# 15

# Влияние геометрии и модового состава излучения на рассеивающие свойства кварц-полимерного оптического волокна со светоотражающей оболочкой Tefzel

### © А.А. Маковецкий

Фрязинский филиал Института радиотехники и электроники им. Котельникова РАН, 141190 Фрязино, Московская обл., Россия

e-mail: maz226@ms.ire.rssi.ru

Поступила в редакцию 01.04.2021 г. В окончательной редакции 23.04.2021 г. Принята к публикации 26.04.2021 г.

Для кварц-полимерного оптического волокна с диаметром световедущей сердцевины  $400 \,\mu$ m и с рассеивающей светоотражающей оболочкой из термопластичного сополимера тетрафторэтилена с этиленом марки Tefzel проведен численный расчет гибридных мод. Для выбранных мод были рассчитаны радиальный профиль и определяющая рассеяние величина  $\chi$  — относительная доля энергии моды, распространяющейся по светоотражающей оболочке. Функция  $\chi(m, s)$  монотонно возрастает с увеличением азимутального числа *m* и уменьшается с увеличением радиального числа *s*. Наибольшее значение  $\chi$  достигается у моды с максимально возможным для данного оптического волокна значением *m* = 953, при котором существует только одна мода с *s* = 1. При уменьшении диаметра световедущей сердцевины рассеивание возрастает.

Полученные расчетно-теоретические результаты были качественно подтверждены экспериментами по измерению рассеяния в кварц-полимерных оптических волокнах со светоотражающей оболочкой Tefzel с диаметрами световедущей сердцевины 400 и 200 µm.

Ключевые слова: многомодовое оптическое волокно, рассеивающая светоотражающая оболочка, характеристическое уравнение, расчет радиальных профилей мод, доля излучения моды, распространяющегося по оболочке.

DOI: 10.21883/OS.2021.09.51351.2097-21

### Введение

Визуально наблюдаемое рассеяние света в оптических волокнах (OB) давно привлекает внимание исследователей с точки зрения создания на его основе гибких протяженных источников света для широкого спектра применений [1–3]. Для создания OB с эффективным рассеянием (боковым свечением) используется несколько методов, в том числе многократное микроизгибание оси волокна [4], включение рассеивающих центров в сердцевину [5] или оболочку волокна [3], включение люминесцентных центров в сердцевину волокна [6], радиационное облучение OB с германосиликатной сердцевиной [7], создание асимметрии в геометрии сердцевина/оболочка и другие методы.

Наиболее разработанным методом создания преформ рассеивающих кварц-кварцевых ОВ является метод внешнего осаждения — Outside Vapor Deposition (OVD). С его помощью на поверхность цилиндрического штабика из кварцевого стекла наносят слой стекла с газовыми пузырями. После перетяжки преформы в сердцевине волокна у границы со светоотражающей оболочкой формируются нано- и микроразмерные пузыри, вызывающие рассеяние проходящего по ОВ излучения. Таким методом компания Corning Inc. создала продукт под названием Fibrance TM Light Diffusing Fiber [8]. Рассеивающие пузыри в сердцевине преформы создают также методом модифицированного химического осаждения из паровой фазы (MCVD) [9].

Рассеивающие кварц-полимерные OB создают внесением рассеивающих добавок в жидкую полимерную композицию для нанесения светоотражающего покрытия [10].

Заметим, что при исследовании оптических свойств рассеивающих ОВ использовались феноменологические модели, модовый состав излучения не учитывался.

Кварц-полимерное оптическое волокно со светоотражающей оболочкой из сополимера тетрафторэтилена с этиленом марки являются специальным видом кварцполимерных ОВ, у которых светоотражающая оболочка одновременно является и защитной оболочкой. Этот полимер является кристаллизующимся полимером, т.е. имеющими в объеме материала как аморфную фазу (показатель преломления n = 1.393), так и кристаллическую фазу. Последняя состоит из анизотропных кристаллов различной морфологии (кристаллитов, фибрилл, ламелей, сферолитов). Их показатели преломления слегка отличаются от показателя преломления аморфной фазы. Степень кристалличности полимера составляет 40-60% [11]. Вследствие этого при распространении света по ОВ наблюдается сильное его рассеяние, видимое под любым углом наблюдения (рис. 1).



**Рис. 1.** Фотография бухты OB длиной 20 m (диаметр бухты 220 mm) при ее засветке излучением лазера LG Laser 303 с  $\lambda = 532$  nm.

Целью данной работы является теоретическое исследование зависимости эффективности рассеяния излучения от геометрии и модового состава излучения в многомодовых кварц-полимерных OB со светоотражающим покрытием Tefzel, а также качественная проверка полученных результатов на экспериментах по измерению рассеяния в данных OB.

# Характеристическое уравнение и алгоритм его решения

Собственные числа гибридных мод оптического волокна со ступенчатым профилем показателя преломления с бесконечной оболочкой задаются характеристическим уравнением [12]:

$$\left(\frac{1}{w}\frac{Kn'(m,w)}{Kn(m,w)} + \frac{1}{u}\frac{Jn'(m,u)}{Jn(m,u)}\right) \left(\frac{n_2^2}{w}\frac{Kn'(m,w)}{Kn(m,w)} + \frac{n_1^2}{u}\frac{Jn'(m,u)}{Jn(m,u)}\right) - \left(\frac{V^2}{u^2w^2}\right)^2\frac{m^2\beta^2}{k_0^2} = 0,$$
(1)

где Jn(m, u), Kn(m, w), Jn'(m, u) и Kn'(m, w) — функции Бесселя первого рода, модифицированные функции Бесселя второго рода и их производные по u и w соответственно, m — азимутальное модовое число,  $k_0 = 2\pi/\lambda$  — волновое число в вакууме,  $n_1$  и  $n_2$  — показатели преломления сердцевины и оболочки OB. Величины u и w связаны с осевой постоянной распространения  $\beta$  и приведённой частотой V соотношениями:

$$u = a(n_1^2 k_0^2 - \beta_2)^{1/2}, \quad w = a(\beta^2 - n_2^2 k_0^2)^{1/2},$$
$$V = ak_0(n_1^2 - n_2^2)^{1/2},$$

где *а* — радиус сердцевины OB.

В качестве переменной выберем величину u, выразим через нее величины w и  $\beta$ . Обозначим левую часть уравнения (1) через Fs(u, m),  $u \in (0, V)$ . Разобьем этот интервал на  $N = 10^5$  равных частей точками с координатами  $u_j = V(j-1)/N$ , j = 1, 2, ..., N, N + 1. Построим в системе Mathcad графики функций sign  $(Fs(u_j, m))$ для OB с параметрами:  $n_1 = 1.456$  (кварцевое стекло),  $n_2 = 1.393$  (Tefzel),  $a = 200 \,\mu$ m (диаметр сердцевины —  $400 \,\mu$ m). Графики функций sign  $(Fs(u_j, m))$ , рассчитанные для нескольких значений азимутального числа *m*, приведены на рис. 2. Решения уравнения (1) лежат на каждом из отрезков  $(u_j, u_{j+1})$ , в концевых точках которых функция sign  $(Fs(u_j, m))$  меняет значение с -1на +1 или наоборот. Определив все такие отрезки для заданного значения азимутального числа *m*, затем с помощью процедуры Mathcad root (f(x), x) определяли решения  $u_{m,s}$ , где s — радиальное число.

# Качественный анализ решений характеристического уравнения

Отметим основные свойства решений характеристического уравнения для КП-ОВ/Tefzel/400 µm.

1. Интервал решений уравнения (1) при увеличения азимутального числа сужается от  $\approx (0, V)$  при m = 1 до одной точки при  $m = m_{\text{max}} = 953$ .

2. Семейство решений уравнения (1) состоит из пар близко стоящих друг к другу решений, которые на рис. 1 в большинстве своем визуально не различимы.

3. Число гибридных мод уменьшается от 653 мод при *m* = 1 до одной моды при *m* = 953.

В данной работе не стояла задача исследования надмолекулярной структуры полимерной светоотражающей оболочки. Предполагалось, что она фиксирована, так что интенсивность рассеяния распространяющейся по OB моды определялась долей ее энергии  $\chi$ , распространяющейся по оболочке:

$$\chi(m,s) = \frac{\int_{a}^{a_{1,1}} |E_{m,s}^{z}(r,\varphi)|^{2} r dr}{\int_{0}^{a} |E_{m,s}^{z}(r,\varphi)|^{2} r dr + \int_{a}^{a_{1,1}} |E_{m,s}^{z}(r,\varphi)|^{2} r dr},$$

где  $E_{m,s}^{z}(r, \varphi)$  — поперечный профиль моды с азимутальным числом *m* и радиальным числом *s*. Выражение для  $E_{m,s}^{z}(r, \varphi)$  имеет вид

$$E_{m,s}^{z}(r,\varphi) = \exp(im\varphi) \begin{cases} Jn\left(m, u_{m,s} \frac{r}{a}\right), & 0 \le r \le a, \\ \frac{Jn(m, u_{m,s})}{Kn(m, w_{m,s})} Kn\left(m, w_{m,s} \frac{r}{a}\right), & r \ge a. \end{cases}$$

Рассчитанные значения величин  $\chi(u_{m,s})$  для всех мод с азимутальным числом m = 1 приведены на рис. 3. Видно, что кривая расщепляется на две кривые, соответствующие ЕН- и НЕ-модам ОВ. Верхняя кривая построена для четных значений радиального числа *s*, нижняя — для нечетных. В дальнейшем будем анализировать верхние ветви зависимостей  $\chi(u_{m,s})$ .

На рис. 4 приведены рассчитанные зависимости  $\chi(u_{m,s})$  для мод КП-OB/Tefzel/400  $\mu$ m с другими значениями азимутального числа *m*. Отметим основные свойства приведенных кривых.



**Рис. 2.** Графики функций sign $(Fs(u_{j,m}))$ , качественно иллюстрирующие количество и расположение гибридных мод КП-OB/Tefzel/400  $\mu$ m для m = 1 (a), 200 (b), 540 (c), 800 (d) и 953 (e).



**Рис. 3.** Рассчитанные значения  $\chi(u_{m,s})$  гибридных мод КП-OB/Tefzel/400 $\mu$ m при m = 1 для четных (1) и для нечетных s (2).

1. При любом допустимом значении азимутального числа *m* наибольшее значение величина  $\chi$  достигает при значении радиального числа *s* = 1. При увеличении *s* величина  $\chi$  монотонно убывает.

2. При увеличении азимутального числа *m* величины  $\chi$  возрастают, достигая своего максимального значения  $\chi_{\rm max} = 3.395 \cdot 10^{-3}$  для  $m_{\rm max} = 953$ . Отметим, что при  $m = m_{\rm max}$  существует только одна мода.

На рис. 5 изображены рассчитанные радиальные профили нескольких мод КП-OB/Tefzel/400  $\mu$ m, поясняющие и дополняющие кривые, представленные на рис. 2. Из них видно, что для мод с радиальным числом s = 1 радиальные профили представляет собой "одногорбные" кривые. При s > 1 профили моды — осциллирующие кривые, с уменьшением амплитуды осцилляций при



Рис. 4. Рассчитанные значения величин  $\chi$  гибридных мод КП-OB/Tefzel/400 $\mu$ m для m = 1 (1), 200 (2), 540 (3), 800 (4) и 953 (5).



**Рис. 5.** Рассчитанные радиальные профили гибридных мод КП-OB/Tefzel/400  $\mu$ m для m = 1 (*a*), 200 (*b*), 540 (*c*) и 953 (*d*). Профили с индексами *1* соответствуют s = 1, с индексами  $2 - s = s_{max}$ .



**Рис. 6.** Рассчитанные зависимости величин  $m_{\text{max}}(1)$  и  $\chi_{\text{max}}(2)$  от диаметра световедущей сердцевины  $d_f$  для КП-OB/Tefzel/ $d_f$ .

увеличении расстояния от оси волокна r. При m > 1 в центре волокна образуется темное пятно (характерный признак гибридных мод, оптических вихрей). Это пятно соответствует каустике косых лучей в геометрической оптике. При этом чем больше азимутальное число, тем шире каустика, поле в сердцевине сосредоточивается во все более тонком цилиндре у границы раздела с оболочкой. Наконец, при m = 953 остается только одна мода с самой широкой каустикой и самым узким цилиндром, в котором она сосредоточена. Именно эта мода имеет наибольше значение  $\chi$  среди всех остальных мод данного OB.

Представляет практический интерес изучение зависимости величин  $\chi_{max}$  и  $m_{max}$  от диаметра световедущей сердцевины  $d_f$ . Рассчитанные зависимости приведены на рис. 6. Из них следует, что интенсивность рассеяния излучения в КП-OB/Tefzel/ $d_f$  может существенно возрасти при уменьшении диаметра светоотражающей сердцевины  $d_f$  от 400 до 50  $\mu$ m. При этом максимальное значение m при уменьшении диаметра сердцевины уменьшается.



1201

**Рис. 7.** Распределения интенсивностей бокового рассеяния света  $J_s(x)$  вдоль оси КП-ОВ/Tefzel/400 $\mu$ m при  $\delta = 1.5$  mm (1), 3 mm (2), 5 mm (3). Длина ОВ 18.5 m,  $\lambda = 532$  nm; шаг измерений — 1 m.

# Анализ рассеяния в оптическом волокне КП-ОВ/Tefzel/400 µm

Для возбуждения гибридных мод OB сфокусированное излучение лазера LG-303 ( $\lambda = 532$  nm) необходимо вводить в торец волокна под углом к оси OB и со смещением относительно его центра [13,14]. Это достигалось поперечным сдвигом  $\delta$  оси лазера относительно оси фоку-



Рис. 8. Фото пятен излучения  $\lambda = 532 \text{ nm}$  в дальнем поле КП-OB/Tefzel/400 $\mu$ m: при  $\delta = 2.0 \text{ mm}$  (*a*), 3 mm (*b*) и 5 mm (*c*). Расстояние от торца OB до экрана h = 48 mm.



**Рис. 9.** Зависимости интенсивности бокового рассеяния света  $J_s$  от величины  $\delta$  для КП-ОВ со светоотражающей оболочкой Tefzel для  $d_f = 400 \,\mu \text{m}$  (1), 200 $\,\mu \text{m}$  (2). Измерения проведены в начале OB ( $x = 0.5 \,\text{m}$ );  $\lambda = 532 \,\text{nm}$ .

сирующего объектива  $10 \times /0.4$  с помощью механического юстировочного столика. Различные группы гибридных мод возбуждались варьированием величины  $\delta$ .

Для измерения распределения интенсивности рассеянного излучения вдоль оси ОВ  $J_s(x)$  с помощью ФЭУ для каждого выбранного расстояния x до входного торца ОВ регистрировалось излучение, рассеянное участком оболочки ОВ длиной  $\approx 25$  mm. При этом измеряемый участок ОВ устанавливали параллельно светочувствительному торцу ФЭУ на расстоянии 5 mm от него [15].

Распределения интенсивностей бокового рассеяния света  $J_s(x)$  вдоль оси ОВ с  $d_f = 400 \,\mu$ m для трех значений  $\delta$  приведены на рис. 7. Соответствующие им фото пятен излучения, выходящего из ОВ, представлены на рис. 8. Из рис. 7 следует, что чем больше величина  $\delta$  (больше значение азимутального числа m у возбужденных мод), тем интенсивнее было рассеяние и тем быстрее оно ослабевало вдоль оси ОВ. Например, вблизи входного торца ОВ интенсивность рассеяния  $J_s$  при  $\delta = 5 \,\text{mm}$  была примерно в 6 раз выше, чем при засветке

с  $\delta = 1.5$  mm. При этом суммарная (по всей длине OB) интенсивность рассеянного оболочкой излучения при  $\delta = 5$  mm в несколько раз превышала интенсивность излучения, прошедшего через OB.

На рис. 9 приведены измеренные зависимости, иллюстрирующие зависимость интенсивности рассеяния КП-OB/Tefzel от диаметра световедущей сердцевины. Из приведенных кривых видно, что у OB с диаметром сердцевины  $200\,\mu$ m интенсивность рассеяния заметно выше, чем у OB с сердцевиной диаметром  $400\,\mu$ m. Это качественно подтверждает выводы, сделанные в расчетной части статьи.

# Заключение

Сформулируем основные результаты настоящей работы.

1. Численным решением характеристического уравнения проведен расчет гибридных мод (параметров  $u_{m,s}$ ) кварц-полимерного оптического волокна со светоотражающей оболочкой Tefzel и с диаметром световедущей сердцевины 400  $\mu$ m. Для каждой гибридной моды определена величина  $\chi$  — доля энергии, распространяющаяся по оболочке и определяющая интенсивность ее рассеяния.

2. Величина  $\chi(u_{m,s})$  монотонно возрастает с увеличением азимутального числа *m* и уменьшается с увеличением радиального числа *s*. Наибольшее значение  $\chi$  достигается для моды с максимально возможным для данного оптического волокна значением *m* = 953, при котором существует только одна мода со значением *s* = 1.

3. Полученные расчетно-теоретические результаты были качественно подтверждены экспериментами по измерению рассеяния в кварц-полимерных оптических волокнах со светоотражающей оболочкой Tefzel с диаметрами световедущей сердцевины 400 и 200 µm.

#### Финансирование работы

Работа выполнена в рамках государственного задания ФИРЭ им. В.А. Котельникова РАН.

### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

### Список литературы

- [1] Rawson E.G. // Appl. Opt. 1974. V. 13. N 10. P. 2370.
- [2] Arie A., Karoubi R., Gur Y.S., Tur M. // Appl. Opt. 1986.
  V. 25. N 11. P. 1754.
- [3] Spigulis J., Pfafrods D., Stafekis M., Jelinska-Platace W. // Proc. SPIE. 1997. V. 2967. P. 231.
- [4] Costello A., Nyikal J., Yu V.Y., McCloud P. // J. Paediatrics and Child Health. 1995. V. 31. N 1. P. 1.

- [5] Logunov S.L., Bennett K.W., Fewkes E.J., Klubben W.S., Paniccia M. // J. Lightwave Technology. 2019. V. 37. N 22.
   P. 5667–5673. doi 10.1109/JLT.2019.2928697
- [6] Кизеветтер Д.В., Славина А.Ю., Левин В.М., Баскаков Г.Г. // Научно-технические ведомости СПбГПУ. 2012. № 1/6. С. 119.
- [7] Ероньян М.А., Комаров А.В., Ломасов В.Н., Реуцкий А.А., Унтилов А.А., Устинов С.В. // Сб. трудов Междунар. Конф. Прикладная оптика — 2018. СПб., 19–21 декабря 2018 г. Т. 1. С. 134.
- [8] Corning Fibrance Light-Diffusing Fibers // http://www.corning.com/corning fibrance light-diffusing fibers/product information sheet
- Bisyarin M.A., Eronyan M.A., Kulesh A.Yu., Meshkovskiy I.K., Reutsky A.A., Shcheglov A.A., Ustinov S.V. // J. Opt. Soc. Am. B. 2017. V. 34. N 11. P. 2396. doi 10.1364/JOSAB.34.002396
- [10] Lanzarini-Lopes M., Garcia-Segura S., Hristovski K., Messerly M., Simon A.J., Westerhoff P. // J. Opt. Soc. Am. Part B. 2019. V. 36. N 6. P. 1623. doi 10.1364/JOSAB.36.001623
- [11] Энциклопедия полимеров. Т. 3. М.: Советская энциклопедия. 1977. 793 с.
- [12] Snitzer E. // J. Opt. Soc. Am. 1961. V. 51. N 5. P. 491.
- Bolshtyansky M.A., Savchenko A.Yu., Zel'dovich B.Ya. // Opt. Lett. 1999. V. 24. N 7. P. 433.
- [14] *Кизеветтер Д.В., Ильин Н.В. //* Научно-технические ведомости СПбГПУ. 2013. № 3(177). С. 151.
- [15] Маковецкий А.А., Замятин А.А., Ряховский Д.В. // Радиотехн. и электрон. 2021. Т. 66. № 3. С. 279. doi 10.31857/S0033849421030141