## 12,18

# О контакте двумерного переходного металла с графеноподобным соединением

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

Поступила в Редакцию 20 января 2021 г. В окончательной редакции 19 февраля 2021 г. Принята к публикации 21 февраля 2021 г.

В рамках простой модели получены аналитические выражения для перехода заряда и высоты барьера Шоттки на контакте двумерного d-металла с графеноподобным соединением  $A_N B_{8-N}$ . Показано, что двумерность металла можно учесть через сужение его d-зоны. На примерах систем Gr-2DM и hBN-2DM продемонстрировано, что предложенный подход приводит к удовлетворительным результатам.

Ключевые слова: двумерные металлы, графеноподобные соединения, переход заряда, барьер Шоттки.

DOI: 10.21883/FTT.2021.06.50945.009

### 1. Введение

Практически сразу же после "явления графена народу" [1] начался интенсивный поиск других двумерных (2D) соединений. В начале составлялись "библиотеки" таких материалов [2,3], теперь дело дошло до больших баз данных [4,5] и дорожных карт [6]. Недавно опубликован атлас 2D-металлов (2DM) [7], за которым последовали работы [8-10] и уже появился соответствующий краткий обзор [11]. В этих работах, в основном, рассматривались статическая [7,8,11] и динамическая [9,10] устойчивости для различных 2D-структур и обсуждались вопросы синтеза и применения 2DM [11]. При этом в расчетах использовались различные варианты DFT (density functional theory). В настоящей работе мы рассмотрим контакт 2DM с графеноподобными соединениями (GLC) типа A<sub>N</sub>B<sub>8-N</sub>, используя простую модель, позволяющую получить аналитические выражения для перехода заряда и высоты барьера Шоттки. Численные оценки приводятся для контактов графена (Gr) и гексагонального нитрида бора (hBN) с 2DM.

# 2. Контакт GLC-2DM в модели Шоттки

Начнем с простейшего модельного описания контакта, задав энергетические плотности состояний GLC  $\rho_{GLC}(\omega)$  и металла  $\rho_M(\omega)$ , где  $\omega$  — энергетическая переменная. Для GLC типа  $A_NB_{8-N}$  воспользуемся плотностью состояний  $\rho_{GLC}(\omega)$  (на один атом элементарной ячейки), полученной в рамках низкоэнергетического приближения в [12]:

$$\rho_{\rm GLC}(\omega) = \begin{cases} 2|\omega - \bar{\varepsilon}|/\xi^2, \ \Delta \le |\omega - \bar{\varepsilon}| \le R, \\ 0, \qquad |\omega - \bar{\varepsilon}| < \Delta, \ |\omega - \bar{\varepsilon}| > R. \end{cases}$$
(1)

Здесь  $\bar{\varepsilon} = (\varepsilon_a + \varepsilon_b)/2$ ,  $\Delta = |\varepsilon_a - \varepsilon_b|/2$ , где  $\varepsilon_{a(b)}$  — энергетические уровни атомов A(B); t — энергия перехода электрона между соседними атомами A и B,  $\xi = \sqrt{2\pi\sqrt{3}t}$  — энергия обрезания,  $R = \sqrt{\xi^2 + \Delta^2}$ . В дальнейшем положим  $\bar{\varepsilon} = 0$ . При A = B (соединения IV–IV) получаем  $\rho_{GLC}(\omega) = 2|\omega|/\xi^2$  при  $|\omega| \le \xi$  и  $\rho_{GLC}(\omega) = 0$  при  $|\omega| > \xi$ . При A  $\neq$  B запрещенная зона GLC равна  $E_g = 2\Delta$ .n

Для d-металлов запишем

$$\rho_{\mathrm{M}}(\omega) = \rho_{s}(\omega) + \rho_{d}(\omega),$$

$$\rho_{s(d)}(\omega) = \begin{cases} N_{s(d)}/W_{s(d)}, & |\Omega_{s(d)}| \le W_{s(d)}/2, \\ 0, & |\Omega_{s(d)}| > W_{s(d)}/2, \end{cases}$$
(2)

где  $\rho_{s(d)}(\omega)$  — плотность состояний s(d)-зоны шириной  $W_{s(d)}, \Omega_{s(d)} = \omega - E_{s(d)}, E_{s(d)}$  — энергия центра s(d)-зоны,  $N_s = 2, N_d = 10$  (модель Фриделя). В выражении (2) учтено, что s(d)-зона характеризуется законом дисперсии  $E_{s(d)}(\mathbf{k}) \propto \hbar^2 k^2 / 2m_{s(d)}^*$  ( $\mathbf{k}$  — двумерный волновой вектор,  $m_{s(d)}^*$  — эффективная масса электронов,  $\hbar$  — приведенная постоянная Планка), которому в 2D-случае соответствует постоянная (в определенном энергетическом интервале) плотность состояний [13]. Так как  $W_s \gg W_d$  (см. [14], а также приближение бесконечно широкой *s*-зоны в модели примеси Андерсона [15]), будем считать, что *s*-зона полностью заполнена, и ее электроны не участвуют в переходе заряда между GLC и 2DM. В (2) не учитывается также вероятное наличие магнитных моментов у 2D–Fe, Co, Ni.

Для описания контакта полупроводник — металл используем модель Шоттки [16], в рамках которой энергетическая диаграмма системы представляется в виде суммы энергетических диаграмм ее компонентов без учета реального взаимодействия между этими компонентами, сдвигающего энергетические уровни и искажающего плотности состояний (см. [12]). При этом единственной характеристикой системы является единый химический потенциал. Такой же подход применяется и при рассмотрении вертикальных ван-дер-ваальсовых гетероструктур [2,17,18].

В рамках модели Шоттки числа заполнения  $n_{\rm GLC}$  (на один атом элементарной ячейки) и  $n_{\rm M} = n_d$  при нулевой температуре равны

$$n_{\rm GLC} = \int_{-R}^{\mu} \rho_{\rm GLC}(\omega) d\omega, \quad n_{\rm M} = \int_{E_d - W_d/2}^{\mu} \rho_{\rm M}(\omega) d\omega, \quad (3)$$

где *µ* — химический потенциал GLC-2DM. Тогда

$$n_{\rm GLC} = \frac{1}{\xi^2} \begin{cases} 0, & \mu < -R, \\ R^2 - \mu^2, & -R \le \mu \le -\Delta, \\ \xi^2, & -\Delta < \mu < \Delta, \\ \xi^2 + \mu^2 - \Delta^2, & \Delta \le \mu \le R, \\ 2\xi^2, & \mu > R, \end{cases}$$
(4)

$$n_{\rm M} = \frac{10}{W_d} \begin{cases} \mu - E_d + W_d/2, \ E_d - W_d/2 \le \mu \le E_d + W_d/2, \\ W_d, \qquad \mu > E_d + W_d/2. \end{cases}$$
(5)

Значение  $\mu$  определяется из условия сохранения числа электронов:  $n_{GLC}^0 + n_M^0 = n_{GLC} + n_M$ , где индекс "нуль" относится к изолированным GLC и 2DM. Из (6) получаем переход заряда  $\delta n_{GLC} = -\delta n_M = Z$ , где  $\delta n_{GLC(M)} = n_{GLC(M)} - n_{GLC(M)}^0$ ,  $n_M^0 = n_d^0$ . Используя выражения (1)–(3), легко показать, что

$$\delta n_{\rm GLC} = \pm (\mu^2 - \Delta^2) / \xi^2, \ \delta n_{\rm M} = 10(\mu - \mu_{\rm M}^0) / W_d,$$
 (6)

где  $\mu_{\rm M}^0 = \phi_{\rm GLC} - \phi_{\rm 2DM}$ ,  $\phi_{\rm GLC}$  и  $\phi_{\rm 2DM}$  — работы выхода GLC и 2DM, верхний знак в выражении для  $\delta n_{\rm GLC}$  отвечает случаю  $\mu > \Delta (\delta n_{\rm GLC} > 0)$  и  $\mu < \mu_{\rm M}^0 (\delta n_{\rm M} > 0)$ , т.е.  $\mu_{\rm M}^0 > 0$ ; нижний — случаю  $\mu < -\Delta (\delta n_{\rm GLC} < 0)$  и  $\mu > \mu_{\rm M}^0 (\delta n_{\rm M} > 0)$ , т.е.  $\mu_{\rm M}^0 < 0$ ; при  $-\Delta < \mu < \Delta$  имеем  $\delta n_{\rm GLC} = \delta n_{\rm M} = 0$ . Тогда получим

$$\mu = \pm C(\sqrt{1+A} - 1), \quad A = (\Delta^2 + 2C|\mu_{\rm M}^0|)/C^2, \quad (7)$$

где  $C = 5\xi^2/W_d$ , верхние знаки относятся к случаю  $\mu_{\rm M}^0 > \mu > \Delta$ , нижние знаки — к случаю  $\mu_{\rm M}^0 < \mu < -\Delta$ .

Согласно правилу Шоттки-Мотта [16,19], высоты барьеров на контакте массивных полупроводника и металла для электронов и дырок равны соответственно

$$\Phi_{Bn} = \phi_{\mathrm{M}} - \chi, \quad \Phi_{Bp} = \chi + E_g - \phi_{\mathrm{M}}, \quad (8)$$

где  $\chi$  — сродство полупроводника к электрону,  $\phi_{\rm M}$  — работа выхода металла. Те же выражения применимы и к 2D-структурам [20,21].

# 3. Контакты Gr-2DM и hBN-2DM

Для иллюстрации полученных результатов рассмотрим контакты графена (Gr) и гексагонального нитрида бора (hBN) с 2DM. Gr и hBN обладают почти равными постоянными решетки [17], а, значит, и энергиями перехода  $t \sim 3 \, \text{eV}$ . Практически одинаковы и работы выхода графена (4.5 eV [22,23]) и гексагонального нитрида бора (4.6 eV [24]). Имеется, однако, резкое отличие: у свободного Gr запрещенная зона отсутствует, тогда как hBN обладает широкой запрещенной зоной  $E_g \sim 6 \, {\rm eV} \, [17]$  (отметим, что в [24] и [25] приводятся соответственно значения  $E_g \sim 5$  и 4.5 eV). Поэтому сопоставление контактов Gr-2DM и h-BN-2DM выявляет роль запрещенной зоны. Для дальнейших оценок примем  $\phi(Gr) = \phi(hBN) = \phi_{GLC} = 4.5 \text{ eV}$  и  $E_g(hBN) = 6 \text{ eV}$ . Toгда электронное сродство недопированного hBN равно  $\chi(hBN) = 1.5 \text{ eV}$  (отметим, что согласно [26] электронное сродство hBN равно 2.3 eV, тогда как в [27] сообщается об отрицательном электронном сродстве).

Перейдем к оценкам параметров 2DM. К сожалению, в работах [7–11] нет данных по энергиям  $W_d$ . В [7], однако, путем расчетов продемонстрировано, что постоянные решетки 2DM (особенно гексагональных плотноупакованных 2D-решеток, см. рис. 4 в [7]) почти идентичны постоянным решеток 3DM. Отсюда следует, что близки и значения энергий перехода t<sub>3DM</sub> и  $t_{2DM}$ . Так как в приближении сильной связи  $W_d \propto 2zt$ , где *z* — число ближайших соседей, можем записать  $W_d(2\text{DM}) \approx \eta W_d(3\text{DM})$ , где  $\eta = z_{2\text{DM}}/z_{3\text{DM}}$ . Для гексагональных 2D-решеток  $z_{2DM} = 6$  (см. рис. 2 в [7]), откуда получаем  $\eta = 3/4$  для ОЦК,  $\eta = 1/2$  для ГЦКи ГПУ-решеток 3DM (структуры металлов см. в [28]). Используя значения  $W_d$  (3DM) из [14], получим оценки  $W_d$  (2DM), приведенные в таблице. Там же приведены значения параметра С.

К сожалению, расчеты работы выхода 2DM нам неизвестны. Поэтому здесь для оценок мы воспользуемся работами выхода 3DM [29] (см. таблицу). Нужно подчеркнуть, что по данным справочника [29] даже для хорошо изученных тугоплавких металлов разброс значений  $\phi_{\rm M}$  весьма значителен. Энергии потолка  $E_{\rm top} = E_d + W_d/2$ , середины  $E_d = \phi_{\rm GLC} - \phi_{\rm M} + (W_d/10)(5-n_{\rm M}^0)$  и дна  $E_{\rm bot} = E_d - W_d/2$  d-зон и химического потенциала  $\mu_{\rm M}^0 = E_g - (W_d/10)(5-n_{\rm M}^0)$  приведены на рис. 1. Отметим, что в приближении сильной связи значения  $E_d$  определяются энергией d-уровней и не зависят явно от числа ближайших соседей.

Расчет по формулам (7) показывает, что значения химического потенциала  $\mu$  очень близки к  $\mu_{\rm M}^0$ . Действительно, в силу того, что энергия *С* много больше какойлибо другой энергетической характеристики контакта. Тогда имеем  $|\mu - \mu_{\rm M}^0| \approx |(\mu_{\rm M}^0)^2 - \Delta^2|/2C \ll 1$ . Результаты расчета перехода заряда *Z* для контакта Gr–2DM представлены в таблице, из которой следует, что при  $\phi_{\rm M} < 4.6 \, {\rm eV}$  электроны переходят с металла на графен, при  $\phi_{\rm M} > 4.6 \, {\rm eV}$ , т.е. в случае Ni, Tc, Ru, Rh, Pd, Re, Os,



Рис. 1. Положения потолка  $E_{top}$  (светлые квадраты), середины  $E_d$  (светлые кружки), дна  $E_{bot}$  (темные квадраты) d-зоны и химического потенциала  $\mu_M^0$  (темные кружки) для свободных 2DM;  $n_M^0 = n_d^0$  — количество d-электронов в зонах (a) 3d-металлов: I - Sc, 2 - Ni, 3 - V, 4 - Cr, 5 - Mn, 6 - Fe, 7 - Co, 8 - Ni, 9 - Cu; (b) 4d-металлов: I - Y, 2 - Zr, 3 - Nb, 4 - Mo, 5 - Tc, 6 - Ru, 7 - Rh, 8 - Pd, 9 - Ag; (c) 5d-металлов: I - Lu, 2 - Hf, 3 - Ta, 4 - W, 5 - Re, 6 - Os, 7 - Ir, 8 - Pt, 9 - Au. Тонкими горизонтальными линиями изображены уровень нулевой энергии (точка Дирака графена и середина запрещенной зоны h-BN) и границы  $\pm \Delta$  запрещенной зоны h-BN; жирная горизонтальная линия обозначает уровень вакуума.

Іг и Рt, электроны переходят с графена на металл. Для графена на массивных металлических подложках основанные на DFT (density functional theory) расчеты [30] дают для такого кроссовера значение  $\phi_{\rm M} \sim 5.4$  eV, что, на наш взгляд, вполне удовлетворительно согласуется с нашими оценками, полученными с помощью простой модели. В экспериментальной работе [31] приводятся значения перехода заряда для графена на кристаллическом рутении Z = -0.06, а для графена на поли-

кристаллических подложках никеля и меди Z = -0.03 соответственно. По порядку величины наши значения Z для Ru и Ni те же, что и в [31], но имеет обратный знак; для Cu знаки перехода заряда одинаковы, но наше значение Z на порядок выше полученного в [31]. Мы полагаем, что расхождения между результатами [30] и [31] и полученными здесь оценками связаны, главным образом, с использованием различающихся значений  $\phi$ (Gr) и  $\phi_{M}$ .

| 3d                              | Sc                   | Ti                   | V                    | Cr                | Mn                       | Fe                       | Co                       | Ni                        | Cu                |
|---------------------------------|----------------------|----------------------|----------------------|-------------------|--------------------------|--------------------------|--------------------------|---------------------------|-------------------|
| 4d                              | Y                    | Zr                   | Nb                   | Mo                | Tc                       | Ru                       | Rh                       | Pd                        | Ag                |
| 5d                              | Lu                   | Hf                   | Ta                   | W                 | Re                       | Os                       | Ir                       | Pt                        | Au                |
| $W_d,\mathrm{eV}$               | 2.57                 | 3.04                 | 5.08                 | 4.92              | 2.80                     | 3.62                     | 2.18                     | 1.89                      | 1.40              |
|                                 | 3.30                 | 4.19                 | 7.29                 | 7.485             | 4.71                     | 4.22                     | 3.45                     | 2.70                      | 1.815             |
|                                 | 3.91                 | 4.78                 | 8.34                 | 8.58              | 5.51                     | 5.16                     | 4.36                     | 3.50                      | 2.64              |
| C, eV                           | 191                  | 161                  | 96                   | 99                | 175                      | 135                      | 225                      | 259                       | 394               |
|                                 | 148                  | 117                  | 67                   | 65                | 104                      | 116                      | 147                      | 181                       | 270               |
|                                 | 129                  | 103                  | 59                   | 57                | 54                       | 95                       | 112                      | 140                       | 185               |
| <i>φ</i> <sub>M</sub> , eV [29] | 3.50                 | 4.10                 | 4.11                 | 4.38              | 3.35                     | 3.70                     | 4.16                     | 4.60                      | 4.00              |
|                                 | 3.10                 | 3.84                 | 4.00                 | 4.29              | 4.70                     | 4.71                     | 4.65                     | 4.73                      | 4.00              |
|                                 | 3.30                 | 3.53                 | 4.20                 | 4.50              | 4.95                     | 4.95                     | 5.27                     | 5.32                      | 4.45              |
| $-Z \cdot 10^2 \text{ Gr}$      | 1.02<br>2.00<br>1.47 | 0.37<br>0.44<br>0.96 | 0.16<br>0.26<br>0.09 | 0.01<br>0.04<br>0 | $1.35 \\ -0.04 \\ -0.21$ | $0.65 \\ -0.04 \\ -0.21$ | $0.12 \\ -0.02 \\ -0.60$ | $-0.01 \\ -0.05 \\ -0.69$ | 0.26<br>0.26<br>0 |
| $\Phi_{Be}$ , eV hBN            | 2.00                 | 2.60                 | 2.61                 | 2.88              | 1.85                     | 2.20                     | 2.66                     | 3.10                      | 2.50              |
|                                 | 1.60                 | 2.34                 | 2.50                 | 2.70              | 3.20                     | 3.21                     | 3.15                     | 3.23                      | 2.50              |
|                                 | 1.80                 | 2.03                 | 2.70                 | 3.00              | 3.45                     | 3.45                     | 3.77                     | 3.82                      | 2.95              |

Параметры 2DM и характеристики контактов Gr-2DM и hBN-2DM

Плотность зарядов на интерфейсе по модулю равна  $\sigma = e|Z|/S$ , где  $S = 3\sqrt{3}a^2/4$  — площадь, приходящаяся на один атом элементарной ячейки графена с расстоянием a = 1.42 Å между ближайшими соседями, e — элементарный заряд. Имеем, таким образом, конденсатор с плотностями зарядов  $\pm \sigma$  на обкладках. При этом скачок потенциальной энергии на интерфейсе равен

$$\Delta E = \frac{4\pi e^2 Z d}{S\varepsilon_r}.\tag{9}$$

Здесь  $d = r_{\rm M} + r_{\rm C}$  — толщина двойного электрического слоя, где  $r_{\rm M}$  и  $r_{\rm C}$  — радиусы атомов металла и углерода (см. [32]).  $\varepsilon_r$  — относительная диэлектрическая проницаемость, которую можно представить в виде  $\varepsilon_r = (\varepsilon_{\mathrm{GR}} + 1)/2$ , где  $\varepsilon_{\mathrm{Gr}}$  — диэлектрическая проницаемость графена и мы положили диэлектрическую проницаемость металла  $\varepsilon_{\rm M} = 1$ . К сожалению, экспериментальные данные по є<sub>Gr</sub> крайне противоречивы: еще в работе [33] обсуждался разброс значений  $\varepsilon_{Gr}$  от 2 до 15, но ясности нет и по сей день [34]. Поэтому на рис. 2 приведены значения отношений  $\Delta e = \Delta E(2DM) / \Delta E(Y)$ . По формуле (9) для иттрия, обладающего максимальным дипольным моментом  $Zd \approx 5.16 e \cdot A$ , получаем  $\Delta E \approx 7.2/\varepsilon_r$  eV. Интересно отметить, что выражение (9) используется в теории адсорбции на 3D-металлах для определения изменения величины работы выхода системы [35]

Роль взаимодействия графена с металлами в формировании электронного спектра системы, которое здесь до сих пор не учитывалось, достаточно подробно рассмотрена в [12,36]. Поэтому мы ограничимся чисто качественным подходом, рассматривая режим сильной связи, когда параметр уширения  $\Gamma_d = 2\pi V_d^2/W_d \gg t$ , где



**Рис. 2.** Относительный скачок потенциальной энергии на контакте графена с 3*d*-, 4*d*- и 5*d*-рядов (ромбы, звездочки и треугольники) 2DM.

 $V_d$  — матричный элемент взаимодействия Gr-2DM (см. подробности в [12,36]). Используя выражение (16) из [36], получим  $Z \sim -2\mu_{\rm M}^0/\pi\Gamma_d$ , где учтено, что  $\mu \sim \mu_{\rm M}^0 \ll \Gamma_d$ . Представим двойной электрический слой на контакте в виде набора параллельных диполей. Включив между диполями электростатическое взаимодействие, для определения величины результирующего заряда  $\tilde{Z}$  приходим к самосогласованному уравнению

 $\tilde{Z} = -(2/\pi) \operatorname{arctg}[(\mu + \xi \tilde{Z})/\Gamma_d],$  где  $\xi = 2e^2 d^2 A' / S\varepsilon_r$  — энергия дипольного отталкивания [12,37]. Тогда для малых зарядов получим  $\tilde{Z} \sim Z/(1 + 2\xi/\pi\Gamma_d)$ , откуда следует, что  $|\tilde{Z}| < |Z|$ , т.е. имеет место деполяризация. Таким образом, величина скачка потенциальной энергии на интерфейсе (9) понижается.

В системе hBN-2DM переход заряда отсутствует, так как химические потенциалы µ перекрываются с запрещенной зоной hBN (рис. 1). Значения  $\Phi_{Bn}$ , рассчитанные по формуле (8) и представленные в таблице, интересно сопоставить с результатами расчетов [38], где (при  $E_g = 5.97 \,\mathrm{eV})$  для  $\Phi_{Bn}$  получены следующие результаты (B eV): Ti — 3.63 (1.03), Co — 3.80 (1.14), Ni — 3.77 (0.66), Cu — 3.87 (1.37), Pd — 4.26 (1.03), Ag — 3.88 (1.38), Pt — 4.82 (1.00), Au — 4.64 (1.69), где в скобках приведена разность значений  $\Phi_{Bn}$  из [38] и из нашей таблицы. Таким образом, барьеры, вычисленные в [38], существенно выше барьеров, полученных нами. Легко показать, однако, что отмеченное расхождение связано с тем обстоятельством, что в [38] для 3D-металлов использовались более высокие работы выхода, так что для того же ряда разности работ выхода  $\Delta \phi_{\rm M}$  (в eV) таковы: Ті — 0.33, Со — 1.36, Ni — 0.92, Си — 1.17, Pd — 0.80, Ag — 0.83, Pt — 0.66, Au — 1.10. Таким образом, именно разброс значений работ выхода является главной причиной расхождения значений  $\Phi_{Bn}$ . Отметим, что при наличии перехода заряда в выражение (8) нужно заменить  $\phi_{\rm M}$  на  $\phi_{\rm M} - \Delta E$ .

# 4. Заключение

Итак, для описания контакта двумерных металла и графеноподобного соединения мы использовали простейшую модель Шоттки, в которой взаимодействие контактирующих слоев не учитывается. Простота модели позволила получить аналитические оценки для перехода заряда и высоты барьера Шоттки. Было показано, что двумерность металла можно в первом приближении учесть только через сужение его d-зоны. На примерах систем Gr-2DM и hBN-2DM продемонстрировано, что предложенный простой подход приводит к вполне разумным результатам. В заключение отметим возрастающий интерес к структурам Gr-2DM — см. работы [39-42] и ссылки, приведенные в них.

#### Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

## Список литературы

- [1] A.K. Geim, K.S. Novoselov. Nature Mater. 6, 183 (2007).
- [2] A.K. Geim, I.V. Grigorieva. Nature **499**, 419 (2013).
- [3] C.-J. Tong, H. Zhang, Y.-N. Zhang, H. Liu, L.-M. Liu, J. Mater. Chem. A 2, 17971 (2014).

- [4] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P.S Schmidt, N.F. Hinsche, M.N. Gjerding, D. Torelli, P.M. Larsen, A.C. Riis-Jensen, J. Gath, K.W. Jacobsen, J.J. Mortensen, T. Olsen, K.S. Thygesen. 2D-Mater. 5, 042002 (2018).
- [5] L. Vannucci, U. Petralanda, A. Rasmussen, T. Olsen, K.S. Thygesen. arXiv: 2007.04152.
- [6] N. Briggs, S. Subramanian, Z. Lin, X. Li, X. Zhang, K. Zhang, K. Xiao, D. Geohegan, R. Wallace, L.-Q. Chen, M. Terrones, A. Ebrahimi, S. Das, J. Redwing, C. Hinkle, K. Momeni, A. van Duin, V. Crespi, S. Kar, J.A. Robinson. 2D-Mater. 6, 022001 (2019).
- [7] J. Nevalaita, P. Koskinen. Phys. Rev. B 97, 035411 (2018).
- [8] J. Nevalaita, P. Koskinen. AIP Advances 10, 065327 (2020).
- [9] S. Ono. arXiv: 2007.06774.
- [10] S. Ono. Sci. Rep. 10, 11810 (2020).
- [11] T. Wang, M. Park, Q. Yu, J. Zhang, Y. Yang. Mater. Today Adv. 8, 100092 (2020).
- [12] С.Ю. Давыдов. ФТТ 58, 779 (2016).
- [13] T. Ando, A.B. Fowler, F. Stern. Rev. Mod. Phys. 54, 438 (1982).
- [14] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983). Гл. 20.
- [15] Ч. Киттель. Квантовая теория твердых тел. Наука, М. (1967). Гл. 18.
- [16] Ф. Бехштедт, Э. Эндерлайн. Поверхности и границы раздела. Мир, М. (1990). Гл. 4.
- [17] И.В. Антонова. ФТП 50, 67 (2016).
- [18] W. Xia, L. Dai, P. Yu, X. Tong, W. Song, G. Zhang, Z. Wang. Nanoscale (2017). DOI: 10.1039/c7nr00844a.
- [19] R.T. Tung. Appl. Phys. Rev. 1, 011304 (2014).
- [20] D.S. Schulman, A.J. Arnold, S. Das. Chem. Soc. Rev. 47, 3037 (2018).
- [21] H. Huang, W. Xu, T. Chen, R.-J. Chang, Y. Sheng, Q. Zhang, L. Hou, J.H. Warner. ACS Appl. Mater. 10, 37258 (2018).
- [22] J.-H. Kim, J.H. Hwang, J. Suh, S. Tongay, S. Kwon, C.C. Hwang, J. Wu, J.Y. Park. Appl. Phys. Lett. 103, 171604 (2013).
- [23] D. Niesner, T. Fauster. J. Phys.: Condens. Matter 26, 393001 (2014).
- [24] S. Thomas, M.S. Manju, K.M. Ajith, S.U. Lee, M.A. Zaeem. Physica E 123, 114180 (2020).
- [25] R. Roldarn, L. Chirolli, E. Prada, J.A. Silva-Guillern, P. San-Jose, F. Guinea. Chem. Soc. Rev. 46, 4387 (2017).
- [26] Z.-Q. Xu, N. Mendelson, J.A. Scott, C. Li, I. Aharonovich, M. Tothz. arXiv: 1907.00471.
- [27] C. Kimura, K. Okada, S. Funakawa, S. Sakata, T. Sugino. Diamond Rel. Mater. 14, 719 (2005).
- [28] Ч. Киттель. Введение в физику твердого тела. Наука, М. (1978). Гл. 1.
- [29] В.С. Фоменко. Эмиссионные свойства материалов. Киев, Наук. Думка, 1981.
- [30] P.A. Khomyakov, G. Giovannetti, P.C. Rusu, G. Brocks, J. van den Brink, P. J. Kelly. Phys. Rev. B 79, 195425 (2009).
- [31] L. Kong, C. Bjelkevig, S. Gaddam, M. Zhou, Y.H. Lee, G.H. Han, H.K. Jeong, N. Wu, Z. Zhang, J. Xiao, P.A. Dowben, J.A. Kelber. J. Phys. Chem. C 114, 21618 (2010).
- [32] Физические величины. Справочник. / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991).

- [33] D.C. Elias, R.V. Gorbachev, A.S. Mayorov, S.V. Morozov, A.A. Zhukov, P. Blak, L.A. Ponomarenko, I.V. Grigorieva, K.S. Novoselov, F. Guinea, A.K. Geim. Nature Phys. 7, 701 (2011).
- [34] R. Bessler, U. Duerig, E. Koren. Nanoscale Adv. 1, 1702 (2019).
- [35] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наноситем. Изд-во "Лань", СПб (2014). Гл. 9.
- [36] С.Ю. Давыдов. ФТП 47, 98 (2013).
- [37] С.Ю. Давыдов, С.В. Трошин. ФТТ 49, 1508 (2007).
- [38] M. Bokdam, G. Brocks, M.I. Katsnelson, P.J. Kelly. Phys. Rev. B 90, 085415 (2014).
- [39] A. Abdelhafiz, A. Vitale, P. Buntin, B. deGlee, C. Joiner, A. Robertson, E.M. Vogel, J. Warner, F.M. Alamgir. Energy Environ. Sci. 11, 1610 (2018).
- [40] G. Zhou. Phys. Chem. Chem. Phys. 22, 667 (2020).
- [41] S. Forti, S. Link, A. Stöhr, Y. Niu, A.A. Zakharov, C. Coletti, U. Starke. Nature Commun. 11, 2236 (2020).
- [42] N. Briggs, B. Bersch, Y. Wang, J. Jiang, R.J. Koch, N. Nayir, K. Wang, M. Kolmer, W. Ko, A. De La Fuente Duran, S. Subramanian, C. Dong, J. Shallenberger, M. Fu, Q. Zou, Y.-W. Chuang, Z. Gai, A.-P. Li, A. Bostwick, C. Jozwiak, C.-Z. Chang, E. Rotenberg, J. Zhu, A.C.T. van Duin, V. Crespi, J.A. Robinson. Nature Mater. **19**, 637 (2020).

Редактор Д.В. Жуманов