10,04

Структура и динамика решетки редкоземельных станнатов R_2 Sn₂O₇ (R = La - Lu): *ab initio* расчет

© В.А. Чернышев

Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия E-mail: vladimir.chernyshev@urfu.ru

Поступила в Редакцию 7 февраля 2021 г. В окончательной редакции 7 февраля 2021 г. Принята к публикации 14 февраля 2021 г.

Впервые проведено *ab initio* исследование структуры и динамики решетки, а также упругих свойств ряда редкоземельных станнатов R_2 Sn₂O₇ (R =La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Рассчитаны ИК- и КР-спектры, проведено отнесение колебаний. Из анализа векторов смещений, полученных при *ab initio* расчете, определена степень участия ионов в фононных модах. Определены моды с абсолютным или преимущественным участием кислорода в позиции 48f, характеризуемой смещением *x*. Рассчитаны упругие постоянные, а также твердость H_V . Исследовано влияние гидростатического сжатия на кристаллическую структуру. Показано, что степень искажения октаэдра, в котором находится редкоземельный ион, мало меняется с давлением (до 12 GPa). Показано, что зависимость объема элементарной ячейки от давления описывается уравнением состояния Берча–Мурнагана 3-го порядка.

Ключевые слова: редкоземельные станнаты, фононы, упругие постоянные, гибридные функционалы.

DOI: 10.21883/FTT.2021.07.51049.027

1. Введение

Оксиды редкоземельных элементов со структурой пирохлора А2В2О7 (А — редкоземельный ион, В — Ti, Ge, Zr, Sn, Mo) привлекают внимание в течение нескольких десятилетий благодаря многообразию свойств и потенциальному применению в качестве люминофоров [1-4]. В последнее время интенсивно исследуются редкоземельные станнаты $R_2 \text{Sn}_2 \text{O}_7$ со структурой пирохлора. Ряд работ посвящен исследованию станната европия Eu₂Sn₂O₇ [5-7]. Недавно был измерен спектр комбинационного рассеяния (КР) Eu₂Sn₂O₇ [5]. Были измерены КР-спектры и других станнатов [8]. При этом интерпретация фононных мод непосредственно из экспериментальных данных не проводилась. Например, в работе [8] спектры КР были измерены на поликристаллическом образце, а для обозначения типов мод были использованы результаты расчета в достаточно простой модели силовых постоянных (Vanderborre, 1983 [9]). Для некоторых представителей ряда также были определены экспериментально упругие постоянные и твердость [10].

Поэтому представляется актуальным провести в рамках единого *ab initio* подхода расчет кристаллической структуры, фононного спектра и упругих свойств всего ряда редкоземельных станнатов $R_2 \text{Sn}_2 \text{O}_7$ (R = La-Lu).

Редкоземельные станнаты $R_2 \text{Sn}_2 \text{O}_7$ имеют структуру пирохлора, пространственная группа $Fd\bar{3}m$ (по. 227). Ионы находятся в позициях: Sn — 16c (0, 0, 0), R — 16d (1/2, 1/2, 1/2), O1 — 48f (x, 1/8, 1/8), O2 — 8b (3/8, 3/8, 3/8). Кислород находится в двух симметрично неэквивалентных позициях.

2. Методы расчета

Расчеты были проведены в рамках теории функционала плотности (DFT) с использованием гибридного функционала PBE0 [11], учитывающего как локальный, так и нелокальный (в формализме Хартри-Фока) обмен. Сравнение функционалов различного уровня [12] показало, что PBE0 характеризуется малой ошибкой при воспроизведении электронной плотности и других характеристик относительно расчета методом связанных кластеров (CCSD). Расчеты были проведены в программе CRYSTAL17 [13,14], предназначенной для моделирования периодических структур в рамках подхода МО ЛКАО (молекулярная орбиталь — линейная комбинация атомных орбиталей).

Кислород входит во все структурные единицы R_2 Sn₂O₇ и при этом находится в двух симметрийно неэквивалентных позициях. Поэтому воспроизведение структуры и свойств кристалла будет существенным образом зависеть от базиса кислорода. В настоящей работе для кислорода был использован базис [15], содержащий в качестве диффузных и поляризационных орбиталей *p*-и *d*-орбитали. Для описания внутренних оболочек олова был использован релятивистский псевдопотенциал, при этом внешние оболочки $4s^24p^64d^{10}5s^25p^2$, участвующие в химической связи, описывались посредством валентного базисного набора [16]. Базис кислорода и псевдопотенциал олова с валентным базисным набором доступны на сайте программы CRYSTAL.

Для описания внутренних оболочек редкоземельных ионов были использованы квазирелятивистские псевдопотенциалы ECPnMWB (ECP — "effective core

		Постоянная	решетки, Å	x			
R	Destroy		Эксперимент		Расцет	Экспер	имент
	1 40401	[27]	[28]	[10]	1 40401	[27]	[26]
La	10.7586	_	10.7026	10.7001	0.3309	0.32943	_
Ce	10.7167	—	_	_	0.3317	_	_
Pr	10.6778	10.6037	10.6004	_	0.3325	0.33148	_
Nd	10.6417	10.5733	10.5671	10.5699	0.3333	0.33220	_
Pm	10.6082	—	_	_	0.3340	_	_
Sm	10.5765	10.5081	_	10.5082	0.3347	_	_
Eu	10.5457	10.4832	_	_	0.3354	_	0.333(4)
Gd	10.5186	10.4603	_	10.4599	0.3360	_	_
Tb	10.4895	10.4287	10.4235	_	0.3367	0.3356	_
Dy	10.4628	10.4010	10.3979	_	0.3373	0.3372	_
Но	10.4370	10.3772	10.3726	_	0.3379	0.3366	_
Er	10.4113	10.3531	10.3504	10.3521	0.3385	0.3375	_
Tm	10.3914	10.3309	10.3262	_	0.3390	0.3382	_
Yb	10.3683	10.3083	10.3046	10.3060	0.3396	0.33908	—
Lu	10.3542	10.2922	10.2917	—	0.3400	0.3397	—

Таблица 1. R_2 Sn₂O₇. Постоянная решетки и координата x кислорода в позиции 48 f, выраженная в долях постоянной решетки

роtential"; n — количество внутренних электронов, замененных на псевдопотенциал; WB — "quasirelativistic" [17,18]). Для описания внешних оболочек ($5s^25p^6$), участвующих в образовании химической связи, — валентный базисный набор TZVP-типа с диффузными и поляризационными орбиталями [17,19,20]. Псевдопотенциалы и валентные базисные наборы ("ЕСРnMWB-II") доступны на сайте Stuttgart [21]. Из валентного базисного набора были удалены гауссовы примитивы с показателем экспоненты менее, чем 0.1 а.u.⁻², поскольку данные расчеты периодические.

Расчеты проводились в следующей последовательности. Сначала осуществлялась оптимизация кристаллической структуры. Затем для оптимизированной кристаллической структуры, соответствующей минимуму энергии, выполнялся расчет фононного спектра (в Г-точке) или расчет упругих постоянных.

При решении системы одноэлектронных уравнений Кона-Шэма точность расчета самосогласованного поля была установлена 10⁻⁹ а.u. Точность расчета двухэлектронных интегралов — не менее 10⁻⁸ а.u. Интегрирование по зоне Бриллюэна проводилось по схеме Монкхорста-Пака с сеткой k-точек 10 × 10 × 10. При релаксации кристаллической структуры учитывается, что в стационарной точке на поверхности потенциальной энергии силы, действующие на атомы, равны нулю. Оптимизация считается завершенной, когда градиенты ниже порогового значения. В программе CRYSTAL сходимость оптимизации проверяется по среднеквадратичной величине градиента и абсолютному значению наибольшей компоненты. Среднеквадратичное значение градиента было установлено равным 0.00030 а.u., максимальное значение компоненты — равным 0.00045 а.и. Кроме этого, в программе CRYSTAL оцениваются величины смещений: по среднеквадратичному значению и абсолютному значению наибольшего компонента. Для смещений они были установлены равными 0.0012 и 0.0018 a.u. Оптимизация считалась завершенной, если все четыре условия выполнялись одновременно.

Частоты фононного спектра рассчитывались в Г-точке. В программе CRYSTAL фононный спектр рассчитывается в гармоническом приближении, при этом вычисляется динамическая матрица. Первые производные по смещениям ионов вычисляются аналитически, вторые численно [22]. Смещения ионов при расчете вторых производных задавались равными 0.003 Å. Интенсивность инфракрасных (ИК) спектров и спектров комбинационного рассеяния (КР) в программе CRYSTAL [23] рассчитывается с использованием зарядов Борна [24]. При расчете упругих постоянных в программе CRYSTAL вычисляются вторые производные энергии ячейки по деформациям [23,25]:

$$C_{ij} = \frac{1}{V} \left[\frac{\partial^2 E}{\partial \varepsilon_i \partial \varepsilon_j} \right]_0, \tag{1}$$

при этом первые производные вычисляются аналитически, вторые численно: на кристаллическую ячейку накладывается деформация ε_i , и кристаллическая структура релаксирует при наложенной деформации.

3. Обсуждение результатов

Результаты расчета кристаллической структуры в сравнении с экспериментальными данными [10,26–28] приведены в табл. 1–3.

Параметр ρ , характеризующий искажение кислородного окружения редкоземельного иона, определяется

	Sn–O1, Å		R	–O1, Å	R	–O2, Å		ρ	
R	Расчет	Эксперимент [28]	Расчет	Эксперимент [28]	Расчет	Эксперимент [28]	Расчет	Эксперимент [28]	
La	2.0914	2.043	2.6321	2.629	2.3293	2.317	0.8850	0.8813	
Ce	2.0871	_	2.6156	_	2.3202	_	0.8871	_	
Pr	2.0829	2.074	2.6013	2.589	2.3121	2.295	0.8888	0.8864	
Nd	2.0795	2.063	2.5859	2.576	2.3040	2.288	0.8910	0.8882	
Pm	2.0762	—	2.5725	—	2.2967	—	0.8928	—	
Sm	2.0732	—	2.5597	—	2.2899	—	0.8946	—	
Eu	2.0703	2.060	2.5473	2.546	2.2832	2.269	0.8963	0.8912	
Gd	2.0678	—	2.5364	—	2.2773	—	0.8978	—	
Tb	2.0652	2.047	2.5245	2.516	2.2710	2.257	0.8996	0.8971	
Dy	2.0628	2.050	2.5137	2.499	2.2653	2.251	0.9012	0.9008	
Ho	2.0606	2.042	2.5031	2.497	2.2597	2.246	0.9028	0.8995	
Er	2.0583	2.042	2.4928	2.485	2.2541	2.2401	0.9042	0.9014	
Tm	2.0568	2.040	2.4844	2.475	2.2498	2.236	0.9056	0.9034	
Yb	2.0550	2.0398	2.4748	2.4633	2.2448	2.2310	0.9071	0.9057	
Lu	2.0537	2.0401	2.4691	2.4559	2.2418	2.2282	0.9079	0.9073	

Таблица 2. R₂Sn₂O₇. Межионные расстояния, расчет и эксперимент

Примечание. Для Eu₂Sn₂O₇ приведен эксперимент [26].

Таблица 3. Углы в структуре R_2 Sn₂O₇, расчет и эксперимент

	Sn–O–Sn, $^{\circ}$		R	$-O-R$, $^{\circ}$	O–Sn–O, $^{\circ}$		
R	Расчет	Эксперимент [28]	Расчет	Эксперимент [28]	Расчет	Эксперимент [28]	
La	130.83	131.61	92.53	92.05	96.98	96.47	
Ce	130.38	_	92.82	_	97.28	-	
Pr	129.95	130.51	93.09	92.74	97.56	97.19	
Nd	129.55	130.12	93.35	92.98	97.82	97.45	
Pm	129.17	_	93.60	_	98.07	_	
Sm	128.80	—	93.84	-	98.31	—	
Eu	128.44	129.43	94.08	93.43	98.54	-	
Gd	128.11	—	94.30	-	98.75	—	
Tb	127.76	128.32	94.53	94.16	98.97	98.61	
Dy	127.46	127.48	94.73	94.74	99.16	99.10	
Но	127.11	127.80	94.97	94.50	99.38	98.94	
Er	126.80	127.33	95.18	94.82	99.58	99.24	
Tm	126.53	126.97	95.36	95.07	99.75	99.48	
Yb	126.23	126.51	95.57	95.38	99.94	99.76	
Lu	126.06	126.19	95.69	95.60	100.05	99.96	

 Π римечание. Для $Eu_2Sn_2O_7$ приведен эксперимент [26].

выражением $\rho = (R-O2)/(R-O1)$. Таким образом, чем ρ ближе к единице, тем меньше искажение. Расчет учитывал только решеточный вклад, т.о. проведена оценка искажения, обусловленного только решеточным вкладом. Значение ρ , соответствующее рассчитанной кристаллической структуре, хорошо согласуется с экспериментальным (табл. 2). Таким образом, это искажение в основном определяется "решеточным" вкладом и может быть описано без учета магнитной структуры R_2 Ge₂O₇. Величина искажения фактически не меняется в ряду La-Lu.

Расчет с функционалом РВЕ0 и выбранными базисами хорошо описывает постоянную решетки, межионные расстояния и углы в структуре R_2 Sn₂O₇.

Станнат R_2 Sn₂O₇ со структурой пирохлора имеет следующие фононные моды в Г-точке: $\Gamma = A_{1g} + E_g + 2F_{1g}$ $+ 4F_{2g} + 3A_{2u} + 3E_u + 8F_{1u} + 4F_{2u}$. Из них одна мода F_{1u} трансляционная, $4F_{2u}$, $3E_u$, $3A_{2u}$, $2F_{1g}$ — "молчащие" моды, неактивные ни в ИК-спектрах, ни в спектрах КР. Моды $A_{1g} + E_g + 4F_{2g}$ активны в спектрах КР ("рамановские"), 7 мод F_{1u} активны в ИК-спектрах. Результаты расчета фононных мод в Г-точке в качестве примера

Рис. 1. Смещения ионов в фононных модах Nd₂Sn₂O₇.

приведены для $Nd_2Sn_2O_7$ (табл. 4). Из *ab initio* расчета были определены частоты и типы фононных мод. Из анализа векторов смещений, полученных при *ab initio* расчете, была определена степень участия ионов в каждой моде (столбец "Ионы-участники" в табл. 4, а также рис. 1). Согласие с экспериментом [29] хорошее.

Максимальные смещения ~ 0.4 Å — у иона Nd в низкочастотной моде F_{2u} (70 cm⁻¹), а также у ионов кислорода в F_{2u} моде (288 cm⁻¹) и в F_{2g} моде (540 cm⁻¹). Если величина смещения 0.02–0.04, смещение обозначено "s", если величина смещения не превышает 0.01, то смещение обозначено "w", если менее 0.005 — ион не упоминается в столбце "ионы-участники".

На рис. 2 представлены результаты моделирования КР-спектра $Nd_2Sn_2O_7$ в сравнении с экспериментальными данными. Результаты моделирования ИК-спектра приведены на рис. 3.

Расчеты (рис. 1) предсказывают смешивание колебаний структурных единиц. При этом можно выделить моды, в которых участвуют только ионы кислорода, а

Рис. 2. Спектр КР Nd₂Sn₂O₇. Расчет для возбуждающего излучения с длиной волны 514.4 nm и T = 298 K. Пунктиром соразмерно показан эксперимент [8] при длине волны 514.4 nm и T = 298 K. Расчет выполнен для поликристалла, что соответствует эксперименту.

Рис. 3. Результаты моделирования ИК-спектра. Все ИК-моды — типа *F*_{1*u*}.

также моды, в которых они участвуют преимущественно. Например, в максимальной по частоте ИК-активной моде F_{1u} (604 cm⁻¹, расчет для станната неодима, табл. 4) участвуют практически только ионы кислорода,

находящиеся в позиции O1 (48*f*), характеризуемой координатой *x*. В КР-активных модах участвуют только ионы кислорода. В самой интенсивной КР-моде F_{2g} (307 сm⁻¹, табл. 4) участвует преимущественно O1,

Таблица 4. Частоты и типы фононных мод в Г-точке Nd₂Sn₂O₇. (Обозначения в столбцах "КР" и "ИК": "А" — активная мода, "I" — неактивная. В скобках у ИК-мод приведена интенсивность (km/mol). Интенсивность КР-мод приведена для поликристалла (отн. ед.). Расчет интенсивности КР-мод проведен для возбуждающего излучения с длиной волны 514.4 nm и T = 298 K, что соответствует экспериментальным данным)

Тип	ИК	КР	Частота, расчет, ст ⁻¹	Частота, эксперимент [30] (КР), сm ⁻¹	Ионы-участники
F_{2u}	Ι	Ι	70		Nd ^S
E_u	Ι	Ι	105		Nd ^S , Sn, O1
F_{1u}	A (439)	Ι	109		Nd, Sn ^S , O1, O2
F_{1u}	A (376)	Ι	149		Nd, $O1^W$, $O2$
F_{2u}	Ι	Ι	160		Sn ^S , O1
E_u	Ι	Ι	192		Nd^W , Sn, $O1^S$
F_{1u}	A (2776)	Ι	210		Sn, O1
F_{1g}	Ι	Ι	250		O1 ^S
A_{2u}	Ι	Ι	255		Nd^W , Sn
A_{2u}	Ι	Ι	283		Nd, Sn^W
F_{2u}	Ι	Ι	288		$O1^{S}, O2^{S}$
F_{2g}	Ι	A (1000)	307	309	O1 ^S
F_{1u}	A (831)	Ι	330		Sn^W , $\mathrm{O1}^\mathrm{S}$
E_{g}	Ι	A (91)	344	339	O1 ^S
F_{1u}	A (9126)	Ι	357		Sn^W , $\mathrm{O1}^\mathrm{S}$, $\mathrm{O2}^\mathrm{S}$
E_u	Ι	Ι	399		Sn^W , $\mathrm{O1}^\mathrm{S}$
F_{2g}	Ι	A (281)	415	409	$O1^{\rm S}, O2^{\rm S}$
F_{1u}	A (268)	Ι	412		O1, O2 ^S
A_{2u}	Ι	Ι	482		O1
A_{1g}	Ι	A (746)	502	497	O1
F_{1g}	Ι	Ι	524	529	O1 ^s
F_{2g}	Ι	A (173)	540		O1, O2 ^s
F_{1u}	A (3238)	Ι	604		O1 ^S
F_{2u}	Ι	Ι	678		O1 ^S
F_{2g}	Ι	A (58)	720	720	01

Примечание. В последнем столбце: "s" — сильное, "w" — слабое смещение иона в моде.

R	Источник данных	F_{1u}	F_{1u}	F_{1u}^S	F_{1u}	F_{1u}^{VS}	F_{1u}^W	F_{1u}^S
Ia	Расчет	109	150	210	333	358	400	582
La	Эксперимент [9]	107	144	212	322	370	410	580
Ce	Расчет	109	150	210	332	358	404	590
cc	Эксперимент			_	_	_		_
Pr	Расчет	109	149	210	331	357	408	597
11	Эксперимент		-	—	_	—	-	—
Nd	Расчет	109	149	210	330	357	412	604
INU	Эксперимент			—	_	_		—
Pm	Расчет	108	147	210	329	356	416	610
1 111	Эксперимент	_		_	_	_		_
Sm	Расчет	107	143	210	328	356	420	616
5111	Эксперимент [9]	105	142	215	320	385	430	617
Eu	Расчет	107	142	210	326	355	424	622
Ľu	Эксперимент	_		_	_	_		_
Gd	Расчет	106	140	210	325	354	427	628
Ou	Эксперимент [9]	105	140	215	320	390	435	630
Th	Расчет	105	138	210	324	354	431	632
10	Эксперимент	_		_	_	_		_
Dv	Расчет	104	136	210	323	352	434	637
Dy	Эксперимент	_		_	_	_		_
Но	Расчет	103	134	209	321	352	438	641
110	Эксперимент	_		_	_	_		_
Fr	Расчет	102	133	209	318	351	441	644
Lı	Эксперимент			—	_	_		—
Tm	Расчет	100	131	208	316	349	443	647
1111	Эксперимент	_		_	_	_		_
Vh	Расчет	99	128	208	316	348	446	652
10	Эксперимент [9]	102	128	215	310	380	450	650
I 11	Расчет	98	127	208	315	350	449	655
Lu	Эксперимент [9]	100	126	215	310	390	458	652

Таблица 5. ИК-моды R_2 Sn₂O₇ (R = La - Lu)

Таблица 6. КР-моды $R_2 Sn_2 O_7 \ (R = La - Lu)$ 1

-

1

T

R	Источник данных	F_{2g}	E_g	F_{2g}	A_{1g}	F_{2g}	F_{2g}
Та	Расчет	305	339	413	497	540	697
La	Эксперимент [9]	304	340	406	495	530	I
Ce	Расчет	306	341	414	499	540	705
cc	Эксперимент	-	-	_		_	
Pr	Расчет	307	343	414	500	541	712
11	Эксперимент	-	-	_		_	
Nd	Расчет	307	344	415	502	540	719
nu	Эксперимент [30]	303	339	409	497	529	720
Pm	Расчет	308	346	415	503	541	725
1 111	Эксперимент			_		_	I
Sm	Расчет	309	347	416	504	541	731
SIII	Эксперимент [9]	308	344	410	500	530	Ι
	Расчет	309	348	416	505	541	737
Eu	Эксперимент [7]	304	338	400	499	537	Ι
	Эксперимент [29]	312	346	407	507	532	731
	Расчет	310	350	416	506	540	742
Gd	Эксперимент [30]	310	348	415	502	535	741
	Эксперимент [9]	310	346	415	502	530	_
Th	Расчет	310	351	416	507	540	747
10	Эксперимент [27]	324	359	426	518	545	758
Dv	Расчет	310	351	415	508	540	753
Dy	Эксперимент [27]	323	358	428	519	548	765
Ho	Расчет	310	353	414	509	540	756
110	Эксперимент	-		-	-	_	-
Er	Расчет	309	355	413	509	540	759
121	Эксперимент [30]	308	355	412	505	535	751
Tm	Расчет	309	354	412	509	539	763
	Эксперимент	I	I		-	_	-
Yh	Расчет	309	355	412	510	539	768
10	Эксперимент [9]	312	360	417	508	530	_
In	Расчет	309	356	413	511	540	771
Lu	Эксперимент [9]	312	360	418	510	530	_

Примечание. Верхние индексы у типов мод: "s" — интенсивная мода ("strong"), "vs" — очень интенсивная мода ("very strong"), "w" слабая мода ("weak").

находящийся в позиции 48f. В моде E_g (344 cm⁻¹) участвуют только ионы O1 (48f). В модах F_{2g} с частотами 415 и 540 cm⁻¹ участвуют ионы кислорода O1 и O2. В интенсивной моде A_{1g} с частотой $502 \,\mathrm{cm}^{-1}$ (табл. 4) участвуют только ионы О1. В высокочастотной КР-моде

 F_{2g} (720 cm⁻¹) участвует преимущественно кислород, находящийся в позиции О1. Интенсивность этой моды мала.

Можно отметить, что поведение интенсивных мод A_{1g} (502 cm⁻¹) и F_{2g} (307 cm⁻¹) может нести информацию

Рис. 4. "Молчащие" моды Nd₂Sn₂O₇.

об изменении координаты *x* кислорода в позиции 48*f* под влиянием внешних воздействий на кристалл.

Все ИК-активные моды имеют тип F_{1u} . В ИК-модах участвуют все ионы — R, Sn, O1, O2, но в разной степени. (В столбце "Ионы-участники" в табл. 4 не приведены ионы, степень участия которых незначительна.) В наиболее интенсивной ИК-моде F_{1u} с частотой 357 сm⁻¹ (расчет для станната неодима, табл. 4) участвуют преимущественно ионы кислорода, O1 и O2. Во второй по интенсивности ИК-моде (604 сm⁻¹, табл. 4) проявляется сильное участие кислорода O1, при этом участие других ионов незначительно. В третьей по интенсивности ИК-моде (210 сm⁻¹) принимают участие ионы олова и O1. Преимущественное участие редкоземельного иона проявляется в низколежащей моде F_{2u} (70 сm⁻¹), однако она не активна ни в ИК-спектрах, ни в спектрах КР. В низколежащей моде F_{1u} (109 сm⁻¹) также проявляется сильное участие редкоземельного иона, но проявляется

Рис. 5. ИК-моды Nd₂Sn₂O₇. Обозначения такие же, как на рис. 4.

и сильное участие олова и O1. Участие редкоземельного иона проявляется в модах с частотами до $\sim 300\,{\rm cm^{-1}}$, олова — до $\sim 450\,{\rm cm^{-1}}$, кислород участвует во всех модах (рис. 1, табл. 4). Можно отметить существенное участие редкоземельного иона и олова в "молчащих" модах, не активных ни в ИК-спектрах, ни в спектрах КР.

Сравнение результатов расчета КР-активных мод с учетом их интенсивности с экспериментальным КР-спектром [8] приведено на рис. 2. Расчет был проведен для возбуждающего излучения с длиной волны $\lambda = 785$ nm и T = 298 K, что соответствует эксперименту [8]. При моделировании КР-спектра на основании рассчитанных частот и интенсивностей (полные интенсивности для поликристалла) использовались функции Pseudo-Voigt с фактором затухания ("damping factor") 8 cm⁻¹. Результаты моделирования ИК-спектра

Рис. 6. КР-моды Nd₂Sn₂O₇. Обозначения такие же, как на рис. 4.

приведены на рис. 3. Соответствующие экспериментальные данные по ИК- спектрам в литературе отсутствуют.

Смещения ионов в КР-модах, в наиболее интенсивных ИК-модах, а также в некоторых "молчащих" модах на примере $Nd_2Sn_2O_7$ приведены на рис. 4–6.

В табл. 5–7 приведены результаты расчета ИК-, КР- и "молчащих" мод для всего ряда $R_2 \text{Sn}_2 \text{O}_7$ (R = La-Lu).

Результаты расчета хорошо согласуются с экспериментальными данными [7,9,27,29,30].

В результате расчетов были определены заряды и
онов и заряды на связях $R_2 Sn_2 O_7$ (по Малликену). Результаты приведены в табл. 8.

Согласно расчетам, связь Sn-O является более ковалентной, чем остальные связи. Наиболее близка к ионной связь R-O.

R	F_{2u}	E_u	F_{2u}	E_u	F_{1g}	A_{2u}	F_{2u}	A_{2u}	E_u	A_{2u}	F_{1g}	F_{2u}
La	68	104	158	199	251	252	280	287	387	479	498	651
Ce	69	105	158	197	251	253	283	286	392	480	508	661
Pr	69	105	159	195	251	254	286	284	396	481	516	670
Nd	70	105	160	192	250	255	288	283	399	482	524	678
Pm	70	105	160	190	249	254	292	281	403	484	531	685
Sm	68	103	161	187	249.7	250	296	278	406	485	538	693
Eu	68	103	161	185	248.55	248.60	298	279	410	485	545	700
Gd	67	102	162	183	248	244	302	278	413	486	551	706
Tb	67	102	163	181	247	242	305	279	416	487	556	713
Dy	66	101	163	178	246	237	309	280	419	488	562	719
Ho	65	101	164	176	245	235	311	281	422	489	567	724
Er	65	101	164	175	242	232	312	282	425	490	571	728
Tm	63	100	165	173	240	229	315	282	427	490	575	733
Yb	62	99	165	170	240	224	320	283	430	491	580	739
Lu	61	98	166	170	239	223	322	283	432	491	583	741

Таблица 7. "Молчащие" моды $R_2 Sn_2 O_7 \ (R = La - Lu)$

Таблица 8. Заряды ионов и заряды на связях R_2 Sn₂O₇ (по Малликену), |e|

Ион	R	Sn	01	02	R-O1	R-O2	Sn-O1
La	+2.217	+1.957	-1.132	-1.555	0.003	0.110	0.149
Ce	+2.229	+1.957	-1.132	-1.569	0.004	0.105	0.149
Pr	+2.225	+1.946	-1.130	-1.561	0.006	0.093	0.149
Nd	+2.229	+1.942	-1.129	-1.566	0.007	0.086	0.149
Pm	+2.229	+1.937	-1.128	-1.563	0.009	0.076	0.149
Sm	+2.236	+1.934	-1.128	-1.569	0.010	0.070	0.149
Eu	+2.239	+1.929	-1.128	-1.571	0.011	0.064	0.149
Gd	+2.249	+1.928	-1.128	-1.584	0.012	0.062	0.149
Tb	+2.253	+1.924	-1.128	-1.588	0.013	0.057	0.149
Dy	+2.254	+1.921	-1.127	-1.589	0.014	0.052	0.149
Ho	+2.256	+1.918	-1.126	-1.592	0.015	0.047	0.149
Er	+2.255	+1.915	-1.125	-1.591	0.017	0.041	0.149
Tm	+2.255	+1.914	-1.124	-1.591	0.018	0.036	0.149
Yb	+2.254	+1.911	-1.123	-1.592	0.020	0.032	0.149
Lu	+2.224	+1.906	-1.118	-1.553	0.023	0.013	0.150

В работе также было исследовано влияние гидростатического сжатия на кристаллическую структуру станнатов. Расчеты были проведены для $Gd_2Sn_2O_7$ при давлении до 12 GPa. В табл. 9 приведены заряды ионов и заряды на связях $Gd_2Sn_2O_7$.

Согласно расчетам, при гидростатическом сжатии до 12 GPa заряд на связи Sn–O практически не меняется. Ковалентность связи Sn–O сохраняется. Заряд на связи R–O1 уменьшается, а на связи R–O2 существенно увеличивается. Изменение постоянной решетки и межионных расстояний с давлением приведено в табл. 10.

Отношение $\rho = (R-O2)/(R-O1)$, показывающее степень искажения октаэдра, в котором находится редкоземельный ион, мало меняется с давлением (табл. 10). Можно отметить, что гидростатическое сжатие не увеличивает степень искажения октаэдра. Уменьшение с давлением постоянной решетки и межионных расстояний описывается линейной зависимостью y = aP + b. Параметры *a* и *b* этой зависимости приведены в табл. 11.

При гидростатическом сжатии расстояние Sn-O убывает значительно медленнее, чем R-O, что соответствует значительной ковалентности связи Sn-O. (табл. 11).

Согласно расчетам, зависимость относительного объема элементарной ячейки от давления хорошо описывается уравнением состояния Берча–Мурнагана [31] 3-го порядка (2) с параметрами: $B_0 = 177.57$ GPa, B' = 4.95 и $V_0 = 1164.1$ Å³.

$$P = \frac{3}{2} B_0 \left(v^{-\frac{7}{3}} - v^{-\frac{5}{3}} \right) \left(1 + \frac{3}{4} \left(B' - 4 \right) \left(v^{-\frac{2}{3}} - 1 \right) \right).$$
⁽²⁾

В уравнении (2) v — относительное изменение объема, V/V_0 . Результаты расчета в сравнении с экспериментом [30] приведены на рис. 7.

Рис. 7. Зависимость объема ячейки от давления, описываемая уравнением состояния Берча-Мурнагана 3-го порядка для Gd₂Sn₂O₇. Символы — эксперимент [30].

Давление, GPa	Gd	Sn	01	02	Gd-O1	Gd-O2	Sn-O1
0	+2.249	+1.928	-1.128	-1.584	0.012	0.062	0.149
3	+2.258	+1.918	-1.126	-1.598	0.008	0.072	0.149
6	+2.270	+1.908	-1.124	-1.613	0.003	0.082	0.149
9	+2.280	+1.899	-1.122	-1.625	0.002	0.091	0.149
12	+2.287	+1.889	-1.119	-1.636	0.006	0.099	0.148

Таблица 9. Заряды ионов и заряды на связях $Gd_2Sn_2O_7$ (по Малликену) при гидростатическом сжатии, |e|

Таблица 10. Параметры Gd₂Sn₂O₇ при гидростатическом сжатии: постоянная решетки, межионные расстояния и координата *x* кислорода в позиции 48*f*, выраженная в долях постоянной решетки

Давление, GPa	Постоянная решетки, Å	Sn–O1, Å	Gd–O1, Å	Gd–O2, Å	x	ρ
0	10.5186	2.0678	2.5364	2.2773	0.3360	0.8978
3	10.4627	2.0585	2.5204	2.2653	0.3364	0.8988
6	10.4102	2.0495	2.5056	2.2539	0.3367	0.8995
9	10.3626	2.0417	2.4918	2.2436	0.3370	0.9004
12	10.3164	2.0339	2.4786	2.2336	0.3373	0.9012

Таблица 11. Параметры a и b зависимости постоянной решетки и межионных расстояний от давления для $Gd_2Sn_2O_7$

Параметр	a, Å/GPa	<i>b</i> , Å
Постоянная решетки Sn-O1 Gd-O1	-0.01682 -0.00282 -0.00481	10.515 2.0672 2.5354
Gd-O2	-0.00481 -0.00364 0.000107	2.2766 0.3360

Результаты расчета упругих постоянных, объемного модуля, модуля сдвига и др. приведены в табл. 12–13. Расчет объемного модуля и модуля сдвига в приближениях Фойгта, Реусса и Хилла (табл. 12) дает близкие результаты, что позволяет сделать вывод о достаточно высокой изотропии упругих свойств редкоземельных станнатов R_2 Sn₂O₇. Полученные из расчета значения модуля сдвига и объемного модуля позволяют сделать оценку твердости по Виккерсу для R_2 Sn₂O₇. Для оценки твердости по Виккерсу была использована эмпирическая формула

$$H_V = 0.92 \, \left(\frac{G}{B}\right)^{1.137} G^{0.708}.$$
 (3)

из работы [32], описывающая твердость ряда соединений с ионным и ковалентным типом связи (в работе [32] рассматривалось около 40 соединений). Как отмечалось в работе [32], она дает наилучшее согласие с экспериментом, когда твердость более 5 GPa. В формуле (3) G и B — модуль сдвига и объемный модуль по Хиллу. Для R_2 Sn₂O₇ формула (3) дает значение твердости по

Таблица 12. Упругие постоянные, объемный модуль и твердость по Виккерсу R_2 Sn₂O₇, GPa. В скобках приведены данные эксперимента [10]

R	C_{11}	C_{12}	C_{44}	В	H_V
La	283 (315)	117 (126)	94 (95)	173 (190)	$\begin{array}{c} 10.53 \\ (10.6\pm0.2) \end{array}$
Ce	289	117	95	174	10.85
Pr	295	116	96	176	11.12
Nd	300 (337)	115 (130)	97 (104)	177 (199)	$\begin{array}{c} 11.37 \\ (11.2\pm0.4) \end{array}$
Pm	305	115	97	178	11.59
Sm	310 (332)	114 (125)	97 (103)	179 (194)	$\begin{array}{c} 11.80 \\ (12.1\pm 0.6) \end{array}$
Eu	315	113	98	180	11.97
Gd	319 (334)	112 (122)	98 (106)	181 (193)	$\begin{array}{c} 12.13 \\ (12.4\pm0.2) \end{array}$
Tb	323	112	98	182	12.29
Dy	327	111	97	183	12.41
Но	332	110	97	184	12.54
Er	336 (340)	110 (120)	97 (110)	185 (193)	$\begin{array}{c} 12.66 \\ (14.4\pm0.3) \end{array}$
Tm	339	109	96	185	12.68
Yb	343 (341)	108 (118)	96 (111)	186 (192)	$\begin{array}{c} 12.75 \\ (15.2\pm0.3) \end{array}$
Lu	346	108	96	187	12.74

R	Схема расчета	Объемный модуль, GPa	Модуль Юнга, GPa	Модуль сдвига, GPa	Соотношение Пуассона
1	2	3	4	5	6
La	Фойгта	172.5	229.5	89.8	0.278
	Реусса	172.5	228.7	89.4	0.279
	Хилла	172.5	229.1	89.6	0.279
Ce	Фойгта	174.2	234.0	91.7	0.276
	Реусса	174.2	233.6	91.5	0.277
	Хилла	174.2	233.8	91.6	0.276
Pr	Фойгта	175.7	238.0	93.4	0.274
	Реусса	175.7	237.7	93.3	0.275
	Хилла	175.7	237.8	93.3	0.274
Nd	Фойгта	176.9	241.5	94.9	0.273
	Реусса	176.9	241.4	94.9	0.273
	Хилла	176.9	241.5	94.9	0.273
Pm	Фойгта	178.3	244.8	96.3	0.271
	Реусса	178.3	244.8	96.3	0.271
	Хилла	178.3	244.8	96.3	0.271
	Фойгта	179.4	247.9	97.6	0.270
Sm	Реусса	179.4	247.9	97.6	0.270
	Хилла	179.4	247.9	97.6	0.270
Eu	Фойгта	180.4	250.5	98.7	0.269
	Реусса	180.4	250.4	98.7	0.269
	Хилла	180.4	250.4	98.7	0.269
Gd	Фойгта	181.2	252.8	99.7	0.267
	Реусса	181.2	252.7	99.7	0.268
	Хилла	181.2	252.7	99.7	0.268
Tb	Фойгта	182.4	255.6	100.9	0.267
	Реусса	182.4	255.2	100.7	0.267
	Хилла	182.4	255.4	100.8	0.267
Dy	Фойгта	182.9	257.4	101.7	0.266
	Реусса	182.9	256.8	101.4	0.266
	Хилла	182.9	257.1	101.6	0.266
Но	Фойгта	184.1	259.8	102.7	0.265
	Реусса	184.1	258.9	102.3	0.266
	Хилла	184.1	259.4	102.5	0.265
Er	Фойгта	185.1	262.0	103.6	0.264
	Реусса	185.1	260.8	103.1	0.265
	Хилла	185.1	261.4	103.4	0.265

Таблица 13. Объемный модуль, модуль сдвига, модуль Юнга и соотношение Пуассона для $R_2 Sn_2 O_7$

1	2	3	4	5	6
	Фойгта	185.4	262.8	104.0	0.264
Tm	Peycca	185.4	261.1	103.2	0.265
	Хилла	185.4	261.9	103.6	0.265
	Фойгта	186.1	264.3	104.6	0.263
Yb	Реусса	186.1	262.2	103.6	0.265
	Хилла	186.1	263.2	104.1	0.264
	Фойгта	187.1	265.4	105.0	0.264
Lu	Реусса	187.1	262.9	103.8	0.266
	Хилла	187.1	264.1	104.4	0.265

Таблица 13 (продолжение).

Виккерсу H_V более 10 GPa, что хорошо согласуется с экспериментом.

4. Заключение

В работе из единого *ab initio* расчета в рамках подхода МО ЛКАО были определены частоты и типы фундаментальных колебаний ряда редкоземельных станнатов R_2 Sn₂O₇ (R = La - Lu) со структурой пирохлора, что может быть использовано при интерпретации экспериментальных ИК- и КР-спектров. Из анализа векторов смещений, полученных из ab initio расчета, определена степень участия ионов в каждой моде. Определены моды с абсолютным или преимущественным участием кислорода в позиции 48f, характеризуемой координатой х. Показано, что в самой интенсивной КР-моде с частотой около 300 cm⁻¹ участвуют преимущественно ионы кислорода, находящиеся в позиции 48 f. Показано, что в интенсивной моде КР с частотой около 500 cm⁻¹ участвуют только ионы кислорода, находящиеся в позиции 48f. Исследовано влияние гидростатического сжатия до 12 GPa на кристаллическую решетку $R_2 \text{Sn}_2 \text{O}_7$. Показано, что зависимость объема элементарной ячейки от давления хорошо описывается уравнением состояния Берча-Мурнагана 3-го порядка.

Рассчитаны упругие постоянные и твердость по Виккерсу редкоземельных станнатов $R_2 \text{Sn}_2 \text{O}_7$ (R = La-Lu). Показано, что твердость в ряду R = La-Lu возрастает. Результаты расчета хорошо согласуются с имеющимися экспериментальными данными и дополняют их.

Финансирование работы

Работа выполнена при поддержке Министерства образования и науки РФ (проект № FEUZ-2020-0054).

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] M.C. Hatnean, C. Decorse, M.R. Lees, O.A. Petrenko, G. Balakrishnan. Crystals 6, 7, 79 (2016).
- [2] R.Cao, G. Quan, Z. Shi, T. Chen, Z. Luo, G. Zheng, Z. Hu. J. Phys. Chem. Solids 118, 109 (2018).
- [3] J. Lian, J. Chen, L.M. Wang, R.C. Ewing, J.M. Farmer, L.A. Boather, K.B. Helean. Phys. Rev. B 68, 13, 134107 (2003).
- [4] A.M. Srivastava. Opt. Mater. 31, 6, 881 (2009).
- [5] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.М. Денисов, В.В. Белецкий, А.А. Шубин. Неорган. материалы 52, 8, 874 (2016).
- [6] F.X. Zhang, M. Lang, R.C. Ewing. Chem. Phys. Lett. 650, 138 (2016).
- [7] Y. Zhao, W. Yang, N. Li, Y. Li, R. Tang, H. Li, H. Zhu, P. Zhu, X. Wang, J. Phys. Chem. C 120, 17, 9436 (2016).
- [8] Q. Zhixue, W. Chunlei, W. Pan. Acta Mater. 60, 6-7, 2939 (2012).
- [9] M.T. Vandenborre, E. Husson, J.P. Chatry, D. Michel. J. Raman Spectrosc. **14**, *2*, 63 (1983).
- [10] J. Feng, B. Xiao, Z.X. Qu, R. Zhou, W. Pan. Appl. Phys. Lett. 99, 20, 201909 (2011).
- [11] J.P. Perdew, M. Ernzerhof, K. Burke. J. Chem. Phys. 105, 9982 (1996).
- [12] M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, K.A. Lyssenko. Science **335**, *6320*, 49 (2017).
- [13] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D'Arco, M. Llunel, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rerat, S. Casassa. Crystal17 User's Manual. https://www.crystal.unito.it/Manuals/crystal17.pdf.
- [14] CRYSTAL17 a computational tool for solid state chemistry and physics. http://www.crystal.unito.it/index.php.
- [15] F. Cora. Mol. Phys. 103, 2483 (2005).
- [16] G. Sophia, P. Baranek, C. Sarrazin, M. Rerat, R. Dovesi. http://www.crystal.unito.it/Basis_Sets/tin.html.
- [17] M. Dolg, H. Stoll, A. Savin, H. Preuss. Theor. Chim. Acta 75, 173 (1989).
- [18] M. Dolg, H. Stoll, H. Preuss. Theor. Chim. Acta 85, 441 (1993).
- [19] J. Yang, M. Dolg. Theor. Chem. Acc. 113, 212 (2005).

- [20] A. Weigand, X. Cao, J. Yang, M. Dolg. Theor. Chem. Acc. 126, 117 (2009).
- [21] Energy-Consistent Pseudopotentials of the Stuttgart/Cologne Group. http://www.tc.uni- koeln.de/PP/clickpse.en.html.
- [22] F. Pascale, C.M. Zicovich-Wilson, F. Lopez Gejo, B. Civalleri, R. Orlando, R. Dovesi. J. Comput. Chem. 25, 888 (2004).
- [23] R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D'Arco, Y. Noel, M. Causa, M. Rerat, B. Kirtman. Int. J. Quantum Chem. **114**, 1287 (2014).
- [24] L. Maschio, B. Kirtman, R. Orland, M. Rerat. J. Chem. Phys. 137, 20, 204113 (2012).
- [25] P. Labeguerie, F. Pascale, M. Merawa, C.M. Zicovich-Wilson, N. Makhouki, R. Dovesi. Eur. Phys. J. B 43, 453 (2005).
- [26] R. Trujillano, M. Douma, E.H. Chtoun, V. Rives. La Revista Macla 11, 187 (2009).
- [27] Л.Т. Денисова, Ю.Ф. Каргин, В.М. Денисов. Неорган. материалы **53**, *9*, 975 (2017).
- [28] B.J. Kennedy, B.A. Hunter, C.J. Howard. J. Solid State Chem. 130, 58 (1997).
- [29] L.T. Denisova, L.A. Irtyugo, Yu. F. Kargin, V.M. Denisov, V.V. Beletskii, A.A. Shubin. Inorg. Mater., 52, 8, 811 (2016).
- [30] K.M. Turner, C.L. Tracy, W.L. Mao, R.C. Ewing. J. Phys.: Condens. Matter, 29, 504005 (2017).
- [31] F. Birch. Phys. Rev. 71, 11, 809 (1947).
- [32] Y. Tian, B. Xu, Z. Zhao. Int. J. Refract. Met. Hard Mater. 33, 93 (2012).

Редактор Е.Ю. Флегонтова