Оптические фононы в полупроводниковых соединениях TIFeS₂, TIFeSe₂

© Р.Г. Велиев¹, Н.А. Абдуллаев^{1,2,¶}, И.Р. Амирасланов^{1,2}, И.А. Мамедова¹, Д.А. Мамедов¹, З.И. Бадалова¹, Ш.К. Гудавасов^{1,3}, С.А. Немов^{4,5}

 ¹ Институт физики Национальной академии наук Азербайджана, Az1143 Баку, Азербайджан
 ² Бакинский государственный университет, Az1148 Баку, Азербайджан
 ³ Азербайджано-Французский университет, Az1010 Баку, Азербайджан
 ⁴ Санкт-Петербургский государственный политехнический университет Петра Великого, 195251 Санкт-Петербург, Россия
 ⁵ Забайкальский государственный университет, 672039 Чита, Россия

[¶] E-mail: abnadir@mail.ru

Поступила в Редакцию 22 марта 2021 г. В окончательной редакции 6 апреля 2021 г. Принята к публикации 6 апреля 2021 г.

Рентгеновские исследования кристаллов TlFeS₂, TlFeSe₂, полученных методом высокотемпературного синтеза, выявили их монофазность и изоструктурность с пространственной группой симметрии C2/m. Исследованы комбинационное рассеяние света и инфракрасное отражение света в соединениях TlFeS₂, TlFeSe₂ при температуре 300 K. Обнаружены и определены характерные частоты в рамановском рассеянии и инфракрасных спектрах фононов в TlFeS₂, TlFeSe₂. Из анализа опубликованных работ по магнитным свойствам TlFeS₂, TlFeSe₂ сделано заключение, что они являются квазиодномерными антиферромагнетиками, каждый из которых обладает двумя характеристическими температурами, T_{N3D} и $T_c^{super-p}$, между ними и располагается квазиодномерное антиферромагнитное упорядочение в TlFeS₂, TlFeSe₂. Teмпература $T_c^{super-p}$ введена впервые и характеризует сильно развитый ближний магнитный порядок, в котором существует суперпарамагнитное упорядочение.

Ключевые слова: оптические фононы, комбинационное рассеяние света, инфракрасное отражение света, монофазность и изоструктурность кристаллов, квазиодномерные антиферромагнетики.

DOI: 10.21883/FTP.2021.08.51135.9653

1. Введение

Сильно анизотропные (квазинизкоразмерные) антиферромагнетики, в низкосимметричной кристаллической структуре которых располагаются цепочечные или слоистые, а также возможны и те и другие построения, в магнитном отношении резко отличаются от трехмерных антиферромагнетиков [1].

В научной литературе имеется определенное количество экспериментальных работ по выявлению магнитных свойств изоструктурных полупроводников TlFeS₂, TlFeSe₂ [2,3], обладающих низкосимметричной (моноклинной) кристаллической структурой, в элементарной ячейке которой присутствуют цепочечные и слоистые построения [4,5]. Однако выводы о природе магнитного фазового превращения в TlFeS₂, TlFeSe₂ весьма противоречивы [2,5–12].

В работе [12] приведены данные исследований магнитной восприимчивости соединений TlFeS₂, TlFeSe₂ и RbFeSe₂ в интервале температур 1.8-700 K. Paнee [10] температурная зависимость магнитной восприимчивости TlFeS₂, TlFeSe₂ была исследована в интервале 1.5–400 К, причем как в произвольном кристаллографическом направлении, так и на монокристаллических образцах вдоль основных (\mathbf{c} и \mathbf{a}) кристаллографических направлений. В [10,12] утверждается, что TIFeS₂ и TIFeSe₂ являются коллинеарными трехмерными антиферромагнетиками с температурами Нееля T_N , равными соответственно 196 и 290 К, хотя в температурных зависимостях магнитной восприимчивости TIFeS₂ и TIFeSe₂ и TIFeSe₂ наблюдаются две аномалии [9,10,12].

В публикации обзорного характера [13] отмечается, что ниже температур 12 и 14 К, которые автор принимает как $T_{\rm N3D}$ ($T_{\rm N3D}$ — температура Нееля, характеризующая дальний порядок), существует неколлинеарное трехмерное (3D) антиферромагнитное упорядочение в TIFeS₂ и TIFeSe₂ соответственно, а выше температуры $T_{\rm N3D}$ в TIFeS₂, TIFeSe₂ происходит фазовое превращение неколлинеарного 3D антиферромагнитного упорядочения в квазиодномерное (1D) антиферромагнитное упорядочение.

Далее автор [13] предполагает, что температуры 196 и 290 К на температурной зависимости магнитной восприимчивости TlFeS₂ и TlFeSe₂ характеризуют соответ-

Рис. 1. Температурные зависимости магнитной восприимчивости в координатах $\chi^{-1}(T)$ кристаллов TlFeS₂ и TlFeSe₂ (экспериментальные данные [10] с нашими комментариями).

ственно в этих соединениях, согласно работе [1], сильно развитый ближний магнитный порядок. Тот же автор в работе [14], анализируя статьи [7,8], где утверждается, что TIFeS₂, TIFeSe₂ обладают суперпарамагнитными свойствами, выдвигает версию о возможном нарушении вследствие флуктуации спинов (спин-флопов) компенсации магнитных моментов в упорядоченных 1D антиферромагнитных доменах TIFeS₂, TIFeSe₂, и они ведут себя в окрестности ближнего магнитного порядка как ультрамелкие ферримагнитные частицы в состоянии суперпарамагнетизма.

По нашему мнению, выдвинутая автором [14] версия позволяет заключить, что в сильно развитом ближнем магнитном порядке 1D антиферромагнетиков TlFeS₂, TlFeSe₂ существует суперпарамагнитное упорядочение с характеристической температурой $T_c^{\text{super-p}} = 196$ и 290 K соответственно. При дальнейшем увеличении температуры TlFeS₂ и TlFeSe₂ переходят в парамагнитное состояние.

На рис. 1 представлены в координатах $\chi^{-1}(T)$ температурные зависимости магнитной восприимчивости (χ) TIFeS₂ и TIFeSe₂ (рисунок с нашими комментариями соответствует публикации [10]). Из рисунка видно, что температурные зависимости магнитной восприимчивости поликристаллических образцов TIFeS₂, TIFeSe₂ весьма близки к аналогичным зависимостям, измеренным вдоль кристаллографической оси **с** на монокристаллических образцах TIFeS₂. При этом во всех четырех температурных зависимостях магнитной восприимчивости рассмотренных соединений наблюдаются две аномалии. Это обстоятельство указывает на то, что магнитная активность соединений TIFeS₂,

TlFeSe₂ проявляется именно вдоль кристаллографической оси **с**.

Температурная зависимость магнитной восприимчивости RbFeSe₂ [12], исследованная в произвольном кристаллографическом направлении, показывает, что RbFeSe₂ является слабоцепочечным трехмерным антиферромагнетиком с $T_{\rm N} = 248$ K.

Авторы работ [2,5–12] при интерпретации экспериментальных результатов не акцентировали внимание на особенностях структуры кристаллов TlFeS₂ и TlFeSe₂ [13], для обнаружения которых следовало бы использовать методы рассеяния электромагнитного излучения (рентгеноструктурный метод, комбинационное рассеяние света, ИК спектроскопия), чтобы прежде всего убедиться в однофазности кристаллов.

С учетом изложенного нашей целью являлось синтезирование и получение кристаллов с химическими формулами $TIFeS_2$ и $TIFeSe_2$, выявление их кристаллической однофазности и в случае ее подтверждения исследование динамики кристаллической решетки соединений $TIFeS_2$, $TIFeSe_2$.

2. Синтез соединений и приготовление экспериментальных образцов

Синтез составов TIFeS₂ и TIFeSe₂ осуществлялся методом высокотемпературного синтеза — сплавлением химических элементов особой чистоты, взятых в стехиометрическом соотношении, в вакуумированных ампулах, изготовленных из плавленого кварца. Ампулы поочередно помещались в электропечь, предварительно нагретую до $\sim 1150^{\circ}$ C, при этом одна треть длины каждой ампулы была вне печи.

Рис. 3. Дифракция рентгеновских лучей в TlFeSe₂.

Когда часть ампулы, находящаяся внутри печи, принимала ее температуру, начиналась бурная реакция (экзотермическая) образования сплава, с интенсивным свечением внутри ампулы. В процессе постепенного вдвигания ампулы внутрь печи производилось медленное вращение ампулы, и после полного ее помещения внутрь печи ее температура опускалась до температуры на $\sim 30^{\circ}$ С больше температур плавления TlFeS₂, TlFeSe₂ [15]. Переплавка продукта реакции длилась 72 ч, после чего вращение ампулы прекращалось и температура печи опускалась до $\sim 350^{\circ}$ С, при которой каждый сплав отжигался 240 ч.

Для рентгеноструктурных исследований синтезированные сплавы приводили в порошкообразное состояние, а для оптических исследований (комбинационное рассеяние света, инфракрасное отражение) экспериментальные образцы были изготовлены в форме пря-

4* Физика и техника полупроводников, 2021, том 55, вып. 8

моугольных параллелепипедов (прямоугольных призм), грани которых тщательно полировали.

3. Дифракция рентгеновского излучения

Рентгеновские порошковые дифракционные данные получены на дифрактометре "D2 Phaser", а фазовый анализ проводился методом Ритвельда с использованием стандартных программ EVA и TOPAS-4.2 (Bruker, Germany).

В интервале углов $10 \le 2\theta \le 60^{\circ}$ были зарегистрированы дифракционные рефлексы рентгеновского излучения в кристаллах TIFeS₂ и TIFeSe₂ (рис. 2 и 3 соответственно). Уточнение параметра элементарной ячейки кристаллов TIFeS₂ и TIFeSe₂ подтвердило, что

Состав	Пр.гр.	Ζ	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	β , °	V, Å ³
TlFeS ₂	C2/m	4	11.6369	5.3068	6.8193	117.21	375.86
TlFeSe ₂	C2/m	4	11.9682	5.4802	7.0946	118.14	410.30

Таблица 1. Кристаллографические характеристики соединений TIFeS₂ и TIFeSe₂

Примечание. Пр.гр. — пространственная группа симметрии; *a*, *b*, *c*, β — параметры элементарной ячейки, V — объем элементарной ячейки; Z — формульная единица.

Таблица 2. Рентгенографические характеристики соединений TIFeS₂ и TIFeS₂

	TlFeS ₂		TlFeSe ₂			
20	<i>d</i> , Å (эксперимент)	hkl	20	<i>d</i> , Å (эксперимент)	hkl	
14°54′	6.08628	001	14°15′	6.25334	001	
$17^{\circ}08'$	5.18692	200	$16^{\circ}06'$	5.51372	2 01	
$19^{\circ}27'$	4.69905	110	$17^{\circ}21'$	5.26710	200	
21°39'	4.15015	111	$18^{\circ}23'$	4.86258	110	
$24^{\circ}17'$	3.74023	111	$20^\circ 50'$	4.32795	111	
$26^{\circ}54'$	3.35550	$20\bar{2}$	$25^{\circ}30'$	3.51625	2 02	
$27^{\circ}21'$	3.27408	201	$27^{\circ}14'$	3.33090	201	
$29^{\circ}11'$	3.10626	311	30°33′	2.98223	4 01	
31°27′	2.89407	310	32°44′	2.75758	4 02	
$32^{\circ}03'$	2.82567	112	$36^{\circ}10'$	2.51259	021	
$34^{\circ}28'$	2.64319	40 2	37°32′	2.43035	220	
37°35′	2.43053	021	37°35′	2.40717	112	
38°33′	2.34596	112	$38^{\circ}46'$	2.33873	311	
$41^{\circ}08'$	2.21607	202	$40^{\circ}19'$	2.26350	202	
$42^{\circ}47'$	2.12639	403	$42^{\circ}30'$	2.15432	313	
$44^{\circ}18'$	2.06602	221	43°32′	2.08676	003	
$45^{\circ}16'$	2.02314	113	$46^{\circ}08'$	1.96816	ō02	
$47^{\circ}07'$	1.92893	60 2	$47^{\circ}03'$	1.94620	42 <u>2</u>	
$49^{\circ}08'$	1.86888	420	49°52′	1.83892	<u></u> 603	
$50^{\circ}04'$	1.83479	513	52°36′	1.75815	222	
$52^{\circ}14'$	1.76521	603	52°43′	1.74378	2 04	
$53^{\circ}07'$	1.72401	223	$55^{\circ}04'$	1.66704	421	
55°03′	1.67872	204	$57^{\circ}05'$	1.62340	330	
56°25′	1.63422	421	58°21'	1.58364	711	
$58^{\circ}14'$	1.58520	712				

они изоструктурны и относятся к моноклинной сингонии (табл. 1).

Расшифровка дифрактограмм (рис. 2 и 3) на основе определенных кристаллографических параметров показала, что исследуемые кристаллы $TlFeS_2$, $TlFeSe_2$ являются монофазными, межплоскостные расстояния *d* приведены нами в табл. 2. Необходимо отметить, что практически для всех рефлексов экспериментальные значения *d* совпадали с расчетными.

Следует отметить, что выявленные нами значения структурных параметров $TlFeS_2$ и $TlFeSe_2$ удовлетворительно согласуются с приведенными в работах [4,15].

TlFeS₂ известен [5] как кристаллоструктурный аналог природного минерала "рагинит", обладающего харак-

терными прямолинейными тетраэдрическими цепочками FeS₄, т.е. в структуре TlFeS₂ трехвалентный атом железа, связанный с 4 атомами серы посредством сил ковалентной химической связи, образует тетраэдр, в центре которого расположен катион железа, а в вершинах расположены анионы серы. Эти тетраэдры $Fe^{3+}S_4^{2-}$, сочлененные общими ребрами, образуют цепочки, вытянутые вдоль кристаллографической оси с, а одновалентные атомы таллия (Tl) располагаются слоями в тригонально-призматических пустотах кристаллической структуры вдоль кристаллографической оси а псевдотетрагональной призмы TlFeS₂ моноклинной сингонии. В пространственном строении соединения TlFeS₂ слоевые пакеты катионов таллия взаимодействуют с цепочками тетраэдров посредством сил ионной химической связи. Между тетраэдрическими цепочками и между слоями из катионов таллия действуют слабые связи вандер-ваальсового типа.

Отметим, что вышеизложенное относится и к TlFeSe₂, поскольку TlFeS₂, TlFeSe₂ изоструктурны и структура этих соединений предполагает сильную зависимость их физических свойств от основных кристаллографических направлений, в частности магнитная активность TlFeS₂, TlFeSe₂ проявляется вдоль оси **c** (см. рис. 1 [9,13]), т. е. вдоль цепи тетраэдров по линейным цепочкам ионов $-Fe^{3+}-X^{2-}-Fe^{3+}-(X-$ халькоген, S или Se). По цепочкам же ионов $-Fe^{3+}-X^{2-}-Tl^{1+}-X^{2-}-Fe^{3+}-$, вытянутых вдоль красталлографической оси **a** соединений TlFeS₂ и TlFeSe₂, которые примерно перпендикулярны цепи тетраэдров FeX₄, магнитная активность TlFeS₂, TlFeSe₂ не проявляется.

4. Комбинационное рассеяние света в соединениях TIFeS₂ и TIFeSe₂

Комбинационное рассеяние света (КР) в экспериментальных образцах исследовалось на конфокальном рамановском микроспектрометре "Nanofinder 30" (Tokyo Instr., Japan). Исследования проводились в геометрии обратного рассеяния. В качестве источника возбуждающего света использовался лазер YAG:Nd с длиной волны излучения на второй гармонике $\lambda = 532$ нм. Приемником излучения служила охлаждаемая ССД-камера $(-70^{\circ}C)$, работающая в режиме счета фотонов. Время экспозиции обычно составляло 1 мин, мощность падающего на образец излучения 10 мВт, диаметр луча 4 мкм. В спектрометре использовалась дифракционная решетка 1800 штрихов/мм, точность определения спектрального положения линий была не хуже 0.5 см⁻¹. Спектры комбинационного рассеяния света в кристаллах TlFeS₂ и TlFeSe₂ приведены на рис. 4 и 5 соответственно.

Как следует из рис. 4, наблюдаются следующие частоты КР-активных фононов в кристаллах TIFeS₂: 47, 116, 125, 163, 294, 300, 354, 380 см^{-1} .

На рис. 5 приведен спектр комбинационного рассеяния света в кристаллах TlFeSe₂. В спектре на рис. 5 последовательно регистрируются следующие частоты

Рис. 4. Спектр комбинационного рассеяния света в кристалле TIFeS₂.

Рис. 5. Спектр комбинационного рассеяния света в кристалле TIFeSe₂.

КР-активных фононов: 36.5, 141, 158, 209 см⁻¹. Из сравнения частот КР-активных фононов в кристаллах TIFeS₂ и TIFeSe₂ отчетливо прослеживается, что частоты в первом случае больше, чем во втором, что обусловлено меньшей массой атомов серы S по сравнению с атомами селена Se.

5. Инфракрасное отражение света кристаллами TIFeS₂, TIFeSe₂

Инфракрасные спектры исследовались на инфракрасном фурье-спектрометре Vertex70 (Bruker, Germany) с вакуумной камерой и приставкой диффузного отраже-

Физика и техника полупроводников, 2021, том 55, вып. 8

ния, в спектральном диапазоне от 4000 до $40 \,\mathrm{cm^{-1}}$, стандартное спектральное разрешение не хуже $0.5 \,\mathrm{cm^{-1}}$. Температура образцов во всех проведенных исследованиях, как и в случае исследований комбинационного рассеяния света, была 300 К.

На рис. 6 приведен спектр ИК отражения от кристалла TlFeS₂. Отражение света происходило под углом 45°. На рисунке видны особенности спектра отражения, обусловленные наличием характерных ИК-активных фононов с частотами 72, 324, 384 см⁻¹.

На рис. 7 приведен спектр ИК отражения от кристалла TlFeSe₂, в котором видны особенности, обусловленные наличием характерных ИК-активных фононов с частотами 59, 248, 290 см⁻¹. Отметим, что, как и в случае спектров комбинационного рассеяния света, частоты ИК-активных мод кристаллов TlFeSe₂ меньше частот фононов в TlFeS₂, что опять же, по-видимому, обусловлено большей массой атомов селена Se по сравнению с атомами серы S. Следует отметить, что спектральные

Рис. 6. Спектр инфракрасного отражения от кристалла TlFeS₂.

Рис. 7. Спектр инфракрасного отражения от кристалла TIFeSe₂.

картины ИК отражения для кристаллов $TlFeS_2$ и $TlFeSe_2$ фактически тождественны, и тем самым косвенно подтверждается изоструктурность этих соединений.

6. Заключение

Методом высокотемпературного синтеза получены сплавы (поликристаллы) $TlFeS_2$, $TlFeSe_2$. Рентгеноструктурные исследования выявили однофазность и изоструктурность кристаллов $TlFeS_2$ и $TlFeSe_2$, дифракционные данные которых приводятся в табулированном виде.

В соединениях TlFeS₂ и TlFeSe₂ в спектрах комбинационного рассеяния света обнаружены частоты КР-активных фононов: 47, 116, 125, 163, 294, 300, 354, 380 см^{-1} и 36.5, 141, 158, 209 см⁻¹ соответственно.

В спектре ИК отражения от кристаллов TIFeS₂ и TIFeSe₂ выявлено наличие ИК-активных фононов с частотами 72, 324, 384 cm^{-1} и 59, 248, 290 см⁻¹ соответственно.

Проведенный анализ опубликованных работ по магнитным свойствам TlFeS₂, TlFeSe₂ позволил нам заключить, что они являются квазиодномерными антиферромагнетиками, каждый из которых обладает двумя характеристическими температурами $T_{\rm N3D}$ и $T_c^{\rm super-p}$, при этом между ними и располагается квазиодномерное антиферромагнитное упорядочение в TlFeS₂, TlFeSe₂. Ниже $T_{\rm N3D}$ в TlFeS₂, TlFeSe₂ имеет место трехмерное неколлинеарное антиферромагнитное упорядочение. Температура $T_c^{\rm super-p}$, которая введена впервые, характеризует сильно развитый ближний магнитный порядок с существованием в нем суперпарамагнитного упорядочения, а выше $T_c^{\rm super-p}$ квазиодномерные антиферромагнетики TlFeS₂, TlFeSe₂ переходят в парамагнитное состояние.

Предполагается провести теоретические расчеты из первых принципов фононных спектров кристаллов TIFeS₂ и TIFeSe₂, а также исследования магнитной восприимчивости четырех полупроводниковых соединений TIFeS₂, TIFeSe₂ [2,3] и TIMnS₂, TIMnSe₂ [16] в интервале температур 0.5-400 К.

Финансирование работы

Работа выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики (гранты № EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/16/1 и № EİF-BGM-3-BRFTF-2⁺/2017-15/02/1).

Список литературы

- [1] К.С. Александров, Н.В. Федосеева, И.П. Спевакова. Магнитные фазовые переходы в галоидных кристаллах (Новосибирск, Наука, 1983) гл. 2, с. 48.
- [2] Э.М. Керимова, Ф.М. Сеидов, С.Н. Мустафаева, С.С. Абдинбеков. Изв. РАН. Неорг. матер., 35 (2), 157 (1999).
- [3] С.Н. Мустафаева, Э.М. Керимова, А.И. Джаббарлы. ФТТ, 42 (12), 2132 (2000).
- [4] K. Klepp, H. Boller. Monatsh. Chem. B, 110 (5), 1045 (1979).
- [5] D. Welz, P. Deppe, W. Schafer, H. Sabrowsky, M. Rosenberg. Phys. Chem. Sol., **50** (3), 297 (1989).

- [6] H. Sabrowsky, M. Rosenberg, D. Welz, P. Deppe, W. Schafer. J. Magn., Magn. Mater., 54–57 (3), 1497 (1986).
- [7] Г.Д. Султанов, Г.Д. Гусейнов, С.Г. Ибрагимов, А.С. Шукюров. Докл. АН АзССР, 43 (12), 16 (1987).
- [8] Г.Д. Султанов, Р.М. Мирзабабаев, С.Г. Ибрагимов, А.С. Шукюров, М.Т. Касумов. ФТТ, **29** (7), 2138 (1987).
- [9] M.A. Aldzhanov, N.G. Guseinov, G.D. Sultanov, M.D. Nadzafzade. Phys. Status Solidi B, 159 (2), K107 (1990).
- [10] Z. Seidov, H.-A. Krug von Nidda, J. Hemberger, A. Loidl, G. Sultanov, E. Kerimova, A. Panfilov. Phys. Rev. B, 65 (1), 014433 (2001).
- [11] Э.Б. Аскеров, А.И. Мададзада, А.И. Бескровный, Д.И. Исмаилов, Р.Н. Мехдиева, С.Г. Джабаров, Э.М. Керимова, Д. Неов. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, № 12, 1 (2014).
- [12] Z. Seidov, H.-A. Krug von Nidda, V. Tsurkan, I. Filippova, A. Günther, A. Najafov, M.N. Aliyev, F.G. Vagizov, A.G. Kilamov, L.R. Tagirov, T. Gavrilova, A. Loidl. Bull. RAS: Phys., 81 (7), 885 (2017).
- [13] Р.Г. Велиев. ФТП, 45 (2), 162 (2011).
- [14] Р.Г. Велиев. ФТП, 46 (10), 1286 (2012).
- [15] Г.И. Маковецкий, Е.И. Касинский. Изв. АН СССР. Неорг. матер., 20 (10), 1752 (1984).
- [16] R.G. Veliev, R.Z. Sadykhov, Yu.G. Asadov, E.M. Kerimova, A.I. Dzhabbarov. Crystallography Reports, 53 (1), 130 (2008).

Редактор Л.В. Шаронова

Optical phonons in TIFeS₂, TIFeSe₂ semiconductor compounds

R.Q. Veliyev¹, N.A. Abdullayev^{1,2}, I.R. Amiraslanov^{1,2}, I.A. Mamedova¹, D.A. Mamedov¹, Z.I. Badalova¹, Sh.K. Gudavasov^{1,3}, S.A. Nemov^{4,5}

¹ Institute of Physics, National Academy of Sciences of Azerbaijan, Az1143 Baku, Azerbaijan
² Baku State University, Az1148 Baku, Azerbaijan
³ Azerbaijani-French University, Az1010 Baku, Azerbaijan
⁴ Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
⁵ Transbaikal State University, 672039 Chita, Russia

Abstract *X*-ray studies of TIFeS₂, TIFeSe₂ crystals obtained by high-temperature synthesis revealed their monophases and isostructurality with the space group of C2/m symmetry. Raman scattering and infrared reflection of light in TIFeS₂, TIFeSe₂ compounds at the temperature 300 K were investigated. The characteristic frequencies of Raman and IR-active phonons in TIFeS₂ and TIFeSe₂ have been determined. From the analysis of published works on the magnetic properties of TIFeS₂, TIFeSe₂, it was concluded that they are quasi-one-dimensional antiferromagnets, each of which has two characteristic temperatures, $T_{\rm N3D}$ and $T_c^{\rm super-p}$, between them there is a quasi-one-dimensional antiferromagnetic ordering in TIFeS₂, TIFeSe₂. The temperature $T_c^{\rm super-p}$ was introduced for the first time and characterizes a highly developed short-range magnetic order, in which superparamagnetic ordering exists.