01

Релятивистские расчеты химических свойств сверхтяжелого элемента с Z = 119 и его гомологов

© И.И. Тупицын, А.В. Малышев, Д.А. Глазов, М.Ю. Кайгородов, Ю.С. Кожедуб, И.М. Савельев, В.М. Шабаев

Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия

e-mail: i.tupitsyn@spbu.ru

Поступила в редакцию 20.03.2021 г. В окончательной редакции 20.03.2021 г. Принята к публикации 30.03.2021 г.

> В рамках методов конфигурационного взаимодействия и многочастичной теории возмущений (CI+MBPT) в базисе орбиталей Дирака–Фока–Штурма (DFS) выполнены релятивистские расчеты электронной структуры сверхтяжелого элемента восьмого периода — эка-франция (Z = 119) и его гомологов, которые образуют группу щелочных металлов. Полученные значения потенциалов ионизации, сродства к электрону и среднеквадратичных радиусов сравниваются с соответствующими величинами, рассчитанными в нерелятивистском приближении. Проведено также сравнение с доступными экспериментальными данными и результатами других теоретических расчетов. Анализ полученных результатов свидетельствует о значительном влиянии релятивистских эффектов для атомов франция и эка-франция, приводящем к нарушению монотонного характера перечисленных выше химических характеристик как функции атомного номера щелочного элемента. Кроме того, вычислены квантово-электродинамические поправки к потенциалам ионизации с использованием модельного оператора лэмбовского сдвига (QEDMOD).

> Ключевые слова: сверхтяжелые элементы, щелочные металлы, релятивистские эффекты, корреляционные эффекты, квантово-электродинамические поправки, метод наложения конфигураций, потенциалы ионизации, сродство к электрону.

DOI: 10.21883/OS.2021.07.51074.2033-21

1. Введение

Синтез и изучение сверхтяжелых ядер представляют собой одну из важнейших задач ядерной физики [1-3]. Физические и химические свойства соответствующих сверхтяжелых элементов (СТЭ) представляют как прикладной, так и фундаментальный интерес. С одной стороны, сам процесс детектирования атомов СТЭ тесно связан с их способностью вступать в соединения. С другой стороны, вопрос о том, в какой степени для СТЭ сохраняются свойства более легких гомологов, по сути определяет границы применимости периодического закона Менделеева. При этом экспериментальное исследование свойств СТЭ в настоящее время затруднено в виду крайне малого количества синтезируемых атомов и их очень короткого времени жизни. Таким образом, теоретические данные о свойствах СТЭ очень востребованы. Очевидно, что такие расчеты наряду с электронными корреляциями должны учитывать релятивистские и квантово-электродинамические (КЭД) эффекты. Электронная структура СТЭ интенсивно исследуется несколькими научными группами [4-12].

В данной работе представлены расчеты химических характеристик эка-франция (Z = 119) и его более легких гомологов, образующих первую группу таблицы Менделеева, группу щелочных металлов. Ранее в разных работах (например, [13] и ссылки в ней) было установлено, что основной конфигурацией эка-франция является

 $[Rn]5f^{14}6d^{10}7s^27p^68s^1$. Наиболее точные релятивистские расчеты электронной структуры эка-франция и его гомологов были выполнены методом связанных кластеров [14-18]. В настоящей работе мы используем релятивистские методы конфигурационного взаимодействия и многочастичной теории возмущений (CI+MBPT) в базисе орбиталей Дирака-Фока-Штурма (DFS). Вклады релятивистских эффектов оценены посредством сравнения результатов релятивистских расчетов с данными, которые получены теми же методами в нерелятивистском пределе путем масштабирования скорости света. В рамках метода модельного оператора лэмбовского сдвига также вычислен вклад КЭД эффектов. Показано, что, несмотря на значительный вклад релятивистских эффектов, свойства эка-франция соответствуют первой группе таблицы Менделеева.

2. Теория. Краткое описание метода расчета

В данной работе мы используем релятивистский гамильтониан Дирака-Кулона-Брейта (Dirac-Coulomb-Breit — DCB) [19,20]

$$\hat{H}_{\rm DCB} = \Lambda_+ \left[\hat{H}_{\rm D} + \hat{H}_{\rm C} + \hat{H}_{\rm B} \right] \Lambda_+ \,. \tag{1}$$

 $\hat{H}_{\rm D}$ — сумма одноэлектронных четырехкомпонентных гамильтонианов Дирака,

$$\hat{H}_{\rm D} = \sum_{i}^{N} \hat{h}_{\rm D}(i), \qquad (2)$$

$$\hat{h}_{\mathrm{D}}(i) = -ic\left(\boldsymbol{\alpha}_{i}\cdot\boldsymbol{\nabla}_{i}\right) + c^{2}(\beta_{i}-1) + V_{\mathrm{n}}(r_{i}), \quad (3)$$

где N — число электронов, c — скорость света, α и β — матрицы Дирака, $V_n(r)$ — потенциал ядра. Здесь и далее в работе используются атомные единицы. Для описания распределения заряда ядра мы применяем модель Ферми с параметром толщины оболочки равным t = 2.3 fm. Значение среднеквадратичного радиуса ядра для эка-франция рассчитано по эмпирической формуле $\langle r^2 \rangle^{1/2} = [0.77A^{1/3} + 0.98]$ fm, где A — атомное число, которое для данного элемента принято равным 295. Для гомологов значения среднеквадратичных радиусов ядер взяты из табуляции [21]. Оператор $\hat{H}_{\rm C}$ — двухэлектронный оператор кулоновского взаимодействия,

$$\hat{H}_{\rm C} = \frac{1}{2} \sum_{i \neq j}^{N} \frac{1}{r_{ij}}, \qquad r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|.$$
 (4)

Оператор $\hat{H}_{\rm B}$ — двухэлектронный частотно-независимый оператор Брейта в кулоновской калибровке

$$\hat{H}_{\rm B} = -\frac{1}{2} \sum_{i \neq j}^{N} \frac{1}{r_{ij}} \left[\left(\boldsymbol{\alpha}_i \cdot \boldsymbol{\alpha}_j \right) + \frac{1}{2} \left(\boldsymbol{\alpha}_i \cdot \boldsymbol{\nabla}_i \right) \left(\boldsymbol{\alpha}_j \cdot \boldsymbol{\nabla}_j \right) r_{ij} \right].$$
(5)

Оператор Λ_+ проектирует многоэлектронные волновые функции на пространство детерминантов Слэтера, построенных из одноэлектронных состояний положительного спектра.

2.1. Метод Дирака-Фока-Штурма

Многоэлектронная волновая функция $\Psi(JM)$ с квантовыми числами J и M в приближении DCB может быть получена в виде разложения по конфигурационным функциям (Configuration State Functions — CSF) $\Phi_I(JM)$:

$$\Psi(JM) = \sum_{I} C_{I}^{JM} \Phi_{I}(JM) , \qquad (6)$$

где $\Phi_I(JM)$ являются собственными функциями операторов \hat{J}^2 и \hat{J}_z и строятся как линейные комбинации детерминантов Слэтера одной релятивистской конфигурации.

Вариационный принцип Ритца в пространстве CSF сводит решение уравнения DCB к задаче на собственные значения матрицы гамильтониана:

$$\sum_{K} H_{KI} C_{K}^{JM} = E_{I}(J) C_{I}^{JM}, \qquad (7)$$

где $H_{KI} = \langle \Phi_K | \hat{H}_{\text{DCB}} | \Phi_I \rangle$, а индексы *I* и *K* нумеруют различные CSF.

В настоящей работе одноэлектронные волновые функции ψ_i получены методом Дирака–Фока–Рутана в базисе орбиталей Дирака–Фока–Штурма (Dirac–Fock–Sturm — DFS) φ_k :

$$\psi_i = \sum_k \, u_{ki} \, \varphi_k \,. \tag{8}$$

В свою очередь, базис DFS построен следующим образом. В качестве орбиталей φ_k , которые заняты в основном и низколежащих возбужденных состояниях, использованы одноэлектронные волновые функции, полученные численным решением интегро-дифференциальных уравнений Дирака–Фока (Dirac–Fock — DF) [22]. Для виртуальных (высоколежащих вакантных) одноэлектронных состояний функции φ_k получены путем численного решения уравнений Дирака–Фока–Штурма [22,24],

$$\left[\hat{h}_{\rm DF} - \varepsilon_0\right] \, \varphi_k = \mu_k \, W(r) \, \varphi_k \,, \tag{9}$$

где $\hat{h}_{\rm DF}$ — оператор Дирака-Фока, ε_0 — ссылочная одноэлектронная энергия и W(r) — положительная весовая функция, стремящаяся к нулю на бесконечности. Отметим, что все орбитали DFS имеют примерно одинаковый характерный размер и одну и ту же асимптотику на бесконечности, определяемую ссылочной энергией ε_0 :

$$\varphi_k(r) \xrightarrow[r \to \infty]{} C_k \exp(-\sqrt{2\varepsilon_0} r).$$
 (10)

В качестве весовой функции W(r) выбрана функция, стремящаяся к константе при $r \to 0$:

$$W(r) = \frac{1 - \exp(-(\alpha r)^2)}{(\alpha r)^2}.$$
 (11)

В данной работе во всех расчетах использован единый базис одноэлектронных функций ψ_i .

2.2. Метод наложения конфигурации в сочетании с многочастичной теорией возмущений (CI+MBPT)

Для учета электронных корреляций в данной работе применяется объединение методов конфигурационного взаимодействия (Configuration Interaction — CI) и многочастичной теории возмущений (Many-Body Perturbation Theory — MBPT). Для построения конфигурационного пространства использована концепция ограниченного активного пространства (Restricted Active Space — RAS) [25] в базисе орбиталей DFS [23,24]. Согласно этому подходу, набор одноэлектронных функций разбивается на 4 подгруппы: RAS0, RAS1, RAS2 и RAS3.

К подпространству RAS0 отнесены так называемые замороженные остовные орбитали, возбуждения из которых не учитываются. Электроны замороженного остова создают одночастичные кулоновский и обменный потенциалы остова и не участвуют в CI+MBPT расчете. В подпространство RAS1 включены орбитали внешнего остова, однократные и двукратные возбуждения из которого учитываются по теории возмущений. Активные валентные орбитали отнесены к подпространству RAS2, а виртуальные высоковозбужденные орбитали — к RAS3. Однократные и двукратные возбуждения из RAS1 и RAS2 в данной работе учтены по теории возмущений во втором порядке. В валентном пространстве RAS2 строится CI-функция путем решения задачи на собственные значения матрицы гамильтониана (7).

Теория возмущений хорошо подходит для учета большого числа возбуждений, а также обладает важным свойством размерной согласованности. Метод конфигурационного взаимодействия позволяет рассматривать возбуждения в активном пространстве во всех порядках. Используемый нами подход гибко и эффективно использует преимущества обоих методов, что становится особенно важно с ростом числа электронов.

2.3. Квантово-электродинамические поправки

Для учета КЭД эффектов в данной работе использован одноэлектронный модельный оператор лэмбовского сдвига \hat{h}^{QED} (QEDMOD), который был предложен в работе [26] и широко применяется в различных квантово-химических расчетах [27–32]. Квантово-электродинамическая поправка вычислена как разность двух полных энергий, рассчитанных методом СІ. В одном из расчетов модельный КЭД оператор включен в гамильтониан DCB, тогда как другой расчет проведен без модельного оператора. Модельный оператор \hat{h}^{QED} состоит из двух частей,

$$\hat{h}^{\text{QED}} = \hat{h}^{\text{VP}} + \hat{h}^{\text{SE}} \,. \tag{12}$$

Операторы $\hat{h}^{\rm VP}$ и $\hat{h}^{\rm SE}$ представляют вклады поляризации вакуума и собственной энергии соответственно. Оператор $\hat{h}^{\rm VP}$ может быть представлен в виде суммы локальных потенциалов Юлинга $V_{\rm Uehl}(r)$ и Вичманна–Кролла $V_{\rm WK}(r)$:

$$\hat{h}^{\rm VP} = V_{\rm Uehl}(r) + V_{\rm WK}(r) \,. \tag{13}$$

Потенциала Юлинга представляет собой ведущий вклад по степеням взаимодействия с ядром [33,34]. Он может быть получен как численно, так и аналитически с помощью приближенных формул из работы [35]. Вычисление потенциала Вичманна–Кролла представляет существенно более сложную задачу [36–38]. Однако вклад данного потенциала можно оценить с достаточно высокой точностью по приближенным формулам, представленным в статье [39].

Оператор собственной энергии \hat{h}^{SE} , описание которого подробно изложено в работе [26], моделируется в виде суммы локального короткодействующего потенциала V_{loc}^{SE} и нелокального сепарабельного (конечномерного) потенциала

$$\hat{h}^{\text{SE}} = V_{\text{loc}}^{\text{SE}} + \sum_{i,k=1}^{n} |\phi_i\rangle B_{ik} \langle \phi_k| \,. \tag{14}$$

Таблица 1. Среднеквадратичные радиусы (RMS) и сред-
неквадратичные отклонения (STD) валентной ns-оболочки
(в a.u.). DF — релятивистский метод Дирака-Фока, DF-NR —
нерелятивистский предел

Ζ	RMS		STD	
	DF-NR	DF	DF-NR	DF
11	4.55	4.54	1.73	1.73
19	5.62	5.60	2.01	2.01
37	6.01	5.93	2.11	2.09
55	6.71	6.48	2.29	2.23
87	7.04	6.31	2.37	2.17
119	7.54	5.54	2.49	1.91

Здесь ϕ_i — специальным образом выбранные проекционные функции, а матрица B_{ik} определяется так, чтобы в точности воспроизвести известные диагональные и недиагональные матричные элементы однопетлевого оператора собственной энергии в базисе водородоподобных функций [26]. Компьютерный код для генерации оператора QEDMOD представлен в работах [40,41].

Наиболее простым подходом к вычислению КЭД поправок является усреднение модельного оператора \hat{h}^{QED} с многоэлектронными волновыми функциями. В наших расчетах мы с самого начала включаем модельный оператор \hat{h}^{QED} в гамильтониан DCB. Такой подход дополнительно учитывает высшие порядки по модельному потенциалу, которые могут давать существенный вклад [32].

3. Результаты и обсуждение

В данной работе расчеты эка-франция (Z = 119) и его гомологов выполнены релятивистскими методами DF и CI+MBPT в базисе орбиталей Дирака–Фока–Штурма. С целью изучения изменения химических характеристик при переходе от легких щелочных металлов к сверхтяжелым нами рассчитаны потенциалы ионизации, значения сродства к электрону, а также характерные размеры валентной *ns*-оболочки.

В табл. 1 приведены релятивистские и нерелятивистские значения среднеквадратичных радиусов (Root-Mean-Square radius — RMS = $\overline{r} = \langle ns | r^2 | ns \rangle^{1/2} \rangle$ и среднеквадратичных отклонений (Standard Deviation — STD = $\langle ns | (r - \overline{r})^2 | ns \rangle^{1/2} \rangle$, которые характеризуют размеры атомов щелочных металлов и ширину распределения электронной плотности валентной *ns*-оболочки соответственно. Кроме того, эти же данные представлены на рис. 1, 2. Отметим, что величина STD есть мера локализации валентных *ns*-оболочек. Релятивистские значения RMS и STD получены методом Дирака-Фока, их нерелятивистские аналоги рассчитаны путем увеличения скорости света в 100 раз. Из таблицы и графиков хорошо видно, что нерелятивистские значения

Таблица 2. Потенциалы ионизации (IP) элементов первой группы таблицы Менделеева (в eV). DF — метод Дирака-Фока, CI+MBPT — метод наложения конфигураций в сочетании с теорией возмущений; NR — нерелятвистский предел

Ζ	DF-NR	DF	CI+MBPT-NR	CI+MBPT
11	4.961	4.961	5.151	5.159
19	4.012	4.026	4.303	4.323
37	3.808	3.808	4.097	4.177
55	3.365	3.486	3.723	3.889
87	3.208	3.603	3.578	4.079
119	2.995	4.327	3.258	4.780

Рис. 1. Среднеквадратичные радиусы (RMS) валентной *ns*оболочки (в а.u.). DF — релятивистский метод Дирака-Фока, DF-NR — нерелятивистский предел.

Рис. 2. Среднеквадратичные отклонения (STD) для валентной *пs*-оболочки (в а.u.). Обозначения такие же, как на рис. 1.

RMS и STD монотонно возрастают с ростом Z, что свидетельствует о делокализации валентных *ns*-состояний. Однако, как видно из этих же рисунков, учет релятивистских эффектов приводит к нарушению монотонного характера изменений значений RMS и STD, начиная с Z = 87. Это обстоятельство связано с контрактацией *ns*орбиталей и увеличением степени их локализации, что является чисто релятивистским эффектом. В табл. 2 и 3 приведены значения потенциалов ионизации (Ionization Potential — IP) и сродства к электрону (Electron Affinity — EA) эка-франция и его более легких гомологов, рассчитанные релятивистскими методами DF и CI+MBPT, а также их значения в нерелятивистском пределе. Для всех элементов использован базис, который состоит из орбиталей Дирака-Фока для занятых в основном состоянии оболочек атома и иона, а также набора виртуальных орбиталей Дирака-Фока-Штурма. Базис виртуальных орбиталей включает в себя 7 s, 7 p, 7 d, 5 f, 4 g и 3 h штурмовских функций. При вычислении потенциалов ионизации мы используем единый базис, построенный для нейтрального атома. В расчетах сродства к электрону использован базис, построенный для отрицательного иона.

Как видно из табл. 2 и 3 и графиков на рис. 3 и 4, значения потенциалов ионизации и сродства к электрону, рассчитанные в нерелятивистском пределе методами DF и CI+MBPT, монотонно спадают с ростом атомного номера. Такое поведение значений IP и EA коррелирует с ростом степени делокализации нерелятивистских значений RMS и STD. Учет релятивистских эффектов нарушает монотонный характер поведения значений IP и EA, так же как и для значений RMS и STD, начиная с Z = 87.

Таблица 3. Значения сродства к электрону (ЕА) для элементов первой группы таблицы Менделеева (в eV). Обозначения такие же, как в табл. 2

Ζ	DF-NR	DF	CI+MBPT-NR	CI+MBPT
11	0.363	0.364	0.551	0.553
19	0.281	0.282	0.504	0.505
37	0.259	0.264	0.473	0.488
55	0.227	0.237	0.453	0.475
87	0.214	0.251	0.431	0.498
119	0.197	0.388	0.423	0.674

Рис. 3. Потенциалы ионизации (IP) элементов первой группы таблицы Менделеева (в eV). DF — метод Дирака-Фока, CI+MBPT — метод наложения конфигураций в сочетании с теорией возмущений; NR — нерелятивистский предел.

Рис. 4. Значения сродства к электрону (EA) элементов первой группы таблицы Менделеева (в eV). Обозначения такие же, как на рис. 3.

Сравнивая значения, полученные методами DF и CI+MBPT, можно судить о вкладе корреляционных эффектов в величины IP и EA. Для потенциалов ионизации энергия корреляции составляет величину порядка 0.3-0.4 eV для всех элементов группы щелочных элементов, представленных в табл. 2, кроме Na (Z = 11), для которого она равна примерно 0.2 eV. Вклад энергии корреляции в сродство к электрону лежит в интервале 0.2-0.3 eV, и он монотонно возрастает с ростом Z.

В табл. 4 представлены результаты наших расчетов КЭД поправок к потенциалу ионизации. Как видно из таблицы, наши данные, полученные методами DF и CI+MBPT с использованием модельного КЭД потенциала (QEDMOD) [26], мало отличаются друг от друга. Для сравнения в четвертой колонке (VRAD) приведены результаты, полученные нами методом DF с использованием радиационного потенциала [42]. В последней колонке представлены соответствующие результаты из работы [15].

В табл. 5 приведены значения потенциалов ионизации, полученные в данной работе методом CI+MBPT, с добавлением КЭД вкладов. В этой же таблице представлены результаты расчетов IP методом связанных кластеров [15] с учетом КЭД поправок, а также доступные экспериментальные значения. Как видно из сравнения, наши данные хорошо согласуются с результатами работы [15] и с экспериментом в пределах погрешности наших вычислений, которую мы оцениваем как 0.1 eV. Такая оценка погрешности обусловлена относительно небольшим размером базиса и вкладом трехкратных возбуждений, которые не учитывались в данной работе.

Значения сродства к электрону без учета КЭД поправок, полученные в данной работе методом CI+MBPT, представлены в табл. 6. В этой же таблице приведены результаты расчетов методом связанных кластеров [16]. Здесь также наблюдается хорошее согласие наших данных с результатами работы [16] и с экспериментом. Погрешность расчетов ЕА мы также оцениваем как 0.1 eV.

Таблица 4. КЭД вклад в потенциал ионизации элементов первой группы таблицы Менделеева (в meV). QEDMOD — модельный оператор, VRAD — радиационный потенциал; DF — метод Дирака-Фока, CI+MBPT — метод наложения конфигураций в сочетании с теорией возмущений

Ζ	QEDMOD		VRAD	Работа
	DF	CI+MBPT	DF	[15]
11 19 37 55	$-0.3 \\ -0.5 \\ -1.3 \\ -2.0$	-0.3 -0.6 -1.5 -2.3	$-0.3 \\ -0.5 \\ -1.3 \\ -2.0$	-1.3 -2.2
87 119	-4.8 -12.3	-5.1 -12.6	$-4.7 \\ -9.8$	-3.6 -10.3

Таблица 5. Потенциалы ионизации элементов первой группы таблицы Менделеева (в eV). Сравнение с экспериментальными данными и результатами работы [15]

Ζ	Данная работа	Работа [15]	Эксперимент
11	5.159		5.139
19	4.323		4.341
37	4.175	4.181	4.177
55	3.887	3.901	3.894
87	4.074	4.079	4.073
119	4.768	4.783	

Примечание. Экспериментальные данные взяты из работ [43,44] для Na; [45,46] для K; [46,47] для Rb; [48] для Cs; [49] для Fr.

Таблица 6. Значения сродства к электрону для элементов первой группы таблицы Менделеева (в eV). Сравнение с экспериментальными данными и результатами работы [16]

Ζ	Данная работа	Работа [16]	Эксперимент
11	0.553	0.548	0.548
19	0.505	0.503	0.501
37	0.488	0.486	0.486
55	0.475	0.471	0.472
87	0.498	0.486	
119	0.674	0.649	

Примечание. Экспериментальные данные взяты из работ [50] для Na; [51,52] для K; [53] для Rb; [51,54] для Cs.

4. Заключение

В данной работе были рассмотрены химические характеристики сверхтяжелого элемента эка-франция (Z = 119) и его более легких гомологов. Были выполнены расчеты среднеквадратичных радиусов и среднеквадратичных отклонений валентной *пло*-оболочки, которые характеризуют степень локализации валентной электронной плотности. Полученные результаты свидетельствуют о том, что структура валентных оболочек сохраняется при переходе от более легких гомологов к эка-францию. Это говорит о том, что он, как и следовало

ожидать, относится к первой группе элементов таблицы Менделеева.

Нами также были получены нерелятивистские и релятивистские значения потенциалов ионизации и сродства к электрону для эка-франция и его гомологов. Было установлено, что релятивистские эффекты нарушают монотонный характер уменьшения IP и EA, который имеет место в нерелятивистском пределе. Этот факт объясняется эффектом контрактации *s*- и *p*-оболочек при учете релятивистских поправок и согласуется с аналогичным, ранее сформулированным утверждением [11].

В дальнейшем мы планируем расширить представленные здесь расчеты с использованием метода CI+MBPT на целый ряд сверхтяжелых элементов с Z = 118-130.

Финансирование работы

Исследование выполнено при финансовой поддержке РФФИ и Госкорпорации "Росатом" в рамках научного проекта № 20-21-00098.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Oganessian Y.T., Dmitriev S.N. // Russ. Chem. Rev. 2016. V. 85. P. 901.
- [2] Oganessian Y. // Nucl. Phys. News. 2019. V. 29. P. 5.
- [3] Nazarewicz W. // Nature Phys. 2018. V. 14. P. 537.
- [4] Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Progress in Theoretical Chemistry and Physics.
 V. 11 / Ed. by Kaldor U., Wilson S. Springer Netherlands, 2003. XIX + 565 p.
- [5] The chemistry of superheavy elements / Ed. by Schädel M., Shaughnessy D. Berlin Heidelberg: Springer-Verlag, 2014.
 XIII + 521 p.
- [6] Eliav E., Fritzsche S., Kaldor U. // Nucl. Phys. A. 2015. V. 944. P. 518.
- [7] Schwerdtfeger P., Pašteka L.F., Punnett A., Bowman P.O. // Nucl. Phys. A. 2015. V. 944. P. 551.
- [8] Jerabek P, Schuetrumpf B, Schwerdtfeger P, Nazarewicz W. // Phys. Rev. Lett. 2018. V. 120. P. 053001.
- [9] Lackenby B.G.C., Dzuba V.A., Flambaum V.V. // Phys. Rev. A. 2018. V. 98. P. 042512.
- [10] Pershina V. // Radiochim. Acta. 2019. V. 107. P. 833.
- [11] Eliav E., Borschevsky A., Kaldor U. // Nucl. Phys. News. 2019. V. 29. P. 16.
- [12] Kaygorodov M.Y., Kozhedub Y.S., Tupitsyn I.I., Shabaev V.M. // PoS(FFK2019). 2020. V. 353. P. 036.
- [13] Nefedov V.I., Trzhaskovskaya M.B., Yarzhemskii V.G. // Dokl. Phys. Chem. 2006. V. 408. P. 149.
- [14] Landau A., Eliav E., Ishikawa Y., Kaldor U. // J. Chem. Phys. 2001. V. 115. P. 2389.
- [15] Eliav E., Vilkas M.J., Ishikawa Y., Kaldor U. // Chem. Phys. 2005. V. 311. P. 163.
- [16] Eliav E., Vilkas M.J., Ishikawa Y., Kaldor U. // J. Chem. Phys. 2005. V. 122. P. 224113.

- [17] Lim I.S., Schwerdtfeger P., Metz B., Stoll H. // J. Chem. Phys. 2005. V. 122. P. 104103.
- [18] Borschevsky A., Pershina V., Eliav E., Kaldor U. // J. Chem. Phys. 2013. V. 138. P. 124302.
- [19] Sucher J. // Phys. Rev. A. 1980. V. 22. P. 348.
- [20] Mittleman M.H. // Phys. Rev. A. 1981. V. 24. P. 1167.
- [21] Angeli I., Marinova K.P. // At. Data Nucl. Data Tables. 2013.
 V. 99. P. 69.
- [22] Братцев В.Ф., Дейнека Г.Б., Тупицын И.И. // Изв. АН СССР: Сер. физ. 1977. Т. 41. С. 2655.
- [23] Tupitsyn I.I., Shabaev V.M., Crespo López-Urrutia J.R., Draganić I., Soria Orts R., Ullrich J. // Phys. Rev. A. 2003. V. 68. P. 022511.
- [24] Tupitsyn I.I., Volotka A.V., Glazov D.A., Shabaev V.M., Plunien G., Crespo López-Urrutia J.R., Lapierre A., Ullrich J. // Phys. Rev. A. 2005. V. 72. P. 062503.
- [25] Olsen J., Roos B.O., Jørgensen P., Jensen H.J.A. // J. Chem. Phys. 1988. V. 89. P. 2185.
- [26] Shabaev V.M., Tupitsyn I.I., Yerokhin V.A. // Phys. Rev. A. 2013. V. 88. P. 012513.
- [27] Tupitsyn I.I., Kozlov M.G., Safronova M.S., Shabaev V.M., Dzuba V.A. // Phys. Rev. Lett. 2016. V. 117. P. 253001.
- [28] Pašteka L.F., Eliav E., Borschevsky A., Kaldor U., Schwerdtfeger P. // Phys. Rev. Lett. 2017. V. 118. P. 023002.
- [29] Machado J., Szabo C.I., Santos J.P., Amaro P., Guerra M., Gumberidze A., Guojie Bian, Isac J.M., Indelicato P. // Phys. Rev. A. 2018. V. 97. P. 032517.
- [30] Zaytsev V.A., Maltsev I.A., Tupitsyn I.I., Shabaev V.M. // Phys. Rev. A. 2019. V. 100. P. 052504.
- [31] Kumar R., Chattopadhyay S., Mani B.K., Angom D. // Phys. Rev. A. 2020. V. 101. P. 012503.
- [32] Shabaev V.M., Tupitsyn I.I., Kaygorodov M.Y., Kozhedub Y.S., Malyshev A.V., Mironova D.V. // Phys. Rev. A. 2020. V. 101. P. 052502.
- [33] Serber R. // Phys. Rev. 1935. V. 48. P. 49.
- [34] Uehling E.A. // Phys. Rev. 1935. V. 48. P. 55.
- [35] Fullerton L.W., Rinker Jr. G.A. // Phys. Rev. A. 1976. V. 13. P. 1283.
- [36] Soff G., Mohr P.J. // Phys. Rev. A. 1988. V. 38. P. 5066.
- [37] Manakov N.L., Nekipelov A.A., Fainshtein A.G. // Sov. Phys. JETP. 1989. V. 68. P. 673.
- [38] Persson H., Lindgren I., Salomonson S., Sunnergren P. // Phys. Rev. A. 1993. V. 48. P. 2772.
- [39] Fainshtein A.G., Manakov N.L., Nekipelov A.A. // J. Phys. B: At. Mol. Opt. Phys. 1991. V. 24. P. 559.
- [40] Shabaev V.M., Tupitsyn I.I., Yerokhin V.A. // Comp. Phys. Commun. 2015. V. 189. P. 175.
- [41] Shabaev V.M., Tupitsyn I.I., Yerokhin V.A. // Comp. Phys. Commun. 2018. V. 223. P. 69.
- [42] Flambaum V.V., Ginges J.S.M. // Phys. Rev. A. 2005. V. 72. P. 052115.
- [43] Ciocca M., Burkhardt C.E., Leventhal J.J., Bergeman T. // Phys. Rev. A. 1992. V. 45. P. 4720.
- [44] Baugh J.F., Burkhardt C.E., Leventhal J.J., Bergeman T. // Phys. Rev. A. 1998. V. 58. P. 1585.
- [45] Lorenzen C.J., Niemax K., Pendrill L.R. // Opt. Commun. 1981. V. 39. P. 370.
- [46] Lorenzen C.J., Niemax K. // Phys. Scr. 1983. V. 27. P. 300.
- [47] Johansson I. // Ark. Fys. 1961. V. 20. P. 135.
- [48] Deiglmayr J., Herburger H., Saßmannshausen H., Jansen P., Schmutz H., Merkt F. // Phys. Rev. A. 2016. V. 93. P. 013424.

- [49] Arnold E., Borchers W., Duong H.T., Juncar P., Lerme J., Lievens P., Neu W., Neugart R., Pellarin M., Pinard J., Vialle J.L., Wendt K., ISOLDE // J. Phys. B: At. Mol. Opt. Phys. 1990. V. 23. P. 3511.
- [50] Hotop H., Lineberger W.C. // J. Phys. Chem. Ref. Data. 1985. V. 14. P. 731.
- [51] Slater J., Read F.H., Novick S.E., Lineberger W.C. // Phys. Rev. A. 1978. V. 17. P. 201.
- [52] Andersson K.T., Sandström J., Kiyan I.Y., Hanstorp D., Pegg D.J. // Phys. Rev. A. 2000. V. 62. P. 022503.
- [53] Frey P., Breyer F., Holop H. // J. Phys. B: Atom. Mol. Phys. 1978. V. 11. P. L589.
- [54] Scheer M., Thøgersen J., Bilodeau R.C., Brodie C.A., Haugen H.K., Andersen H.H., Kristensen P., Andersen T. // Phys. Rev. Lett. 1998. V. 80. P. 684.