05,13

Влияние амплитуды СВЧ-воздействия на спиновый ток границы платина/железоиттриевый гранат

© К.И. Константинян¹, Г.А. Овсянников¹, К.Л. Станкевич¹, Т.А. Шайхулов¹, В.А. Шмаков¹, А.А. Климов^{1,2}

¹ Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия

² Российский технологический университет — МИРЭА, Москва, Россия

E-mail: gena@hitech.cplire.ru

Поступила в Редакцию 9 апреля 2021 г. В окончательной редакции 9 апреля 2021 г. Принята к публикации 19 апреля 2021 г.

> Исследованы спектры спинового тока в гетероструктуре, состоящей из эпитаксиальной пленки железоиттриевый иттриевого граната Y₃Fe₅O₁₂ (YIG), выращенной на подложке из галлий-гадолиниевого граната Gd₃Ga₅O₁₂ (GGG) и пленки платины (Pt). Измерения спинового тока, вызванного CBЧ-воздействием на YIG пленку в режиме ферромагнитного резонанса и обратным спиновым эффектом Холла, проводились при вариации мощности CBЧ-воздействия 20 μ W-50 mW и частоты 2–9 GHz в температурном диапазоне T = 77-300 K с целью выявления роли спин-волновых резонансов в YIG на спектральные характеристики спинового тока. Обнаружено, что при увеличении мощности CBЧ-воздействия на частотах f = 2-3 GHz амплитуда спинового тока, вызванная спин-волновыми резонансами поверхностных спиновых волн, становится сравнимой с вкладом от ферромагнитного резонанса.

> Ключевые слова: ферромагнитный резонанс, спин-волновой резонанс, спиновый ток, железоиттриевый гранат, платина.

DOI: 10.21883/FTT.2021.09.51258.23H

1. Введение

Известно, что в гетероструктурах, состоящих из ферромагнетика (FM) и нормального (немагнитного) металла (NM) в условиях ферромагнитного резонанса (FMR) поперек их границы возникает спиновый ток I_S , который определяет величину зарядового тока в нормальном металле I_Q вследствие обратного спинового эффекта Холла:

$$I_O = (e/h)\theta_{SH}[\mathbf{n} \times I_S], \tag{1}$$

где θ_{SH} — спиновый угол Холла, **n** — единичный вектор спинового момента в ферромагнетике. Экспериментально измеряется напряжение $V_Q = RI_Q$ (R — сопротивление пленки Pt), возникающее в NMметалле за счет обратного спинового эффекта Холла (ISHE) [1-3]. В гетероструктурах Pt/YIG при СВЧвоздействии спектр $V_O(H)$ наряду с особенностью, вызванной FMR (волновой вектор k = 0) может содержать особенности, вызванные спин-волновыми резонансами (SWR) с $k \neq 0$ [4–6]. Обычно SWR возникают при достаточно большой толщине пленки YIG и невысоких частотах СВЧ-воздействия [4-6]. В данной работе, изменяя мощность СВЧ-воздействия P_{in}, было экспериментально изучено влияние SWR, вызванных поверхностными (MSSW) и объемными (BVSW) спиновыми волнами, на спектр напряжения $V_O(H)$, вызванного протеканием спинового тока. Исследовалось также поведение амплитуды и ширины линии спектра $V_O(H)$ с уменьшением температуры от комнатной до азотной T = 77 К.

2. Образцы и техника измерений

Пленки железоиттриевого граната $Y_3Fe_5O_{12}$ (YIG) толщиной $d_{YIG}=8\,\mu$ т выращивалась с помощью молекулярной эпитаксии на обе стороны подложки (111)Gd_3Ga_5O_{12} (GGG) толщиной 0.5 mm и размером в плане 4×3 mm². Пленка Pt толщиной $d_{Pt} = 10$ nm напылялась на одну сторону структуры YIG/GGG с помощью распыления на постоянном токе при комнатной температуре.

Магнитная петля гистерезиса YIG-пленки, измеренная с помощью меридионального эффекта Керра [7], имела коэрцитивную силу $H_C = 30$ Ое и поле насыщения $H_S = 230$ Ое. При вращении гетероструктуры относительно нормали к плоскости подложки не было обнаружено магнитной анизотропии.

Исследуемые образцы располагались в держателе так, чтобы СВЧ-магнитное поле h_{rf} было направлено параллельно направлению возникновения напряжения V_Q на пленке Рt. Внешнее постоянное магнитное поле H находилось в плоскости подложки и было направлено перпендикулярно h_{rf} . Регистрация напряжения V_Q проводилась малошумящим синхронным усилителем при модуляции СВЧ-воздействия. Спектр FMR определялся либо из зависимости от магнитного поля отраженного СВЧ-сигнала в широком интервале СВЧ f = 2-18 GHz, либо по зависимостям производной dP/dH от H на частотах f = 2-5 GHz.

Рис. 1. Зависимость спектра FMR dP/dH от магнитного поля H, T = 78 K, f = 5 GHz. На вставках — спектры $V_Q(H)$, снятые при сдвиге частоты СВЧ-воздействия накачки f = 4.74 GHz для двух направлений магнитного поля. Сплошными линиями на вставках показана аппроксимация $V_Q(H)$ линиями Лоренца для k = 0. Мощность СВЧ-воздействия не превышала 3 mW.

3. Экспериментальные результаты

3.1. Спиновая проводимость границы Pt/YIG

При СВЧ-воздействии в режиме FMR в пленке YIG через границу Pt/YIG протекает спиновый ток, который определяется спиновой проводимостью границы Pt/YIG $g^{\uparrow\downarrow}$ и амплитудой СВЧ-магнитного поля h_{rf} [3,8,9]:

$$I_{S} = (hf/4\pi)g^{\uparrow\downarrow}(h_{rf}/2\Delta H_{\text{Pt/YIG}})^{2}, \qquad (2)$$

где $\Delta H_{Pt/YIG}$ — ширина линии FMR гетероструктуры Pt/YIG. При однородном уширении линии поглощения $g^{\uparrow\downarrow}$ экспериментально определяется утечкой спинов через границу [3,5,8,10]:

$$g^{\uparrow\downarrow} = \frac{\gamma M t_{\rm YIG}}{\mu_{\rm B} f} (\Delta H_{\rm Pt/YIG} - \Delta_{\rm YIG}), \tag{3}$$

где γ — гиромагнитное отношение, M — намагниченность пленки YIG, t_{YIG} — толщина пленки YIG, μ_{B} — магнетон Бора, ΔH_{YIG} и YIG, $\Delta H_{\text{Pt/YUG}}$ ширины линии FMR пленки YIG и гетероструктуры Pt/YIG соотвественно. Используя (3) для частоты f = 7 GHz, получаем $g^{\uparrow\downarrow} = 1.1 \cdot 10^{20} \text{ m}^{-2}$. Для сравнения в [5] для границы Pt/YIG получено существенно большее значение $g^{\uparrow\downarrow} = 4.8 \cdot 10^{20} \text{ m}^{-2}$, что, возможно, вызвано присутствием других механизмов уширения линии кроме однородного уширения, которое учитывается в соотношении (3). Однако наши оценки вкладов в $g^{\uparrow\downarrow}$ неоднородности ферромагнетика, одномерной спиновой проводимости пленки Pt, двухмагнонного рассеяния и вихре-

вого тока показали, что вклады перечисленных факторов в спиновую проводимость не превышают 10% [11,12].

3.2. Спектр спинового тока

На рис. 1 показана зависимость спектра dP/dH(H) гетероструктуры Pt/YIG при T = 78 К и f = 5 GHz. Видно, что dP/dH(H) гетероструктуры Pt/YIG имеет симметричный характер с одинаковым знаком поглощения

Рис. 2. Зависимость $V_Q(H)$, T = 120 K, f = 2.1 GHz, $P_{in} = 2$ mW. Эксперимент — квадраты, сплошная красная линия — сумма трех линий Лоренца, (штриховая лииния).

Рис. 3. Зависимости $V_Q(H)$ при T = 300 K, f = 2.1 GHz при выходной мощности СВЧ-воздействия (a) $P_{in} = 2$ mW — аппроксимация одной линией Лоренца, (b) $P_{in} = 10$ mW — аппроксимация четырьмя линиями Лоренца, (c) 50 mW — аппроксимация пятью линиями Лоренца.

при изменении направления (знака) магнитного поля. На вставках к рис. 1 приведены зависимости $V_Q(H)$ для двух значений направления магнитного поля, снятые при небольшой отстройке частоты f = 4.74 GHz. В отличие от FMR спектры $V_Q(H)$ асимметричны относительно изменения знака H в соответствии с соотношениями (1,2). Сдвиг по полю пиков V_Q при f = 4.74 GHz относительно FMR-спектра при f = 5 GHz хорошо соответствует соотношению Киттеля для изотропного случая $f = \gamma [H_0(H_0 + 4\pi M)]^{1/2}$ при намагниченности $4\pi M = 2.0 \pm 0.01$ kG для T = 78 K.

На вставках к рис. 1 приведены спектральные линии $V_Q(H)$, аппроксимированные линией Лоренца с i = 0:

$$L_i(H) = A_i / \left[1 + \left[(H - H_i) / \Delta H_i \right]^2,$$
 (4)

где A_i — амплитуда, ΔH_i — полуширина линии на полувысоте, H_i — сдвиг пика *i*-той линии относительно основной i = 0, соответствующей FMR.

С понижением частоты и увеличением мощности СВЧ-воздействия форма спектра $V_O(H)$ претерпевает искажение и отличается от линии Лоренца. Пример зависимости $V_Q(H)$, снятой при температуре $T = 120 \,\mathrm{K}$ приведен на рис. 2. Видно, что зависимость $V_Q(H)$ асимметрична относительно максимума. Достаточно хорошее соответствие формы спектра получается при аппроксимации суммой трех линий Лоренца (4) L_i с i = 0, 1, 2 (штриховые линии на рис. 2). Заметим, появление в спектре $V_Q(H)$ боковых линий обусловлено возникновением SWR: при $H_i < H_0$ поверхностными (MSSW), а при $H_i > H_0$ объемными (BVSW) спиновыми волнами [4-6]. Из приведенного рисунка видно, что в данном случае искажение формы спектральной линии $V_O(H)$ происходит при $H < H_0$ и, следовательно, обусловлено SWR поверхностных волн. Отметим, что на более высоких частотах искажение спектра $V_O(H)$ не наблюдается, а на FMR спектре отсутствуют SWRособенности.

Рис. 4. Зависимости от мощности СВЧ-воздействия амплитуды линии Лоренца FMR компоненты L_0 (см. рис. 2) и амплитуды, полученной аппроксимацией $V_Q(H)$ одной линией (см. вставку к рисунку).

3.3. Влияние мощности СВЧ-воздействия

Для определения влияния мощности СВЧ-воздействия на спектр спинового тока были сняты зависимости $V_Q(H)$, варьируя подаваемую мощность СВЧ-воздействия P_{in} . На рис. З представлены зависимости $V_Q(H)$ при T = 300 K для трех значений P_{in}. Экспериментальную зависимость $V_Q(H)$ удается описать совокупностью от одной до пяти линий Лоренца в зависимости от величины P_{in} . При малом значении $P_{in} = 2 \,\mathrm{mW}$ наблюдается небольшое отличие спектра $V_O(H)$ от линии Лоренца с *i* = 0 (рис. 2). При высокой мощности СВЧ-воздействия присутствуют компоненты $V_O(H)$, вызванные SWR как поверхностными, так и объемными волнами (рис. 3, c). Так, для $P_{in} = 50 \,\mathrm{mW}$ помимо L_0 с $H_0 = 300 \,\mathrm{Oe}$ и $\Delta H = 38$ Oe, есть три компоненты от поверхностных волн: L_1 с $H_1 = 261$ Ое и $\Delta H = 52$ Ое, L_2 с $H_2 = 251$ Ое и $\Delta H_2 = 11$ Oe, L_3 с $H_3 = 238$ Oe и $\Delta H_2 = 16$ Oe, а также L_1^* от объемной волны с $H_1^* = 324 \,\text{Oe}$ и $\Delta H_1^* = 29 \,\text{Oe}.$ Отметим, что аппроксимация одними лишь линиями Лоренца дает хорошее совпадение с экспериментом, но не учитывает вклад дисперсионной (асимметричной) составляющей FMR [13].

На рис. 4. приведены две зависимости от P_{in} параметра A, пропорционального произведению амплитуды спектральной линии $V_Q(H)$ на ширину линии. Зависимость, обозначенная L соответствует аппроксимации всей кривой $V_Q(H)$ одной линией Лоренца (см. вставку на рис. 4), а зависимость L_0 соответствует значению Aлинии Лоренца с i = 0 при разложении спектра $V_Q(H)$ на составляющие (см. рис. 3). Видно, что зависимости Lи L_0 расходятся при $P_{in} \approx 10$ mW. Такое поведение параметра A свидетельствует о том, что с увеличением P_{in} наблюдается перераспределение доминирующих механизмов генерации спинового тока от FMR к SWR. При более низких температурах параметр $g^{\uparrow\downarrow}$, пропорциональный M растет и вклад в спектр $V_Q(H)$ SWR поверхностных волн проявляется отчетливее, как видно из сравнения данных на рис. 2 и 3, а, полученных при одинаковой мощности СВЧ-воздействия $P_{in} = 2 \text{ mW}$.

3.4. Температурная зависимость спинового тока

При изменении температуры амплитуда напряжения $V_Q(T)$ изменяется из-за температурных зависимостей намагниченности M(T), которая определяет $g^{\uparrow\downarrow}$, ширины линии спектра спинового тока, спинового угла θ_{SH} , а также от мощности СВЧ-воздействия, h_{rf}^2 (см. соотношения (1)-(3)).

На рис. 5 приведена температурная зависимость ширины линии ΔH и амплитуды тока $I_O = V_O/R$, пересчитанная с учетом сопротивления пленки Рt R(T). Видно, что для случая f = 3 GHz и $P_{in} = 2 \text{ mW}$ ширина линии ΔH в пределах экспериментальной погрешности не зависит от температуры. Хотя температура Кюри YIG существенно выше комнатной, зависимость M(T), полученная из экспериментальных данных $H_0(T)$ по формуле Киттеля для изотропного ферромагнетика, нарастает с уменьшением температуры и выходит на плато при $T \le 100 \, \text{K}$. Такое поведение типично для YIG-пленок, в том числе и с внесенными неоднородностями [14]. В наших гетероструктурах величина намагниченности М при комнатной температуре составляет 2/3 от М при T = 120 К. Соответственно, без учета остальных факторов, влияющих на температурную зависимость $I_Q(T)$, должен наблюдаться спад I_Q с увеличением температуры. Однако в эксперименте на $f = 2.1 \, \text{GHz}$, напротив, наблюдался рост І_Q с температурой. Возможным объяснением может служить зависимость от температуры импедансных характеристик интерфейса YIG/Pt, влияющих на величину h_{rf} (см. соотношение в (2)). Более подробные температурные измерения $I_O(T)$ были проведены на частоте $f = 3 \, \text{GHz}$, представленные на рис. 5. Видно, что амплитуда $I_O(T)$, аппроксимированная

Рис. 5. Температурные зависимости ширины линии ΔH (квадраты) и амплитуды тока I_Q (круги), $P_{in} = 2 \text{ mW}$, f = 3 GHz. Линейные аппроксимации зависимостей показаны штрихами.

в приближении наименьших квадратов линейной зависимостью, демонстрирует рост с увеличением температуры. Заметим, рост амплитуды напряжения $V_Q(T)$ с температурой был получен также в работе [6] на частоте f = 9.12 GHz.

4. Заключение

Наличие спин-волновых резонансов (SWR) искажает спектр спинового тока Pt/YIG гетероструктур. На относительно низких частотах (3 GHz и ниже) при малых мощностях накачки $P_{in} < 2$ mW вклад в спектральную линию $V_Q(H)$ от SWR существенно меньше, чем от FMR. С увеличением мощности CBЧ-воздействия P_{in} влияние SWR становится заметнее, особенно тех резонансов, которые обусловлены поверхностными волнами. Зависимость спектральных характеристик спинового тока от P_{in} свидетельствует о перераспределении мощности накачки от FMR к SWR. С уменьшением температуры амплитуда тока I_Q , обусловленного ISHE уменьшается, хотя величина намагниченности M растет с понижением температуры. При этом изменения в ширине линии $I_O(H)$ не обнаруживаются.

Благодарности

Авторы благодарны В.А. Ацаркину, В.В. Демидову, Ю.В. Кислинскому, А.М. Петржику и А.В. Шадрину за полезное обсуждение полученных результатов и помощь при проведении измерений.

Финансирование работы

Работа выполнена в рамках государственного задания и частично поддержана Российским фондом фундаментальных исследований (проектами РФФИ 18-57-16001, 19-07-00143). Работа А.А. Климова частично поддержана Российским научным фондом, проект 20-12-00276.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] M.I. Dyakonov, V.I. Perel. Phys. Lett. A 35, 459 (1971).
- [2] E. Saitoh, M. Ueda, H. Miyajima, G. Tatara. Appl. Phys. Lett. 88, 182509 (2006).
- [3] Y. Tserkovnyak, A. Brataas, G.E.W. Bauer. Phys. Rev. Lett. 88, 117601 (2002).
- [4] C.W. Sandweg, Y. Kajiwara, K. Ando, E. Saitoh, B. Hillebrands. Appl. Phys. Lett., 97, 252504 (2010).
- [5] S.M. Rezende, R.L. Rodríguez-Suárez, M.M. Soares, L.H. Vilela-Leão, D. Ley Domínguez, A. Azevedo. Appl. Phys. Lett. 102, 012402 (2013).
- [6] Se. Dushenko, Yukio Higuchi, Yuichiro Ando, Teruya Shinjo, Masashi Shiraishi. Appl. Phys. Exp. 8, 103002 (2015).

- [7] A.S. Grishin, G.A. Ovsyannikov, A.A. Klimov, V.V. Demidov, K.Y. Constantinian, I.V. Borisenko, V.L. Preobrazhensky, N. Tiercelin, P. Pernod. J. Electron. Mater. 47, 1595 (2018).
- [8] Fengyuan Yang, P. Chris Hammel. J. Phys. D 51, 253001 (2018).
- [9] O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann. Phys. Rev. B 82, 214403 (2010).
- [10] S. Emori, U.S. Alaan, M.T. Gray, V. Sluka, Y. Chen, A.D. Kent, Y. Suzuki. Phys. Rev. B 94, 224423 (2016).
- [11] Т.А. Шайхулов, Г.А. Овсянников. ФТТ 60, 11, 2160 (2018).
- [12] T.G.A. Verhagen, H.N. Tinkey, H.C. Overweg, M. van Son, M. Huber, J.M. van Ruitenbeek, J. Aarts. J. Phys. Condens. Matter 28, 056004 (2016).
- [13] M. Harder, Z.X. Cao, Y.S. Gui, X.L. Fan, C.-M. Hu. Phys. Rev. B 84, 054423 (2011).
- [14] I.H. Solt Jr. Appl. Phys. A 33, 1189 (1982).

Редактор Д.В. Жуманов