01;03

Энергетическая оценка смачивания проводящей каплей заряженной диэлектрической поверхности

© А.В. Голочалова, Э.Б. Кулумбаев¶

Белгородский государственный национальный исследовательский университет, Белгород, Россия [¶] E-mail: kulumbaev@bsu.edu.ru

Поступило в Редакцию 27 апреля 2021 г. В окончательной редакции 16 мая 2021 г. Принято к публикации 16 мая 2021 г.

Выполнена энергетическая оценка смачивания проводящей каплей диэлектрической подложки, заряженной фиксированным на ней сторонним электрическим зарядом. Получено, что смачиваемость такой поверхности уменьшается, если средняя плотность индуцированного в основании капли заряда превышает пороговое значение.

Ключевые слова: смачивание, проводящая жидкость, электрический заряд, краевой угол.

DOI: 10.21883/PJTF.2021.17.51379.18845

Смачивание как объект исследования представляет научный и практический интерес. В частности, актуальной остается задача управления смачиванием для различных технических приложений. В схеме электросмачивания на диэлектрике для увеличения его смачиваемости жидкостью применяется электрическое поле электродов [1]. Обратный эффект — уменьшение смачивания — наблюдается при размещении проводящей капли на предварительно заряженной диэлектрической подложке [2]. В настоящей работе закономерности смачивания в условиях эксперимента [2] изучаются на основе энергетического подхода.

Рассматривается равновесное осесимметричное состояние капли проводящей жидкости в газе, лежащей на горизонтальной твердой диэлектрической подложке, равномерно заряженной фиксированным на ее ограничивающей плоскости сторонним электрическим зарядом с известной поверхностной плотностью σ_0 (рис. 1). В электрическом поле этого заряда происходит поляризация физически однородных фаз. Поэтому индуцированные и связанные заряды появятся только на разделяющих их границах, которые рассматриваются в приближении бесконечно тонких поверхностей. Распределение суммарного (стороннего, индуцированного и связанного) заряда на этих поверхностях на основе подхода Гринберга [3] определяется системой интегральных уравнений

$$\sigma_{SL} = 2\varepsilon_0 E_{SL}(\sigma_{LG}),$$

$$\sigma_{SG} = \frac{2}{\varepsilon_G + \varepsilon_S} \sigma_0 - 2\varepsilon_0 \frac{\varepsilon_S - \varepsilon_G}{\varepsilon_S + \varepsilon_G} E_{SG}(\sigma_{LG}),$$

$$\sigma_{LG} = 2\varepsilon_0 [E_{LG}(\sigma_{LG}) + E_{LG}(\sigma_{SL}) + E_{LG}(\sigma_{SG})], \quad (1)$$

где σ — поверхностная плотность заряда; ε — диэлектрическая проницаемость; E — проекция на нормаль (внешнюю на поверхности капли и противоположную орту оси z на границе SG) к элементу контактной поверхности вектора напряженности электрического поля,

0

создаваемого всеми расположенными вне этого элемента зарядами; ε_0 — электрическая постоянная. Здесь и далее нижний одинарный индекс обозначает принадлежность величины к фазе, двойной — к межфазной границе (рис. 1).

Стационарное устойчивое состояние рассматриваемой системы реализуется в минимуме ее энергии W. Капля полагается малой настолько, что влиянием силы тяжести на ее форму пренебрегается по сравнению с действием поверхностного натяжения. Тогда W складывается из поверхностной W_s и электрической W_e энергий:

$$W_{s} = \alpha_{LG}A_{LG} + \alpha_{SL}A_{SL} + \alpha_{SG}A_{SG},$$

$$W_{e} = 0.5\varphi_{L}q_{L} + 0.5\int\varphi_{SG}\sigma_{SG}dA.$$
 (2)

Здесь α — коэффициент поверхностного натяжения на контактной границе фаз с площадью *A*; φ — скалярный потенциал в месте нахождения заряда σdA .

Суммарный заряд $q_L = \int \sigma_{LG} dA + \int \sigma_{SL} dA$ на поверхности капли с использованием формул $\sigma_{LG} = \sigma_{LG}^i / \varepsilon_G$, $\sigma_{SL} = (\sigma_0 + \sigma_{SL}^i) / \varepsilon_S$ (где σ^i — плотность индуцированного заряда проводника на границе с диэлектриком, причем $\int \sigma_{LG}^i dA + \int \sigma_{SL}^i dA = 0$) приводится к виду

$$q_L = \left[1/\varepsilon_S + (1/\varepsilon_G - 1/\varepsilon_S)\gamma \right] \sigma_0 A_{SL}.$$
(3)

Здесь $\gamma = -\int \sigma_{SL}^{i} dA/\sigma_{0}A_{SL}$ — отношение средней плотности наведенного в основании *SL* заряда к плотности σ_{0} с учетом противоположности знаков этих зарядов.

Задача нахождения формы капли, обеспечивающей минимум W с учетом (1)-(3) при заданном объеме V жидкости, может быть решена только в результате тонкого численного расчета из-за особенностей плотности заряда и электрического поля на линии контакта трех фаз. Поэтому для оценки смачивания задача упрощается. Мениск малой капли полагается сферическим. При $V = 2\pi R_0^3/3$ (R_0 — радиус полушара с объемом V)

Рис. 1. Геометрия трехфазной системы. S — твердое тело, L — жидкость, G — газ.

шаровой сегмент задается краевым углом θ (рис. 1) в известных геометрических формулах для радиусов кривизны $R = R_0 f(\theta)$, основания $r_0 = R \sin \theta$, высоты $h = R (1 - \cos \theta)$ и площадей $A_{LG} = 2\pi Rh$, $A_{SL} = \pi r_0^2$, где $f(\theta) = \left[2/(2 - 3\cos\theta + \cos^3\theta)\right]^{1/3}$. На незаряженной подложке ($\sigma_0 = 0$) минимизация W_s дает формулу Юнга [4]: $\alpha_{SG} = \alpha_{SL} + \alpha_{LG}\cos\theta_Y$. Тогда обезразмеренная с масштабом $2\pi R_0^2 \alpha_{LG}$ переменная часть энергии W_s из первого выражения (2) записывается следующим образом:

$$W'_{s} = (1 - \cos\theta - 0.5\sin^2\theta\cos\theta_Y)f^2(\theta).$$
(4)

Потенциал φ_L проводника находится методом среднего потенциала [5], результаты которого с приемлемой для оценки интегральных величин точностью согласуются с экспериментальными данными. Сначала рассчитывается потенциал в каждой точке поверхности капли от зарядов на всех контактных границах. Для этого полагается, что распределение индуцированного заряда равномерно и на границе LG, и на границе SL. Поскольку в основании капли средняя плотность индуцированного заряда $-\gamma \sigma_0$, имеем $\sigma_{SL} = (1 - \gamma)\sigma_0/\varepsilon_S$. Для суммарного заряда на мениске получается $\sigma_{LG} = (\gamma \sigma_0 / \varepsilon_G) \cos^2(\theta/2)$. Плотность σ_{SG} вычисляется по соответствующей формуле (1). Затем вычисленный потенциал усредняется по поверхности капли, и этот средний потенциал поверхности принимается за φ_L . Аналитического результата такой расчет не допускает. Поэтому φ_L находится численно. Образующая формы капли составляется из дуги окружности радиуса R, вырезаемой центральным углом θ , и радиуса r_0 основания капли (рис. 1). Дуга разбивается на N равных частей. При вращении дуги вокруг оси симметрии образуются заряженные коаксиальные круговые пояски, потенциал каждого из которых отождествляется с известным полем кольцевого заряда $\Delta q_{LG} = \sigma_{LG} 2\pi r_n R \theta / N$, проходящего через центр пояска с координатами (r_n, z_n) : $r_n = R \sin \theta_n, \ z_n = R(\cos \theta_n - \cos \theta), \ \theta_n = \theta(n - 0.5)/N,$

 $1 \leq n \leq N$. Поверхностный заряд в основании капли аппроксимируется системой кольцевых зарядов $\Delta q_{SL} = \sigma_{SL} 2\pi r_n R [\sin(\theta n/N) - \sin(\theta(n-1)/N)]$. Аналогично на границе SG: $\Delta q_{SG} = \sigma_{SG} 2\pi r_{m+0.5}(r_{m+1} - r_m)$, $r_m = r_0 + (5R_0 - r_0)m/M$, $0 \leq m \leq M$. Поэтому в произвольной точке (r, z) потенциал имеет вид

$$2\pi^{2}\varepsilon_{0}\varphi(r,z) = \sum_{n=1}^{N} \left[\frac{\Delta q_{LG}}{R_{1n}} \mathbf{K} \left(\frac{2\sqrt{rr_{n}}}{R_{1n}} \right) + \frac{\Delta q_{SL}}{R_{2n}} \mathbf{K} \left(\frac{2\sqrt{rr_{n}}}{R_{2n}} \right) \right] + \sum_{m=1}^{M} \frac{\Delta q_{SG}}{R_{2m}} \mathbf{K} \left(\frac{2\sqrt{rr_{m}}}{R_{2m}} \right),$$
(5)

где

$$R_{1n} = \sqrt{(r+r_n)^2 + (z-z_n)^2}, \ R_{2n} = \sqrt{(r+r_n)^2 + z^2},$$

К — полный эллиптический интеграл первого рода.

Для усреднения по поверхности капли, обходя особенность $K(1) = \infty$, по формуле (5) находим φ в точках с координатами $r_l = R \sin \theta_l$; $z_l = R(\cos \theta_l - \cos \theta)$ (для точек основания $z_l = 0$), где $\theta_l = \theta l/N$, $0 \le l \le N$, а интегралы для среднего потенциала $\varphi_L = (\int \varphi_{LG} dA + \int \varphi_{SL} dA)/(A_{LG} + A_{SL})$ капли и второго слагаемого в энергии W_e (2) вычисляются по формуле трапеций.

Рис. 2. Зависимости энергии W'_{s} (1), полной энергии W'_{e} (2) и ее слагаемых в формуле (6) (4, 5), а также $W'_{s} + W'_{e}$ (3) от краевого угла при $\beta = 0.1$, $\gamma = 0.5$. Звездочками отмечены минимумы W'_{e} при $\gamma = 0.36$, 0.4 и далее с шагом 0.1 до 1, кружками обозначены минимумы $W'_{s} + W'_{e}$ при γ от 0.3 до 1 с шагом 0.1.

Электрическая энергия W_e , обезразмеренная с тем же масштабом, что и (4), записывается в виде

$$W'_e = 0.5\beta \left(\varphi'_L q'_L + \int \varphi'_{SG} \sigma'_{SG} dA' \right), \tag{6}$$

где $\beta = \sigma_0^2 R_0 / 4 \varepsilon_0 \alpha_{LG}$ — отношение характерных значений электрической (с масштабами $\sigma_0 R_0 / 2 \varepsilon_0$ для потенциала и $\sigma_0 \pi R_0^2$ для заряда) и поверхностной энергий.

Расчет проводится при фиксированных значениях $\varepsilon_G = 1$, $\varepsilon_S = 4$, $\theta_Y = 20^\circ$, близких к экспериментальным данным [2] для капли воды на аморфной пленке диоксида кремния, а параметры γ и β варьируются. Отметим, что выражение параметра γ модели может быть найдено для полусферической капли. Поскольку электрическое поле в основании равномерно заряженной полусферы однородно и равно $\sigma_{LG}/4\varepsilon_0$, из (1) следует $\sigma_{SL} = \sigma_{LG}/2$, что дает $\gamma = 1/(1 + 0.25\varepsilon_S/\varepsilon_G)$.

При фиксированном значении $\beta = 0.1$ существует пороговое значение $\gamma \approx 0.35$, ниже которого точка минимума энергии практически совпадает с заданным углом Юнга (рис. 2). При превышении порогового значения краевой угол θ увеличивается (кружки на рис. 2) и при $\gamma \to 1$ достигает величины 52°. Пороговое значение у разделяет монотонные и немонотонные зависимости $W'_{o}(\theta)$, минимумы которых (звездочки на рис. 2) зависят только от у. Сами минимумы обусловлены противоположным характером изменения слагаемых W'_e в (6) (кривые 4 и 5 на рис. 2). При фиксированном у с ростом β по мере уменьшения вклада W'_s в профиль энергии системы краевой угол θ монотонно увеличивается и при условии $W'_e \gg W'_s$ достигает насыщения в точках минимума W'_e , не зависящих от θ_Y . На рис. 2 этому отвечает смещение любого из "кружков" в соответствующую ему "звездочку" при $\beta \to \infty$.

Физическое объяснение рассчитанного увеличения краевого угла следует из эквивалентности влияния электрического заряда на межфазной границе уменьшению поверхностного натяжения. В схеме электросмачивания заряд преимущественно находится на границе *SL*, что приводит к уменьшению α_{SL} и увеличению смачивания. В рассматриваемом случае заряд есть на всех межфазных границах. Вблизи контактной линии трех фаз, где $E_{SG}(\sigma_{LG}) \approx E_{SL}(\sigma_{LG})$, из (1) следует, что

$$\sigma_{SG}/\sigma_{SL} = [(1+\gamma)/(1-\gamma) + \varepsilon_G/\varepsilon_S]/(1+\varepsilon_G/\varepsilon_S) > 1.$$

Поэтому α_{SG} уменьшается больше, чем α_{SL} . В результате баланс натяжений будет выполняться на меньшем периметре смачивания с бо́льшим краевым углом независимо от изменения α_{LG} при $\theta \leq 90^{\circ}$. Такая закономерность смачивания проводящей каплей заряженной диэлектрической подложки качественно согласуется с экспериментально наблюдаемой в [2].

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- F. Mugele, J. Heikenfeld, *Electrowetting: fundamental principles and practical applications* (Wiley-VCH, 2018), p. 133–136.
- [2] D. Aronov, M. Molotskii, G. Rosenman, Appl. Phys. Lett., 90 (10), 104104 (2007). DOI: 10.1063/1.2711656
- [3] Г.А. Гринберг, Избранные вопросы математической теории электрических и магнитных явлений (Изд-во АН СССР, М.-Л., 1948), с. 255-260.
- [4] Б.Д. Сумм, Ю.В. Горюнов, Физико-химические основы смачивания и растекания (Химия, М., 1976), с. 15–16.
- [5] Ю.Я. Иоссель, Э.С. Кочанов, М.Г. Струнский, Расчет электрической емкости (Энергоиздат, Л., 1981), с. 24–31.