02;02.4

© А.А. Басалаев¹, А.Г. Бузыкин², В.В. Кузьмичев¹, М.Н. Панов¹, А.В. Петров³, О.В. Смирнов¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия ³ Институт химии Санкт-Петербургского государственного университета, Санкт-Петербург, Россия E-mail: a.basalaev@mail.ioffe.ru

Поступило в Редакцию 26 февраля 2021 г. В окончательной редакции 26 февраля 2021 г. Принято к публикации 19 марта 2021 г.

Изучены радиационные повреждения изолированных молекул глицил-лейцина ($C_8H_{16}N_2O_3$), вызванные взаимодействием с ионами He²⁺. Впервые получены относительные сечения основных процессов изменения зарядового состояния партнеров столкновений и относительные сечения процессов фрагментации однозарядных и двухзарядных молекулярных ионов, образующихся при однократных столкновениях молекул глицил-лейцина с ионами. Методом функционала плотности (DFT) рассчитана оптимизированная геометрия молекулы и однозарядного иона глицил-лейцина.

Ключевые слова: захват электронов, дипептиды, фрагментация, времяпролетная масс-спектрометрия.

DOI: 10.21883/PJTF.2021.12.51062.18746

Пептиды — важнейший класс биологических молекул, состоящих из аминокислотных остатков, связанных пептидной связью. Известно, что воздействие на пептиды ионизирующего излучения может вызывать структурные повреждения, приводящие к потере их функциональной активности. В частности, наблюдается возникновение разрывов полипептидной цепи, приводящих к появлению свободных амидных групп [1]. Радиационная устойчивость молекул может быть изучена при масс-спектрометрическом анализе молекулярных ионовфрагментов, образующихся в процессе однократных столкновений молекул в газовой фазе с ионизирующей частицей. Такой подход позволяет исключить из рассмотрения радиационно-химические процессы, происходящие при исследовании взаимодействия ионизирующего излучения с растворами или твердым телом. Исследования фотоэмиссионных спектров некоторых дипептидов, находящихся в газовой фазе, были выполнены в работах [2,3]. Масс-спектры ионов-фрагментов ряда дипептидов, образующихся при ионизации молекул электронным ударом, приведены в базе данных [4]. В первую очередь экспериментальные данные для изолированных молекул пептидов важны для проверки квантовохимических расчетов (см., например, [5]).

В настоящей работе были измерены относительные сечения взаимодействия ионов He^{2+} (энергия $E_p = 4 \text{ keV/a.m.u.}$, скорость $V_p = 0.41 \text{ a.u.}$) с молекулами глицил-лейцина ($M = C_8 \text{H}_{16} \text{N}_2 \text{O}_3$) и изучена фрагментация образующихся молекулярных ионов $\{M\}^{n+}$ ($n \ge 1$)

$$He^{2+} + M \to He^{(2-s)+} + \{M\}^{n+} + (n-s)e^{-} \to He^{(2-s)+} + \sum_{n} Fr_{n}^{+} + \sum_{i} Fr_{i}^{0} + (n-s)e^{-}, \qquad (1)$$

где $\operatorname{He}^{(2-s)+}$ — налетающий ион в конечном зарядовом состоянии (s = 1, 2), Fr_n^+ — ионы-фрагменты (как правило, однозарядные), Fr_i^0 — нейтральные фрагменты, (n-s) — число свободных электронов, образующихся в процессах захвата с ионизацией. Для обозначения процессов использованы три числа, соответствующие начальному и конечному зарядовому состоянию налетающего иона и количеству образовавшихся заряженных фрагментов молекулы — $\{2(2-s)n\}$.

Исследования были выполнены с помощью "многостопового" времяпролетного анализа зарядового и массового состава фрагментов молекулы, образующихся в процессах (1) [6]. Зарядовое состояние налетающего иона после взаимодействия одновременно определялось с помощью электростатического анализатора. Мишень изолированных молекул с плотностью, обеспечивающей однократность столкновений, создавалась сублимацией кристаллического образца при температуре 190 ± 1°C.

Относительные величины сечений элементарных процессов (1) определялись при анализе масс-спектров ионов-фрагментов, из которых вычитался фоновый массспектр, измеряемый при закрытом молекулярном пучке. Полученные после этой процедуры масс-спектры нормировались на полное количество налетающих ионов и количество вещества, прошедшего через область взаимодействия за время измерения спектра. Заряд промежуточного молекулярного иона $\{M\}^{n+}$ определялся по количеству одновременно образовавшихся ионовфрагментов и их зарядовому состоянию.

Для расчета оптимизированной геометрии молекулы и однозарядного иона глицил-лейцина (рис. 1) применялся модуль Dmol³ из программного пакета Materials Studio, в котором реализован метод функционала плотности (DFT). Были использованы функционал

Рис. 1. Структурные формулы молекулы (a) и однозарядного иона (b) глицил-лейцина (расстояния между атомами указаны в Å).

B3LYP и полноэлектронный базис с учетом поляризации DNP ver.4.4 [7,8].

Полученные после обработки масс-спектры ионовфрагментов, образующихся в процессах захвата одного и двух электронов, приведены на рис. 2. Интегрирование измеренных масс-спектров позволяет вычислить относительные сечения наблюдаемых элементарных процессов. Эти сечения приведены в табл. 1, в которой для полного сечения, равного сумме сечений всех измеренных элементарных процессов (1), принято $\sigma_{tot} = 100$ rel. un.

В табл. 2 приведены величины относительных интенсивностей основных ионов-фрагментов, образующихся в наиболее вероятных процессах {211} и {202}. Идентификация ионов-фрагментов, приведенная в табл. 2, основана на том, что образование ионов массы *m* происходит за счет разрыва минимального количества молекулярных связей и незначительной перегруппировки атомов между образующимися фрагментами. Приведенные в табл. 2 продукты фрагментации для процесса {211} определяют 79%, а для процесса {202} — 88% сечений процессов.

Таблица 1. Относительные сечения элементарных процессов $\{2(2-s)n\}$

Процесс	Относительное сечение, rel. un.
$\sigma_{tot} \ \sum_{n} \{21n\} \ \{211\} \ \{212\} \ \{213\} \ \sum_{n} \{20n\} \ \{202\} \ \{203\} \ (204)$	$ \begin{array}{r} 100\\ 64.5 \pm 5\\ 57.0 \pm 5\\ 6.5 \pm 1\\ 1.0 \pm 0.3\\ 35.5 \pm 2\\ 25.5 \pm 2\\ 8.7 \pm 0.7\\ 1.3 \pm 0.3\\ \end{array} $

Из приведенных данных следует, что сечение образования недиссоциированного родительского иона мало, и это типично для большинства аминокислот [6,9]. Наиболее вероятными продуктами процесса одноэлектронного захвата являются фрагменты с массами m = 30 и 114 а.m.u., что удовлетворительно согласуется с данными по фрагментации ионов глицил-лейцина, образующихся при ионизации электронами [4].

Фрагмент с массой 30 а.т.u. идентифицируется как ион NH₂CH₂⁺, образующийся при простом разрыве связи C8–C7 (рис. 1). Как показывают расчеты геометрических параметров (рис. 1), в процессе ионизации наибольшее удлинение наблюдается для связей C8–C7 ($\Delta = 0.015$ Å) и C2–C1 ($\Delta = 0.018$ Å). Отрыв нейтральной группы COOH от родительского молекулярного иона M^+ , сопровождаемый образованием иона с массой m = 143 а.т.u., за счет разрыва связи C2–C1 экспери-

Рис. 2. Масс-спектры ионов-фрагментов, образующихся в процессах одноэлектронного захвата {211}, захвата с ионизацией {212}, двухэлектронного захвата {202} и двухэлектронного захвата с ионизацией {203}. Спектры {212}, {202}, {203} и часть спектра {211}, соответствующая массам 170–200 а.т.u., умножены на 5.

<i>m</i> , a.m.u.	Ион-фрагмент	{211}	<i>m</i> , a.m.u.	Ион-фрагмент	{202}
18	H_2O^+	30.1	1	H^+	66.7
28	HCNH^+	10.7	2	H_{2}^{+}	7.3
30	$\rm NH_2CH_2^+$	100.0	12	$\mathrm{C}^{ op}$	7.1
31	$\mathrm{NH_2CH}_3^+$	9.0	13	CH^+	9.3
43	$C_{3}H_{7}^{+}, C_{2}H_{5}N^{+}, C_{2}H_{3}O^{+}$	11.0	14	CH_2^+, N^+	16.8
56	$C_4H_8^+$, $C_3H_6N^+$, $C_3H_4O^+$	9.8	15	CH_3^+ , NH^+	19.4
84	$C_{3}H_{4}N_{2}O^{+}, C_{4}H_{4}O_{2}^{+}$	9.1	16	$\widetilde{\rm NH}_2^+$, ${\rm O}^+$	14.4
85	$C_{3}H_{5}N_{2}O^{+}, C_{4}H_{5}O_{2}^{+}$	14.6	27	$ m H m ar C N^+$	47.4
86	$C_{3}H_{6}N_{2}O^{+}, C_{4}H_{6}O_{2}^{+}$	13.8	28	HCNH ⁺	51.7
114	$C_4H_6N_2O_2^+$	77.7	29	$\rm NH_2CH^+$	25.0
115	$^{13}CC_{3}H_{6}N_{2}O_{2}^{+}, C_{4}H_{7}N_{2}O_{2}^{+}$	11.3	30	$\rm NH_2CH_2^+$	12.2
127	$C_7H_{13}NO^+$	9.1	38	$C_2 N^+, C_3 H_2^+$	18.5
188	$C_8H_{16}N_2O_3^+$	1.6	41	$C_3H_5^+$, $C_2H_3\tilde{N}^+$	11.1

Таблица 2. Интенсивность ионов, образующихся в процессах одноэлектронного {211} и двухэлектронного {202} захвата (интенсивность фрагмента с массой 30 а.т.u. (процесс {211}) принята за 100)

ментально не наблюдается, хотя этот канал процесса фрагментации является для большинства алифатических аминокислот основным [4,6,9]. Отрыв иона СООН⁺ (m = 45 а.m.u.) от молекулярного иона M^+ , как видно из рис. 2, тоже маловероятен.

Фрагмент с массой 114 а.т.u. может быть идентифицирован как молекулярный ион диглицина $C_4H_6N_2O_2^+$, высокая стабильность которого была показана в работе [10]. Образование этого иона сопровождается разрывом связи C2-C3 и формированием молекулы C_4H_8 . У оставшегося иона-фрагмента, к которому происходит миграция атома водорода от аминокислотного остатка лейцина, формируется вторая пептидная связь с образованием свободной молекулы воды (2а), альтернативный канал реакции приводит к образованию иона воды и нейтральной молекулы диглицина (2b):

$$C_{8}H_{16}N_{2}O_{3}^{+}$$
 $C_{4}H_{6}N_{2}O_{2}^{+} + H_{2}O + C_{4}H_{8}$, (2a)
 $C_{4}H_{6}N_{2}O_{2} + H_{2}O^{+} + C_{4}H_{8}$, (2b)

Как видно из рис. 2, в процессе {202} образуются более легкие фрагменты, чем в процессе {212}. Средневзвешенная масса для процесса {211} $\langle m \rangle = 63$ а.т.u., для процесса {212} $\langle m \rangle = 36$ а.т.u. и для процесса {202} $\langle m \rangle = 23$ а.т.u. Заметное различие механизма фрагментации промежуточных двухзарядных ионов M^{2+} , образующихся в процессах {212} и {202}, объясняется различием в энергиях их возбуждения, обусловленным тем, что в процессе {212} энергия возбуждения частично уносится образовавшимся свободным электроном.

В заключение следует отметить, что процессы фрагментации многозарядных ионов объясняют наблюдение образования свободных амидных групп, возникающих за счет разрывов полипептидной цепи, при облучении пептидов рентгеновским излучением. Очевидно, что при взаимодействии с рентгеновским излучением наиболее вероятно образование именно ионов M^{n+} с $n \ge 2$. При фрагментации однозарядных ионов разрыв пептидной связи маловероятен.

Благодарности

Расчеты проведены с использованием вычислительных ресурсов РЦ "Вычислительный центр СПбГУ" (http://cc.spbu.ru).

Финансирование работы

Работа выполнена в рамках государственного задания (тема № 0040-2019-0023).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Ю.Б. Кудряшов, Радиационная биофизика (ионизирующие излучения) (Физматлит, М., 2004), с. 153.
- [2] V. Feyer, O. Plekan, R. Richter, M. Coreno, K.C. Prince, V. Carravetta, J. Phys. Chem. A, **113**, 10726 (2009). https://doi.org/10.1021/jp906843j
- [3] A.P. Wickrama Arachchilage, F. Wang, V. Feyer, O. Plekan, K.C. Prince, J. Chem. Phys., **133**, 174319 (2012)
 DOI: 10.1063/1.3499740
- [4] NIST Chemistry WebBook [Электронный ресурс]. Режим доступа: https://webbook.nist.gov/chemistry/
- [5] M.S. de Vries, P. Hobza, Ann. Rev. Phys. Chem., 58, 585 (2007). DOI: 10.1146/annurev.physchem.57.032905.104722
- [6] О.В. Смирнов, А.А. Басалаев, В.М. Бойцов, С.Ю. Вязьмин, А.Л. Орбели, М.В. Дубина, ЖТФ, 84 (11), 121 (2014) DOI: 10.1134/S1063784214110231

- B. Delley, J. Chem. Phys., 92, 508 (1990). https://doi.org/10.1063/1.458452
- [8] B. Delley, J. Chem. Phys., 113, 7756 (2000). https://doi.org/10.1063/1.1316015
- [9] А.А. Басалаев, В.В. Кузьмичев, М.Н. Панов, О.В. Смирнов, Письма в ЖТФ, 43 (7), 63 (2017).
 DOI: 10.21883/PJTF.2017.07.44470.16531
- [10] A.A. Basalaev, A.G. Buzykin, V.V. Kuz'michev, M.N. Panov, O.V. Smirnov, J. Phys.: Conf. Ser., 1400, 033017 (2019). DOI: 10.1088/1742-6596/1400/3/033017