Температурная зависимость ширины запрещенной зоны монокристаллов AgIn₈S_{12.5}

© И.В. Боднарь¹, А.А. Фещенко¹, В.В. Хорошко¹, В.Н. Павловский², И.Е. Свитенков², Г.П. Яблонский¹

 ¹ Белорусский государственный университет информатики и радиоэлектроники, 220013 Минск, Беларусь
² Институт физики Национальной академии наук Беларуси, 220072 Минск, Беларусь
E-mail: chemzav@bsuir.by

Поступила в Редакцию 11 января 2021 г. В окончательной редакции 2 апреля 2021 г. Принята к публикации 16 апреля 2021 г.

Вертикальным методом Бриджмена выращены монокристаллы AgIn₈S_{12.5}. Методом рентгеноспектрального анализа определен состав полученных монокристаллов, методом рентгеновской дифракции — кристаллическая структура. Показано, что выращенные монокристаллы кристаллизуются в кубической структуре шпинели. По спектрам пропускания в интервале температур 10–320 К определена ширина запрещенной зоны, которая с понижением температуры возрастает.

Ключевые слова: метод Бриджмена, монокристаллы, кристаллическая структура, спектры пропускания, ширина запрещенной зоны.

DOI: 10.21883/FTP.2021.08.51134.9599

1. Введение

Соединения In_2S_3 и $AgIn_5S_8$ относятся к группе дефектных полупроводников с концентраций вакансий в катионной подрешетке 33 и 25% соответственно. При этом предполагается, что вакансии упорядоченно занимают места в узлах кристаллической решетки из расчета 4 электронов на узел.

Интерес к указанным соединениям вызван тем, что они имеют *n*-тип проводимости, обладают высокой радиационной стойкостью и не испытывают влияния со стороны посторонних атомов, т.е. примеси являются электрически неактивными, коэффициент оптического поглощения в пределах спектрального диапазона солнечного излучения достигает больших значений ($\alpha > 10^4 \, \mathrm{cm}^{-1}$), что обеспечивает высокое поглощение излучения в тонких пленках [1,2]. Наличие прямых межзонных переходов в этих материалах с энергией 2.09 эВ для In₂S₃ и 1.82 эВ для AgIn₅S₈ при комнатной температуре делает эти материалы перспективными для создания на их основе высокоэффективных и радиационно стойких преобразователей солнечной энергии, инфракрасных детекторов, оптических фильтров, светоизлучающих диодов, электрооптических модуляторов и других устройств [3–10].

2. Методика эксперимента

Монокристаллы AgIn₈S_{12.5} предварительно синтезировали из элементарных компонентов полупроводниковой степени чистоты двухтемпературным методом [11]. Полученные поликристаллические слитки перегружали в двойные кварцевые ампулы, которые для уменьшения числа центров кристаллизации имели небольшую конусность в области расплава и заканчивались цилиндрическим капилляром для формирования монокристаллической затравки. После вакуумирования ампул к наружной ампуле снизу приваривали кварцевый стержень, используемый в качестве держателя, который закрепляли в вибраторе. В процессе нагревания ампулы в печи применяли вибрационное перемешивание, которое способствует удалению из расплава газовых включений, что в свою очередь улучшает кристаллическое качество получаемых монокристаллов.

Температуру печи повышали со скоростью 250 К/ч до ~ 1370 К и для гомогенизации расплава выдерживали в таких условиях 2 ч. После указанного времени выдержки проводили направленную кристаллизацию расплава, понижая температуру печи со скоростью ~ 2 К/ч до полного затвердевания расплава. Для гомогенизации полученных слитков их отжигали при 1200 К в течение 400 ч. Выращенные в таких условиях монокристаллы имели диаметр ~ 16 мм, длину ~ 40 мм, были однородными и гомогенными, что было установлено методами микрорентгеноспектрального и рентгеновского дифракционного анализов.

Поэлементный состав указанных монокристаллов определяли на установке "Stereoscan-360". В качестве анализатора рентгеновского спектра использовали рентгеновский спектрометр "AVALON-8000".

Рентгеновские исследования проводили на образцах, полученных растиранием монокристаллов. Для снятия механических напряжений, возникающих при растирании кристаллов, проводили их отжиг в вакууме при температуре 700 К в течение 2 ч.

Спектры пропускания В области температур T = 10-320 К измеряли на установке, состоящей из гелиевого рефрижератора замкнутого цикла, монохроматора, кремниевой ПЗС-линейки, галогеновой лампы в качестве источника излучения и персонального компьютера. Для проведения измерений из выращенных монокристаллов вырезали плоскопараллельные пластинки перпендикулярно оси их роста, которые механически шлифовали и полировали с двух сторон. Для снятия нарушенного слоя, образовавшегося при механической обработке монокристаллов, непосредственно перед измерениями спектров образцы подвергали обработке в травителе состава $Br_2: C_2H_5OH = 1:3$. Толщина образцов составляла ~ 20 мкм.

3. Результаты и их обсуждение

Результаты микрозондового рентгеноспектрального анализа показали, что содержание элементов в выращенных монокристаллах составляет Ag:In:S = 4.96:36.98:58.06 и, таким образом, удовлетворительно согласуется с заданным составом в исходной шихте Ag:In:S = 4.65:37.21:58.14.

Дифрактограмма, углы отражения (2 θ), межплоскостные расстояния (d), относительные интенсивности рефлексов (I/I_0), индексы Миллера (hkl) для монокристаллов AgIn₈S_{12.5} представлены на рис. 1 и в таблице. Видно, что дифрактограмма содержит систему линий, характерную для кубической структуры шпинели. Параметр элементарной ячейки, рассчитанный методом наименьших квадратов, равен $a = (10.796 \pm 0.005)$ Å.

Результаты рентгеновского анализа монокристаллов AgIn₈S_{12.5}

2 <i>θ</i> , град	<i>d</i> , Å	$I/I_0, \%$	hkl
14.22	6.2708	10	111
23.31	3.8928	25	220
27.42	3.3450	100	3 1 1
28.69	3.2087	8	222
33.21	2.8124	27	400
41.01	2.3475	10	422
43.58	2.2345	41	333
47.68	2.0833	49	440
50.01	2.0106	2	531
53.72	1.9108	4	620
55.83	1.8618	12	533
56.52	1.8468	3	622
59.24	1.7926	6	444
61.39	1.7546	3	711
64.56	1.7058	4	642
66.55	1.6791	14	731
69.64	1.6430	11	800
74.70	1.5970	3	822
76.48	1.5843	10	751
79.35	1.5674	5	840
85.83	1.5445	7	931
88.75	1.5408	11	844

Рис. 1. Дифрактограмма монокристаллов AgIn₈S_{12.5}.

Рис. 2. Спектры пропускания монокристаллов AgIn₈S_{12.5}.

На рис. 2 представлены спектры пропускания указанных монокристаллов в области края поглощения в интервале температур T = 10-320 К. Видно, что с понижением температуры спектры смещаются в коротковолновую область.

По измеренным спектрам пропускания (T_0) рассчитывали коэффициент поглощения (α) по формуле, учитывающей многократное внутреннее отражение в плоскопараллельном образце [12–14]:

$$\alpha = \frac{1}{d_0} \ln\left\{\frac{(1-R)^2}{2T_0} + \sqrt{\left[\frac{(1-R)^2}{2T_0}\right]^2 + R^2}\right\},\qquad(1)$$

где d_0 — толщина образца, T_0 — коэффициент пропускания, R — коэффициент отражения.

Если предположить, что монокристаллы $AgIn_8S_{12.5}$, как и соединения In_2S_3 , $AgIn_5S_8$, являются материалами с прямыми межзонными переходами электронов из валентной зоны в зону проводимости, то спектральная зависимость коэффициента поглощения запишется в виде

$$\alpha = A \, \frac{(\hbar\omega - E_g)^{1/2}}{\hbar\omega},\tag{2}$$

где А — константа, E_g — ширина запрещенной зоны.

Спектральные зависимости $(\alpha \cdot \hbar \omega)^2$ от энергии фотона $(\hbar \omega)$ для монокристаллов AgIn₈S_{12.5} представлены на рис. 3 Видно, что указанные зависимости имеют ярко выраженные линейные участки, что свидетельствует (как и рентгеновские данные) о равновесности и однородности выращенных монокристаллов. Ширину запрещенной зоны определяли экстраполяцией прямолинейных участков зависимости $(\alpha \cdot \hbar \omega)^2$ от $\hbar \omega$ до пересечения с осью абсцисс. Полученные нами значения ширины запрещенной зоны для монокристаллов AgIn₈S_{12.5} равны 1.965, 2.077 и 2.092 эВ при 300, 80 и 10 К соответственно.

На рис. 4 представлена температурная зависимость ширины запрещенной зоны $E_g(T)$ монокристаллов AgIn₈S_{12.5}, полученная на основе экспериментальных данных по измерениям коэффициента пропускания в интервале температур 10–320 К (точки). Видно, что указанная зависимость имеет вид, характерный для большинства полупроводниковых материалов, с понижением температуры E_g возрастает [10–12].

Для описания температурной зависимости ширины запрещенной зоны было использовано следующее выражение [13]:

$$E_g(T) = E_g(0) - \frac{\chi \cdot \Theta}{2} \left(\sqrt[4]{1 + \frac{\pi^2}{6} \left(\frac{2T}{\Theta}\right)^2 + \left(\frac{2T}{\Theta}\right)^4} - 1 \right),$$
(3)

где $E_g(0)$ — ширина запрещенной зоны при 0 K, χ — параметр, определяющий тангенс угла наклона к касательной кривой $E_g(T)$ ($\chi = -dE(T)/dT|_{T\to\infty}$);

Рис. 3. Спектральные зависимости $(\alpha \cdot \hbar \omega)^2$ от энергии фотона $\hbar \omega$ монокристаллов AgIn₈S_{12.5}.

Физика и техника полупроводников, 2021, том 55, вып. 8

Рис. 4. Температурная зависимость ширины запрещенной зоны $E_g(T)$ монокристаллов AgIn₈S_{12.5}.

 Θ — эффективная фононная температура, связанная с температурой Дебая (Θ_D)выражением $\Theta = (3/4)\Theta_D$.

Величину χ определяли путем нахождения зависимости, наилучшим образом удовлетворяющей экспериментальным данным $E_g(T)$ в интервале температур 10–320 К. Расчетная зависимость $E_g(T)$ по соотношению (3) представлена на рис. 4 в виде сплошной линии. Видно, что экспериментальные результаты хорошо согласуются с расчетными величинами.

4. Заключение

Методом Бриджмена (вертикальный вариант) из предварительно синтезированных двухтемпературным методом поликристаллических слитков были выращены монокристаллы AgIn₈S_{12.5}. Состав полученных монокристаллов определяли методом микрорентгеноспектрального анализа, структуру — рентгеновским дифракционным методом. Установлено, что указанные соединения кристаллизуются в структуре кубической шпинели. По спектрам пропускания в области края собственного поглощения в интервале температур 10–320 К определена ширина запрещенной зоны монокристаллов AgIn₈S_{12.5} и построена ее температурная зависимость $E_g(T)$. Показано, что с понижением температуры E_g возрастает от 1.950 эВ при 320 К до 2.092 эВ при 10 К.

Финансирование работы

Работа выполнена в рамках ГПНИ "Материаловедение, новые материалы и технологии" подпрограмма "Физика конденсированного состояния и создание новых функциональных материалов и технологий их получения".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] К. Чопра, С. Дас. Тонкопленочные солнечные элементы (М., Мир, 1986).
- [2] Современные проблемы полупроводниковой фотоэнергетики, под ред. Т. Коутса, Дж. Микина (М., Мир, 1988).
- [3] K.W. Mitchel, C. Eberspacher, J. Ermer, D. Pier. Conf. Rec. IEEE Photovoltaic Spec. Conf., 20 (2), 1384 (1988).
- [4] W. Chen, J.-O. Bovin, A.G. Joly, Sh. Wang, F. Su, G. Li. J. Phys. Chem. B, 108, 11927 (2004).
- [5] S. Sebentritt. Solar Energy, 77, 767 (2004).
- [6] B. Asenjo, A.M. Chaparro, M.T. Gutierrez, J. Hererro, J. Klaer. Solar Energy Mater. Solar Cells, 87, 151 (2005).
- [7] T. Schulmeyer, A. Klein, R. Kniese, M. Powalla. Appl. Phys. Lett., 85 (6), 961 (2004).
- [8] И.В. Боднарь, Е.А. Кудрицкая, И.К. Полушина, В.Ю. Рудь, Ю.В. Рудь. ФТП, **32** (9), 1043 (1998).
- [9] И.В. Боднарь, В.Ф. Гременок, В.Ю. Рудь, Ю.В. Рудь. ФТП, 33 (7), 805 (1999).
- [10] I.V. Bodnar, I.A. Victorov, V.M. Dabranski, M.A. Osipova. Phys. Status Solidi C, 6 (5), 1130 (2009).
- [11] И.В. Боднарь, Чан Бинь Тхан. Докл. БГУИР, № 1, 57 (2018).
- [12] Ю.И. Уханов. Оптические свойства полупроводников (М., Наука, 1977).
- [13] С.И. Рембеза. Методы измерения основных параметров полупроводников (Воронеж, ВГУ, 1989).
- [14] Р. Уиллардсон. Оптические свойства полупроводников (М., Мир, 1970).

Редактор Л.В. Шаронова

Temperature dependence of the band gap of $Agln_8S_{12.5}$ single crystals

I.V. Bodnar¹, A.A. Feshchenko¹, V.V. Khoroshko¹, V.N. Pavlovskii², I.E. Svitsiankou², G.P. Yablonskii²

 ¹ Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus
² Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus

Abstract AgIn₈S_{12.5} single crystals were grown by the vertical Bridgman method. The composition of the single crystals was determined by the *X*-ray spectral analysis method, and the crystal structure was determined by the *X*-ray diffraction method. It is shown that the grown single crystals crystallized in the cubic spinel structure. Transmittance spectra in the temperature range 10-320 K were used to determine the band gap of the crystals, which increased with decreasing the temperature.

672