01.1;01.4;05.2;09.1;15.2

Сдвиг инфракрасных спектров поглощения и излучения ионов переходных металлов в твердых растворах полупроводниковых соединений

© С.В. Найденов

Институт монокристаллов НАН Украины, Харьков, Украина E-mail: sergei.naydenov@gmail.com

Поступило в Редакцию 18 февраля 2021 г. В окончательной редакции 21 марта 2021 г. Принято к публикации 26 марта 2021 г.

Предложена универсальная теоретическая модель, объясняющая эффект сдвига инфракрасных полос поглощения и излучения ионов переходных металлов в твердых растворах полупроводниковых соединений. На примере кристаллов тройных соединений $Zn_{1-x}Mg_xSe:Cr^{2+}$ и $Cd_{1-x}Mn_xTe:Fe^{2+}$ дана оценка параметров длинноволнового сдвига полос люминесценции с ростом концентрации твердого раствора. Рассмотрено обобщение эффекта на случай многокомпонентных твердых растворов.

Ключевые слова: твердые растворы полупроводниковых соединений, монокристаллы A^{II}B^{VI}: TM²⁺, лазерные приложения для среднего ИК-диапазона, люминесценция ионов переходных металлов, внутрицентровый переход.

DOI: 10.21883/PJTF.2021.12.51068.18742

Кристаллические материалы полупроводниковых соединений группы А^{II}В^{VI}: ТМ²⁺, допированные ионами переходных металлов, относятся к перспективным материалам для лазерных сред ближнего и среднего инфракрасного (ИК) диапазона [1,2]. В различных приложениях требуется разработка ИК-лазерных сред с широкой перестраиваемой полосой генерации, смещенной в сторону больших длин волн (вплоть до $5-6\,\mu m$). Новые возможности по сравнению с бинарными соединениями предоставляют твердые растворы сложных халькогенидов, в которых основной катион кристаллической решетки замещается более легким атомом. В частности, вызывают интерес кристаллы $Zn_{1-x}Mg_xSe:Cr^{2+}$ [3], $Zn_{1-x}Mn_xS:Fe^{2+}$ [4], $Cd_{1-x}Mn_xTe:Cr^{2+}$ [5], $Cd_{1-x}Mn_xTe:Fe^{2+}$ [6,7], на которых была получена лазерная генерация в среднем ИК-диапазоне. Отличительной чертой этих кристаллов является существенный сдвиг полос поглощения и люминесценции ионов переходного металла при изменении катионной концентрации твердого раствора $(\propto 20-50$ nm на каждые 10% прироста концентрации x) и температуры (в меньшей степени). Благодаря этому открывается возможность контролируемого изменения их лазерных свойств и сдвига полосы лазерной генерации в сторону больших длин волн. Физическая природа этого эффекта не была выяснена в достаточной степени. Цель настоящей работы — построить теоретическую модель, объясняющую наблюдаемый эффект, и связать микроскопические параметры электронной энергетической структуры с экспериментальными данными.

Рассмотрим люминесценцию изовалентных примесей переходных металлов TM²⁺ (Cr, Fe, Co, Ni и др.),

которыми допируются кристаллы соединений группы А^{II}В^{VI}: ТМ²⁺. Поскольку различие между ионными радиусами и электроотрицательностью TM²⁺-ионов и катионов кристаллической решетки (Zn, Cd, Hg и др.) обычно не превосходит 10-15% и 0.4-0.6 единиц Поллинга соответственно, ион переходного металла, согласно правилу Гольдшмидта, изоморфно замещает катион кристаллической решетки. В результате замещения "центральный ион" оказывается в октаэдрическом или тетраэдрическом (в зависимости от типа решетки) окружении соседних анионов халькогена (S, Se, Te). При этом уровни примесного иона оказываются расположенными глубоко в запрещенной зоне полупроводника [8,9]. Люминесценция TM²⁺-ионов в области ИК-диапазона имеет внутрицентровой характер. Процессы перезарядки ТМ²⁺-ионов при облучении коротковолновым излучением видимого и ультрафиолетового диапазона или в результате ударной ионизации свободными электронами (в сильном электрическом поле порядка нескольких киловольт) и связанную с ними рекомбинационную (коротковолновую) люминесценцию здесь не рассматриваем.

Кристаллическое поле лигандов приводит к расщеплению энергетических уровней центрального иона (см., например, [10]). Для изолированного тетраэдрического комплекса энергия расщепления ΔE^* выражается формулой Бете (в системе единиц СИ)

$$\Delta E^* = \frac{20}{27} \frac{e^2 Z^2}{4\pi\epsilon_0 \epsilon} \frac{\langle r^4 \rangle}{d^{*5}},\tag{1}$$

где $\epsilon_0 = 8.85 \cdot 10^{-12}$ F/m — диэлектрическая постоянная вакуума, ϵ — диэлектрическая постоянная среды, $e = 1.6 \cdot 10^{-19}$ C —заряд электрона, Z — заряд лиганда

Πορομοτρ	Допированные ионами Cr ²⁺					Допированные ионами Fe ²⁺			
Параметр	ZnS	ZnSe	ZnTe	CdS	CdSe	ZnS	ZnSe	CdSe	CdTe
Тип кристаллической решетки	ZB	ZB	ZB	W	W	ZB	ZB	W	ZB
Параметр решетки, Å	5.41	5.67	6.10	c = 6.75 a = 4.14	c = 7.02 a = 4.30	5.41	5.67	c = 7.02 a = 4.30	6.48
Ширина запрещенной щели, eV	3.7	2.7	2.3	2.5	1.7	3.7	2.7	1.7	1.5
Пик поглощения λ_{ab} , μ m	1.69	1.77	1.79	1.85	1.92	2.8	3.1	3.5	3.65
Пик излучения λ_{em} , μ m	2.35	2.45	2.4	2.6	2.75	3.94	4.35	4.81	5.94
Энергия расщепления ΔE^* , eV	0.464	0.442	0.438	0.393	0.371	0.286	0.253	0.216	0.192

Таблица 1. Параметры [2] бинарных кристаллов $A^{II}B^{VI}$: TM^{2+} и рассчитанная для них энергия расщепления ΔE^* внутрицентрового перехода TM^{2+} -иона

(равный заряду иона) в единицах заряда электрона, $\langle r^4 \rangle$ — матричный элемент от четвертой степени r^4 расстояния валентного *d*-электрона от ядра иона, вычисленный по волновой функции многочастичной системы (центрального иона со всеми его электронами), d^* — расстояние между центральным ионом и лигандами, т. е. длина связей в кристаллической решетке. Для кубической решетки бинарного соединения (типа сфалерит) $d^* = (\sqrt{3}/4)a$. В общем случае можно считать, что параметр $d^* \propto d$ пропорционален периоду кристаллической решетки.

Для бинарных кристаллов $A^{II}B^{VI}$: TM^{2+} формулу (1) можно считать хорошим приближением для оценки энергетической щели между электронными уровнями основного и возбужденного состояний TM^{2+} -иона. Спин-орбитальное взаимодействие при искажении решетки и взаимодействие решетки с электронной подсистемой (вибронные возбуждения) в силу эффекта Яна-Теллера приводят к дополнительному расщеплению уровней *d*-электронов TM^{2+} -иона, которые размываются в достаточно широкие подзоны. Обычно величина $\Delta E^* \propto 10^3$ сm⁻¹, тогда как для вибронных уровней $\Delta E_v \propto 1-10$ сm⁻¹.

Внутрицентровый переход TM^{2+} -иона при поглощении и излучении в ИК-диапазоне происходит между подзонами основного и возбужденного состояний иона, разделенными энергетической щелью ΔE^* . Из формулы (1) следует, что с ростом параметра d^* , а значит, с ростом параметра решетки бинарного соединения $A^{II}B^{VI}$: TM^{2+} величина ΔE^* уменьшается. Поэтому максимумы полос поглощения и излучения должны сдвигаться в длинноволновую область. В табл. 1 приведены экспериментальные и расчетные данные (детали расчета опускаем) для серии бинарных лазерных кристаллов ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, допированных ионами хрома и железа. При переходе от более легких к более тяжелым катионам и/или анионам ковалентная связь в решетке ослабляется (заменяется на ионную), параметр

решетки возрастает (ширина запрещенной зоны при этом падает, так как ослабляется ковалентная связь); ширина энергетической щели ΔE^* внутрицентрового перехода также падает: ИК-полосы поглощения и излучения согласованно сдвигаются в сторону больших длин волн. Несмотря на простоту и очевидность последнего вывода, цитируемого в большом числе работ по лазерным кристаллам А^{II}В^{VI}: ТМ²⁺, данная закономерность напрочь отсутствует в кристаллах твердых растворов тройных соединений. Например, для $Zn_{1-x}Mg_xSe:Cr^{2+}$ с увеличением концентрации магния постоянная решетки растет, а для $Cd_{1-x}Mn_xTe:Fe^{2+}$ с увеличением концентрации марганца, наоборот, падает. Вместе с тем для обоих кристаллов по-прежнему наблюдается длинноволновый сдвиг ИК-полос поглощения и излучения [3–7].

В твердом растворе замещения типа $A_{1-x}B_xC$: TM²⁺ (здесь А и В — катионы основной решетки и разбавителя, С — халькогена, х — концентрация твердого раствора) примесный ион может замещать не один, а любой из двух сортов катионов. Энергия расщепления ΔE^* уровней ТМ²⁺-иона зависит от этого локального окружения. Поэтому в данном случае она не может выражаться формулой (1). Для того чтобы связать ее с параметрами полупроводникового материала, воспользуемся тем, что физическая величина при переходе от простых соединений к их твердому раствору должна изменяться (в первом приближении) пропорционально их концентрации в твердом растворе. В частном случае этот принцип, примененный к параметру решетки d = d(x), соответствует известному закону Вегарда $d(x) = d_1 + (d_2 - d_1)x$, который неплохо выполняется для исследуемых материалов.

В применении к энергетической щели ΔE^* между состояниями примесного TM²⁺-иона указанный принцип аддитивности означает

$$\Delta E_{ABC:TM}^*(x) = (1 - x)\Delta E_{AC:TM}^* + x\Delta E_{BC:TM}^*.$$
 (2)

Таблица 2. Параметры бинарных компонентов (i = 1, 2) твердого раствора *ABC*: TM²⁺ (диэлектрическая проницаемость ϵ , ионный радиус r катиона, параметр решетки d) и параметры длинноволнового сдвига δ_{12} и κ для внутрицентрового перехода (в качестве радиуса r_1 валентного d-электрона TM-иона для оценок выбран радиус примесного атома)

Кристалл	ϵ_1	ϵ_2	<i>r</i> ₁ , Å	r2, Å	d_1 , Å	<i>d</i> ₂ , Å	r_I , Å	δ_{12} , eV	к
ZnMgSe: Cr ²⁺	7.32	4.66	0.74	0.71	5.67	6.88	1.27	$6.84\cdot 10^{-2}$	$1.55\cdot 10^{-1}$
CdMnTe: Fe ²⁺	12.82	19.30	0.92	0.80	6.48	6.33	1.26	$1.22\cdot 10^{-2}$	$6.36\cdot 10^{-2}$

В рамках этого подхода можно также учесть влияние температуры, добавив к выражению (2) слагаемое $\propto T$ (здесь не рассматриваем). Переобозначив величины, запишем (2) в виде

$$\varepsilon(x) = \varepsilon_1^* - \delta_{12}x, \quad \delta_{12} = (\varepsilon_1^* - \varepsilon_2^*), \tag{3}$$

Энергия $\varepsilon(x)$ соответствует энергии поглощенного или излученного фотона при внутрицентровом переходе TM^{2+} -иона в матрице твердого раствора с концентрацией x. Изменение длины волны $\Delta\lambda$ связано с изменением энергии фотона $\Delta\varepsilon$ соотношением

$$\Delta \lambda / \lambda = -\Delta \varepsilon / \varepsilon. \tag{4}$$

При небольшом приращении величин $\Delta \lambda \ll \lambda$ или $\Delta \varepsilon \ll \varepsilon$ из уравнений (3), (4) следует

$$\Delta \lambda \approx \lambda \kappa \Delta x, \quad \kappa = \delta_{12} / \varepsilon_1^* \ll 1 \tag{5}$$

— закон линейного сдвига максимума полосы поглощения или излучения при изменении концентрации Δx твердого раствора. Значения λ соответствуют максимумам в спектрах поглощения λ_{ab} или излучения λ_{em} "неразбавленного" бинарного соединения. Характер сдвига определяется знаком величины δ_{12} . Длинноволновому спектральному сдвигу соответствует $\delta_{12} > 0$, а коротковолновому — $\delta_{12} < 0$. В общем случае значение коэффициента сдвига $\kappa = \kappa_{\alpha}$ зависит от структуры зонного энергетического спектра ТМ-иона в матрице твердого раствора. Для каждой выделенной α -й полосы сложного спектра поглощения или излучения он может принимать различные (хотя, как правило, близкие) значения. Основной вклад вносит штарковское расщепление уровней, т. е. величина $\Delta E^*(x)$.

В табл. 2 приведена упрощенная оценка параметра δ_{12} для тройных кристаллов $Zn_{1-x}Mg_xSe:Cr^{2+}$ и $Cd_{1-x}Mn_xTe:Fe^{2+}$. Для обоих соединений $\delta_{12}>0$, т.е. сдвиг полос является длинноволновым. Как видно из табл. 1, 2, по порядку величины $\varepsilon^*\propto 10^{-1}\,eV$, $\delta\propto 10^{-2}\,eV$ и $\kappa\propto 10^{-1}$.

Для ИК-диапазона $\lambda \propto 10^3$ nm. Отсюда следует, что максимальный сдвиг полос при изменении концентрации $\Delta x \propto 1$ может достигать нескольких сотен нанометров, $\Delta \lambda \propto 10^2$ nm. По порядку величины эта оценка справедлива и для других ИК-лазерных кристаллов на основе тройных халькогенидов. "Красный"

сдвиг максимумов полос люминесценции у кристаллов $Cd_{1-x}Mn_xTe:Fe^{2+}$ в несколько раз меньше, чем у кристаллов $Zn_{1-x}Mg_xSe:Cr^{2+}$, так как у них сильно отличается параметр δ_{12} и коэффициент сдвига κ уменьшается в 2.4 раза (в рамках теоретической оценки), что соответствует наблюдаемому в эксперименте уменьшению величины сдвига в 2–2.5 раза.

Линейная зависимость (5) и оценки подтверждаются в эксперименте (см., например, [3–7]). В этих работах установлен длинноволновый сдвиг полос поглощения и люминесценции на $\propto 50 \, \text{nm}$ (кристаллы $Zn_{1-x}Mg_xSe:Cr^{2+})$ или на $\propto 20-25\,$ nm (кристаллы $Cd_{1-x}Mn_xTe:Fe^{2+})$ при изменении концентрации твердого раствора (магния или марганца соответственно) на каждые 10%. Отсюда следует, что коэффициент пропорциональности для линейного сдвига полос поглощения и излучения соответственно принимает значения $\kappa_{ab} \approx 2.82 \cdot 10^{-1}$, $\kappa_{em} \approx 2.04 \cdot 10^{-1}$ для $Zn_{1-x}Mg_xSe$: Cr^{2+} (максимумы поглощения и излучения при 1770 и 2450 nm) и $\kappa_{ab} \approx 6.85 \cdot 10^{-2}$, $\kappa_{em} pprox 4.21 \cdot 10^{-2}$ для Cd $_{1-x}$ Mn $_x$ Te:Fe $^{2+}$ (максимумы поглощения и излучения при 3650 и 5940 nm). По порядку величины эти значения соответствуют расчетным данным в табл. 2. Различия связаны с грубым характером оценки параметров кристаллического поля, не учитывающей помимо штарковского дальнейшее расщепление вырожденных состояний в основной и возбужденной зоне энергий ТМ-иона. Последнее приводит к размытию (уширению) спектра уровней ТМ-иона и расщеплению спектров поглощения и излучения на несколько перекрывающихся полос. Параметры указанного изменения энергетической структуры зависят от концентрации твердого раствора. Однако для каждой из полос линейная зависимость вида (5), каждая со своим параметром сдвига κ_{α} , сохраняется.

Отметим, что присутствующие в твердых растворах соединений A^{II}B^{VI}:TM²⁺ примеси и дефекты могут влиять на свойства зонной структуры и люминесценцию, особенно в коротковолновой области. Условия применения лазерных кристаллов в ИК-области требуют высокой степени очистки этих кристаллов от посторонних примесей, которые могут приводить к росту концентрации свободных носителей заряда и ухудшению оптической ИК-прозрачности кристаллов из-за рассеяния ИК-излучения на электронах. Для хороших лазерных

кристаллов на основе твердых растворов $A^{II}B^{VI}$ концентрация вредных примесей обычно составляет менее $10^{-2}-10^{-50}$ (степень очистки сырья от 3N до 6N), что значительно меньше концентрации активных ТМионов, которая составляет величину порядка нескольких процентов в матрице. Поэтому влиянием посторонних примесей на рассмотренные эффекты можно пренебречь.

Обнаруженную закономерность можно распространить на многокомпонентные твердые растворы типа $A(x_1)\{B_i(x_i)\}C(y_1)\{D_j(y_j)\}$: TM²⁺, в которые кроме основного катиона с концентрацией x_1 и основного аниона с концентрацией y_1 входят еще i = 2, ..., N катионов с концентрацией y_i . Например, к ним относятся кристаллы Zn_{1-x}Mg_xSe_{1-y}S_y: Cr²⁺ или Cd_{1-x}Mn_xTe_{1-y}Se_y: Fe²⁺. Ожидаемый сдвиг энергетической щели для состояний TM²⁺-иона

$$\varepsilon(\lbrace x_i \rbrace, \lbrace y_j \rbrace) = \varepsilon_{11} - \sum_{i=2}^{N} \delta_i x_i - \sum_{j=2}^{M} \gamma_j y_j + \sum_{j=2}^{N} \sum_{j=2}^{M} \xi_{ij} x_i y_j,$$
(6)

где ε_{11} — энергия расщепления ΔE^* для основного компонента *AC*, а также введены параметры

$$\delta_{i} = \delta_{i}(y_{1}) = \varepsilon_{11} - y_{1}\varepsilon_{i1}, \gamma_{j} = \gamma_{j}(x_{1}) = \varepsilon_{11} - x_{1}\varepsilon_{1j},$$

$$\xi_{ij} = \varepsilon_{11} + \varepsilon_{ij} \ge 0, \qquad (7)$$

где ε_{i1} , ε_{1j} , ε_{ij} — энергии ΔE^* для бинарных компонентов B_iC , AD_j , B_iD_j соответственно. Концентрации компонентов твердого раствора удовлетворяют условию нормировки

$$x_1 = 1 - \sum_{i=2}^{N} x_i, \quad y_1 = 1 - \sum_{j=2}^{M} y_j.$$
 (8)

В многокомпонентной системе с почти "равноправным" парциальным составом $x_i \propto 1/N$ и $y_j \propto 1/M$. Поэтому при N > 2 и M > 2 нелинейным слагаемым $\propto x_i y_j \ll 1$ в уравнении (7) можно пренебречь. Ожидаемый "квазилинейный" сдвиг полос поглощения и излучения

$$\Delta\lambda(\{x_i\},\{y_j\}) \approx \lambda \left[\sum_{i=2}^N \kappa_i \Delta x_i + \sum_{j=2}^M \nu_j \Delta y_j\right],$$

$$\kappa_i = \frac{\delta_i}{\varepsilon_{11}}, \nu_j = \frac{\gamma_j}{\varepsilon_{11}}.$$
(9)

В зависимости от знака параметров δ_i и γ_j возможно (N + M - 2) типов поведения ИК-спектров при изменении концентрации компонентов твердого раствора. В самом простом случае N = 2, M = 1 зависимость (9)

переходит в закон (5) для тройного соединения. Максимальный сдвиг ИК-спектров соответствует соединению, для которого параметры "сдвига" δ_i и γ_j , а значит, и параметры κ_i и ν_j принимают максимальные значения

$$\Delta\lambda(\{x_i\},\{y_j\}) \leqslant \lambda[\kappa_{\max}\Delta x_{\max} + \nu_{\max}\Delta y_{\max}].$$
(10)

Для тройных соединений величину спектрального сдвига также можно оценить на основе экспериментальных измерений максимумов полос поглощения λ_{ab} и излучения λ_{em} на двух образцах кристаллов с разной концентрацией твердого раствора $x_1 \neq x_2$ по формуле

$$\Delta \lambda = \frac{\lambda_2 - \lambda_1}{x_2 - x_1} \Delta x, \tag{11}$$

причем одна из концентраций может соответствовать бинарному составу ($x_1 = 0$). Для (N + M)-компонентной системы для этого потребуется (N + M - 2) измерений, чтобы восстановить значения всех параметров сдвига в законе (9), т. е. решить "обратную" задачу.

Полученные закономерности позволяют предсказать ожидаемое смещение полос ИК-люминесценции твердых растворов халькогенидов без предварительного выращивания самих кристаллов. Это может оказаться полезным при разработке новых лазерных сред среднего ИК-диапазона.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- I.T. Sorokina, in *Solid-state mid-infrared laser sources*, ed. by I.T. Sorokina, K.L. Vodopyanov. Topics in Applied Physics (Springer, Berlin-Heidelberg, 2003), vol. 89, p. 255–351. DOI: 10.1007/3-540-36491-9_7
- [2] S.B. Mirov, I.S. Moskalev, S. Vasilyev, V. Smolski, V.V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, V. Gapontsev, IEEE J. Sel. Top. Quantum Electron., 24 (5), 1601829 (2018). DOI: 10.1109/JSTQE.2018.2808284
- [3] M.E. Doroshenko, V.V. Osiko, H. Jelinkova, M. Jelinek, M. Nemec, J. Sulc, N.O. Kovalenko, A.S. Gerasimenko, V.M. Puzikov, Opt. Mater., 47, 185 (2015). DOI: 10.1016/j.optmat.2015.05.015
- [4] A.D. Martinez, D.V. Martyshkin, R.P. Camata, V.V. Fedorov, S.B. Mirov, Opt. Mater. Express, 5 (9), 2036 (2015).
 DOI: 10.1364/OME.5.002036
- [5] U. Hommerich, X. Wu, V.R. Davis, S.B. Trivedi, K. Grasza,
 R.J. Chen, S. Kutcher, Opt. Lett., 22 (15) 1180 (1997).
 DOI: 10.1364/OL.22.001180
- [6] M.E. Doroshenko, V.V. Osiko, H. Jelinkova, M. Jelinek, J. Sulc, D. Vyhlidal, N.O. Kovalenko, I.S. Terzin, Opt. Mater. Express, 8 (7), 1708 (2018). DOI: 10.1364/OME.8.001708
- [7] M.E. Doroshenko, H. Jelinkova, M. Jelinek, J. Sulc,
 D. Vyhlidal, N.O. Kovalenko, I.S. Terzin, Opt. Lett., 43 (20), 5058 (2018). DOI: 10.1364/OL.43.005058

- [8] A. Zunger, Solid state physics, ed. by H. Ehrenreich, D. Turnbull (Academic Press, 1986), vol. 39, p. 275. DOI: 10.1016/S0081-1947(08)60371-9
- [9] T.P. Surkova, M. Godlewski, K. Swiatek, P. Kaczor, A. Polimeni, L. Eaves, W. Giriat, Physica B, 273-274, 848 (1999). DOI: 10.1016/S0921-4526(99)00519-0
- [10] И.Б. Берсукер, Электронное строение и свойства координационных соединений. Введение в теорию, 3-е изд. (Химия, Л., 1986), с. 69, 269.