить, что вывод о том, что образование фазы ватерита происходит в объеме микрокристаллов,

имеющих структуру кальцита, подтверждается результатами исследования ортоборатов *Lu_{0.85}Eu_{0.15}BO₃, подвергнутых прессованию перед отжигом. Средний размер микрокристаллов этих образцов составляет $8-15\,\mu$ m, а количество мелких микрокристаллов $(1-2\,\mu$ m) крайне мало (рис. 3, *e*). В спектре люминесценции объема этих образцов, содержащих 25% фазы кальцита и 75% фазы ватерита (табл. 1) (рис. 7, спектр *10*), наблюдаются только полосы, характерные для фазы ватерита LuBO₃(Eu). В то же время в спектре люминесценции приповерхностного слоя содержатся полосы кальцитной и ватеритной модификаций LuBO₃(Eu) (рис. 7, спектр *9*).

Спектры люминесценции ортоборатов Lu_{0.99-x}Tb_xEu_{0.01}BO₃ представлены на рис. 8. В этих соединениях изменения спектров люминесценции при увеличении концентрации Tb³⁺ подобны тем, которые наблюдались в ортоборатах Lu_{1-x}Eu_xBO₃. При $0 \le x < 0.09$ образцы Lu_{0.99-x}Tb_xEu_{0.01}BO₃ являются однофазными и имеют структуру кальцита (табл. 1). Спектры люминесценции этих образцов совпадают. В качестве примера на рис. 8, спектры *1* и *2*, приведены СЛ приповерхностного слоя ($\lambda_{ex} = 250$ nm) и объема

1629

 $(\lambda_{ex} = 378 \text{ nm})$ образцов $Lu_{0.92}Tb_{0.07}Eu_{0.01}BO_3$. Они содержат полосы 589.8 и 595.7 nm, характерные для кальцитной модификации LuBO₃(Eu). Спектр люминесценции приповерхностного слоя ($\lambda_{ex} = 250 \, \text{nm}$) образцов Lu_{0.885}Tb_{0.105}Eu_{0.01}BO₃ также содержит полосы, соответствующие кальцитной модификации LuBO₃(Eu) (рис. 8, спектр 3), В то же время, при возбуждении объема этих образцов ($\lambda_{ex} = 378 \text{ nm}$) наблюдаются как полосы, характерные для кальцитной, так и для ватеритной структур этих образцов (рис. 8, спектр 4). В образцах Lu_{0.885}Tb_{0.105}Eu_{0.01}BO₃, содержащих 21% ватерита (табл. 1), суммарный объем мелких микрокристаллов размером $1-2\mu m$, имеющих структуру ватерита, составляет всего $\sim 2\%$ (раздел 4.1, рис. 3, g). Поэтому основная доля ватеритной фазы Lu_{0.91}Eu_{0.09}BO₃ содержится в микрокристаллах размером 15-20 µm. Появление в спектре люминесценции объема этих микрокристаллов $(\lambda_{ex} = 378 \text{ nm})$ полос, 588–596, 608–613 и 624–632 nm свидетельствует о том, что ватеритная модификация в крупных микрокристаллах размером 15-20 µm в образцах Lu_{0.99-x}Tb_xEu_{0.01}BO₃ формируется в их объеме. При дальнейшем увеличении концентрации Tb³⁺ фаза ватерита образуется и в приповерхностном слое микрокристаллов. В ортоборатах Lu_{0.84}Tb_{0.15}Eu_{0.01}BO₃, содержащих 86% ватерита, в объеме образца наблюдаются только полосы, характерные для ватеритной модификации, в то время как спектр люминесценции приповерхностного слоя содержит полосы, характерные как для кальцитной, так и ватеритной структур этих образцов (рис. 8, спектры 5, 6). При концентрации ионов Tb³⁺ 20 at.% в спектре люминесценции объема приповерхностного слоя наблюдаются полосы, И характерные только для ватеритной модификации Lu_{0.99-x}Tb_xEu_{0.01}BO₃ (рис. 8, спектры 7, 8).

6.3. Спектры люминесценции ортоборатов Lu_{0.99-x} Y_x Eu_{0.01}BO₃

Как отмечалось в разделе 4.2, морфология ортоборатов Lu_{0.99-x}Y_xEu_{0.01}BO₃ заметно отличается от морфологии соединений Lu_{1-x}Eu_xBO₃ и Lu_{0 99-x}Tb_xEu_{0 01}BO₃. Образцы Lu_{0.99-x}Y_xEu_{0.01}BO₃ в исследованном диапазоне концентраций Ү³⁺ состоят преимущественно из микрокристаллов размером 8-20 µm, а количество мелких микрокристаллов (1-2µm) крайне мало. Наибольшее количество микрокристаллов размером 1-2µm $(\sim 1\%$ от всего объема) наблюдается в образцах $Lu_{0.84}Y_{0.15}Eu_{0.01}BO_3$ (рис. 4, b), в то же время, этот образец содержит 20% фазы ватерита (табл. 1), что свидетельствует о том, что основная доля фазы ватерита содержится в микрокристаллах размером 8-20 µm. Следует также отметить, что прессование таблеток перед отжигом при 970°С практически не влияет на морфологию Lu_{0.99-x}Y_xEu_{0.01}BO₃, в этих образцах при 0.1 < *x* ≤ 0.25 наблюдаются микрокристаллы размером $8 - 20 \,\mu m$,

На рис. 9, спектры 1-8, представлены спектры люминесценции (СЛ) соединений Lu_{0.99-x}Y_xEu_{0.01}BO₃, содержащие 10, 15, 20 и 25 at.% Y³⁺, при возбуждении светом, соответствующим резонансному возбуждению ионов Eu^{3+} ($\lambda_{ex} = 394 \text{ nm}$), и в максимуме полосы с переносом заряда ($\lambda_{ex} \sim 250-243 \text{ nm}$). СЛ образцов, имеющих согласно данным рентгенофазового анализа структуру кальцита, при 0 < x < 0.1 (табл. 1) идентичны. В этих образцах спектры люминесценции приповерхностного слоя ($\lambda_{ex} = 250 \, \text{nm}$), и объема образца $(\lambda_{ex} = 394 \,\text{nm})$ совпадают (рис. 9, спектры 1 и 2). Они содержат полосы с $\lambda_{max} = 589.8$ и 595.7 nm, характерные для кальцитной модификации LuBO₃(Eu). В образцах Lu_{0.84}Y_{0.15}Eu_{0.01}BO₃, содержащих 80% кальцита и 20% ватерита (табл. 1), СЛ приповерхностного слоя содержит только полосы, характерные для кальцитной модификации LuBO₃(Eu) (рис. 9, спектр 3). В то же время, в СЛ объема этих микрокристаллов наблюдаются как полосы, характерные для кальцитной, так и полосы, характерные для ватеритной модификации (588-596, 608-613 и 624-632 nm) этих соединений (рис. 9, спектр 4). Это свидетельствует о том, что фаза ватерита образуется вначале внутри крупных микрокристаллов $(8-20\,\mu m).$

В спектрах люминесценции объема образцов Lu_{0.79}Y_{0.2}Eu_{0.01}BO₃, содержащих 10% кальцита и 90% ватерита, наблюдаются только полосы, характерные для ватеритной модификации LuBO₃(Eu) (рис. 9, спектр 6). В то же время, СЛ приповерхностного слоя содержит как полосы, характерные для кальцитной модификации (589.8 и 595.7 nm), так и полосы, характерные лля ватеритной модификации этих соединений (рис. 9, спектр 5). СЛ приповерхностного слоя и объема ортобората Lu_{0.74}Y_{0.25}Eu_{0.01}BO₃, имеющего структуру ватерита (табл. 1), содержат только полосы, наблюдающиеся в ватеритной модификации этих образцов (рис. 9, спектры 7, 8).

На рис. 9, спектры 9-12, представлены спектры люминесценции образцов Lu_{0.99-x}Y_xEu_{0.01}BO₃, предварительно подвергнутых прессованию перед отжигом. В спектре люминесценции приповерхностного слоя образцов *Lu_{0 84}Y_{0 15}Eu_{0 01}BO₃, содержащих 52% кальцита и 48% ватерита, наблюдаются только полосы кальцитной модификации LuBO₃(Eu) (589.8 и 595.7 nm) (рис. 9, спектр 9). В спектре люминесценции объема микрокристаллов *Lu_{0.84}Y_{0.15}Eu_{0.01}BO₃ наибольшую интенсивность имеют полосы, характерные для ватеритной модификации этих образцов, в то же время, эти спектры содержат слабые полосы кальцитной модификации этих ортоборатов (рис. 9, спектр 10). Спектры люминесценции объема и приповерхностного слоя микрокристаллов *Lu_{0.79}Y_{0.2}Eu_{0.01}BO₃ содержат только полосы, характерные для структуры ватерита этих соединений (рис. 9, спектры 11, 12). Согласно данным рентгенофазового анализа эти образцы содержат 4.5% фазы кальцита и 95.5% фазы ватерита (табл. 1).

Рис. 9. Спектры люминесценции ортоборатов Lu_{0.99-x} Y_xEu_{0.01}BO₃. *1*, 2 — Lu_{0.89}Y_{0.1}Eu_{0.01}BO₃; *3*, 4 — Lu_{0.84}Y_{0.15}Eu_{0.01}BO₃; *5*, 6 — Lu_{0.79}Y_{0.2}Eu_{0.01}BO₃; *7*, 8 — Lu_{0.74}Y_{0.25}Eu_{0.01}BO₃; *9*, *10* — *Lu_{0.84}Y_{0.15}Eu_{0.01}BO₃; *11*, *12* — *Lu_{0.79}Y_{0.2}Eu_{0.01}BO₃. (*1*, *3*, 9 — $\lambda_{ex} = 250$ nm; *5*, 7 и *11* — $\lambda_{ex} = 243$ nm; *2*, *4*, *6*, *8*, *10*, *12* — $\lambda_{ex} = 394$ nm). *Lu_{0.84}Y_{0.15}Eu_{0.01}BO₃ и *Lu_{0.79}Y_{0.2}Eu_{0.01}BO₃ — образцы, подвергнутые прессованию перед отжигом.

Таким образом, на основании исследования спектров люминесценции приповерхностного слоя и объема ортоборатов $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ можно сделать вывод о том, что при увеличении концентрации Y^{3+} (при x > 0.1) фаза ватерита образуется вначале в объеме крупных микрокристаллов ($8-20\,\mu$ m).

Важно отметить, что исследование спектров люминесценции при разных длинах волн возбуждающего света позволяет проследить за процессом формирования структурных модификаций в объеме и на поверхности микрокристаллов исследованных образцов при увеличении концентрации легирующих примесей.

Показано, что спектры люминесценции приповерхностного слоя и объема микрокристаллов $Lu_{1-x}RE_xBO_3$ (RE = Eu, Tb и Y), имеющих во всем объеме структуру кальцита либо ватерита, совпадают и содержат характерные для этих фаз полосы свечения: для фазы кальцита —

589.8 и 595.7 nm; для ватерита — 588-596, 608-613 и 624-632 nm.

Установлено, что в двухфазной области фаза ватерита образуется вначале в объеме крупных микрокристаллов размером $8-20\,\mu$ m, которые имели структуру кальцита. При дальнейшем увеличении концентрации ионов RE фаза ватерита образуется также и на поверхности этих микрокристаллов.

В боратах LuBO₃ плотность фазы ватерита (7.42 g/cc) заметно больше плотности фазы кальцита (6.871 g/cc) [20], поэтому при образовании фазы ватерита в объеме крупных микрокристаллов, имевших структуру кальцита, не будут возникать механические напряжения, препятствующие этому процессу. Так как фаза ватерита имеет меньший объем, то при образовании в микрокристаллах кальцита фазы ватерита, в них образуются пустоты, скопление которых может

приводить к нарушению сплошности и образованию трещин, которые наблюдаются экспериментально (рис. 3, e, m, n; рис. 4, c, d, e, f, g, h).

Следует отметить, что при рентгенофазовом анализе мы получаем информацию о структуре образца, усредненную по его объему, поскольку глубина проникновения рентгеновского излучения и максимальный размер исследованных микрокристаллов близки и составляют ~ $10-15 \mu$ m. В то же время, как отмечалось, структуры на поверхности и в объеме образца могут существенно отличаться [14–16]. Поэтому использование оптически активных и структурно-чувствительных меток, которые дают возможность исследования структуры приповерхностного слоя и объема образца Lu_{1-x}RE_xBO₃ в зависимости от концентрации RE³⁺, позволяет получать более полную информацию об изменении структурного состояния исследуемых соединений.

7. Заключение

В настоящей работе проведены исследования структуры, морфологии, ИК-спектров поглощения, а также спектров возбуждения люминесценции и спектров люминесценции приповерхностного слоя и объема синтезированных при 970°С микрокристаллов ортоборатов Lu_{1-x}Eu_xBO₃ и Lu_{0.99-x}Tb_xEu_{0.01}BO₃ при $0 \le x \le 0.20$, а также Lu_{0.99-x}Y_xEu_{0.01}BO₃ при $0 \le x \le 0.25$.

Установлено однозначное соответствие между структурной модификацией и спектральными характеристиками фотолюминесценции и ИК-поглощения ортоборатов $Lu_{1-x}RE_xBO_3$ (RE = Eu, Tb и Y).

Исследование спектров люминесценции при разных длинах волн возбуждающего света позволило получить информацию о структуре приповерхностного слоя и объема исследованных образцов.

Показано, что в ортоборатах $Lu_{1-x}RE_xBO_3$ (RE = Eu, Tb и Y) увеличение концентрации RE приводит к последовательному изменению структурного состояния и спектральных характеристик

- $Lu_{1-x}Eu_xBO_3$ при $0 \le x \le 0.07$,
- $Lu_{0.99-x}Tb_xEu_{0.01}BO_3$ при $0 \le x \le 0.09$ и $Lu_{0.99-x}Y_xEu_{0.01}BO_3$ при $0 \le x \le 0.1$

являются однофазными и имеют структуру кальцита (пр. гр. $R\bar{3}c$). Соответствующие этой структуре спектры люминесценции ионов Eu³⁺ в приповерхностном слое и объеме микрокристаллов этих образцов содержат полосы, характерные для кальцитной модификации ($\lambda_{max} = 589.8$ и 595.7 nm).

- Lu_{1-x}Eu_xBO₃, Lu_{0.99-x}Tb_xEu_{0.01}BO₃ при x ≥0.2 и Lu_{0.99-x}Y_xEu_{0.01}BO₃ при x ≥ 0.25

имеют во всем объеме структуру ватерита (пр. гр. C2/c). Спектры люминесценции ионов Eu³⁺ в приповерхностном слое и объеме микрокристаллов этих образцов содержат полосы, характерные для ватеритной модификации — 588–596, 608–613 и 624–632 nm.

 - Lu_{1-x}Eu_xBO₃ при 0.07 < x < 0.2, Lu_{0.99-x}Tb_xEu_{0.01}BO₃ при 0.09 < x < 0.2 и Lu_{0.99-x}Y_xEu_{0.01}BO₃ при 0.1 < x < 0.25

являются двухфазными. Они содержат фазы кальцита и ватерита. В спектрах люминесценции наблюдаются полосы, характерные для кальцитной и ватеритной модификаций этих образцов.

Ортобораты Lu_{0.99-x} Y_xEu_{0.01}BO₃, имеющие структуру ватерита, состоят преимущественно из микрокристаллов размером $8-20\,\mu$ m, в то время как образцы Lu_{1-x}Eu_xBO₃ и Lu_{0.99-x}Tb_xEu_{0.01}BO₃ со структурой ватерита состоят из микрокристаллов размером $1-2\,\mu$ m.

Установлено, что в двухфазной области фаза ватерита образуется как в виде мелких $(1-2\mu m)$ микрокристаллов, так и в объеме крупных микрокристаллов размером $8-20\mu m$, как и в соединении $Lu_{0.99-x}Gd_xEu_{0.01}BO_3$.

Ортобораты Lu_{1-x}Eu_xBO₃, Lu_{0.99-x}Tb_xEu_{0.01}BO₃ и Lu_{0.99-x}Y_xEu_{0.01}BO₃ имеют высокую интенсивность свечения и могут быть использованы в качестве эффективных красных люминофоров для светодиодных источников света

Благодарности

Авторы выражают благодарность ЦКП Института физики твердого тела им. Ю.А. Осипьяна Российской академии наук за исследование морфологиии образцов, а также их характеризацию методами ИК-спектроскопии и рентгенофазового анализа.

Финансирование работы

Работа выполнена в рамках госзадания ИФТТ РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Y.H. Zhou, J. Lin, S.B. Wang, H.J. Zhang. Opt. Mater. 20, 1, 13 (2002).
- [2] Jun Yang, Chunxia Li, Xiaoming Zhang, Zewei Quan, Cuimiao Zhang, Huaiyong Li, Jun Lin. Chem. Eur. J. 14, 14, 4336 (2008).
- [3] C. Mansuy, J.M. Nedelec, C. Dujardin, R. Mahiou. Opt. Mater. 29, 6, 697 (2007).
- [4] J. Yang, G. Zhang, L. Wang, Z. You, S. Huang, H. Lian, J. Lin. J. Solid State Chem. 181, 12, 2672 (2008).
- [5] С.З. Шмурак, А.П. Киселев, В.В. Синицын, И.М. Шмытько, А.С. Аронин, Б.С. Редькин, Е.Г. Понятовский. ФТТ 48, 1, 48 (2006)
- [6] С.З. Шмурак, В.В. Кедров, А.П. Киселев, И.И. Зверькова. ФТТ 55, 2, 336 (2013).
- [7] A.A. Mazilkin, O.G. Rybchenko, T.N. Fursova, S.Z. Shmurak, V.V. Kedrov. Mater. Characterization 147, 215 (2019).
- [8] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.М. Шмытько. ФТТ 58, 3, 564 (2016).

- [9] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, О.Г. Рыбченко. ФТТ 59, 6, 1150 (2017).
- [10] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, С.С. Хасанов. ФТТ 62, 11, 1888 (2020).
- [11] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова. ФТТ 62, 12, 2110 (2020).
- [12] М.А. Ельяшевич. Спектроскопия редких земель. ГИТТЛ, М. (1953). 456 с.
- [13] М.И. Гайдук, В.Ф. Золин, Л.С. Гайгерова. Спектры люминесценции европия. Наука, М. (1974). 195 с.
- [14] А.П. Киселев, С.З. Шмурак, Б.С. Редькин, В.В. Синицын, И.М. Шмытько, Е.А. Кудренко, Е.Г. Понятовский. ФТТ 48, |it8, 1458 (2006).
- [15] S.Z. Shmurak, A.P. Kiselev, N.V. Klassen, V.V. Sinitsyn, I.M. Shmyt'ko, B.S. Red'kin, S.S. Khasanov. IEEE Trans. Nucl. Sci. 55, 1–3, 1128 (2008).
- [16] С.З. Шмурак, А.П. Киселев, Д.М. Курмашева, Б.С. Редькин, В.В. Синицын. ЖЭТФ 137, 5, 867 (2010).
- [17] D. Hrrniak, E. Zych, L. Kepinski, W. Strek. J. Phys. Chem. Solids 64, 1, 11 (2003).
- [18] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, Е. Ю. Постнова. ФТТ 63, 7, 933 (2021).
- [19] J. Hölsä. Inorg. Chim. Acta 139, 1-2, 257 (1987).
- [20] E.M. Levin, R.S. Roth, J.B. Martin. Am. Miner. 46, 1030 (1961).
- [21] G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, C. Cousseins. J. Solid State Chem. 128, 261 (1997).
- [22] С.З. Шмурак, В.В. Кедров, А.П. Киселев, И.М. Шмытько. ФТТ **57**, *1*, 19 (2015).
- [23] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.М. Шмытько. ФТТ 57, 8, 1558 (2015).
- [24] .D. Santamaría-Pérez, O. Gomis, J. Angel Sans, H.M. Ortiz, A. Vegas, D. Errandonea, J. Ruiz-Fuertes, D. Martinez-Garcia, B. Garcia-Domene, L. André, J. Pereira, F. Javier Manjón, P. Rodríguez-Hernández, A. Muñoz, F. Piccinelli, M. Bettinelli, C. Popescu. J. Phys. Chem. C 118, 4354 (2014).
- [25] Wen Ding, Pan Liang, Zhi-Hong Liu. Mater. Res. Bull. 94, 31 (2017).
- [26] Wen Ding, Pan Liang, Zhi-Hong Liu. Solid State Sci. 67, 76 (2017).
- [27] Zhi-Jun Zhang, Teng-Teng Jin, Meng-Meng Xu, Qing-Zhen Huang, Man-Rong Li, Jing-Tai Zhao. Inorg. Chem. 54, 969 (2015).
- [28] А.Г. Рябухин. Изв. Челябинского науч. центра, вып. **4**, 33 (2000).
- [29] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, С.С. Хасанов. ФТТ 61, 4, 747 (2019)
- [30] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, С.С. Хасанов. ФТТ 61, 11, 2142 (2019)
- [31] C.E. Weir, E.R. Lippincott. J. RES. Natl. Bur. Std. 65A, 3, 173 (1961).
- [32] D. Boyer, F. Leroux, G. Bertrand, R. Mahiou. J. Non-Crystal. Solids **306**, *2*, 110 (2002).
- [33] J.P. Laperches, P. Tarte. Spectrochim. Acta 22, 7, 1201 (1966).
- [34] A. Szczeszak, T. Grzyb, S. Lis, R.J. Wiglusz. Dalton Trans., 41, 5824 (2012).
- [35] Guohua Jia, Peter A. Tanner, Chang-Kui Duan, Jeannette Dexpert-Ghys. J. Phys. Chem. C 114, 2769 (2010).

Редактор Т.Н. Василевская