10,04

Структура и динамика решетки тетрагональных германатов R_2 Ge₂O₇ (R = Tb-Lu, Y): ab initio расчет

© В.С. Рюмшин, В.А. Чернышев

Уральский федеральный университет, Екатеринбург, Россия E-mail: krios_two@mail.ru

Поступила в Редакцию 13 февраля 2021 г. В окончательной редакции 13 февраля 2021 г. Принята к публикации 24 февраля 2021 г.

В рамках теории функционала плотности проведен ab initio расчет кристаллической структуры, фононного спектра, а также упругих постоянных ряда редкоземельных германатов, в том числе иттриевого германата R_2 Ge₂O₇ (R =Tb-Lu, Y) с тетрагональной структурой. Определены частоты и типы фундаментальных колебаний, интенсивности ИК- и КР-мод. Из анализа векторов смещений, полученных из ab initio расчета, определена степень участия ионов в каждой моде. Расчеты выполнены впервые, соответствующие экспериментальные данные для всего ряда, за исключением ИК- и КР-спектров иттриевого германата, отсутствуют. Проведенные расчеты позволили интерпретировать и дополнить имеющиеся в научной печати результаты измерений ИК- и КР-спектров иттриевого германата Y_2 Ge₂O₇.

Ключевые слова: ab initio, германаты, теория функционала плотности, фононный спектр.

DOI: 10.21883/FTT.2021.06.50943.030

Кристаллы R₂Ge₂O₇, где R — РЗ-ион, привлекают внимание исследователей многообразием свойств[1-5]. Они кристаллизуются в разных структурных типах [1,6]. Кристаллическая структура этих соединений хорошо изучена [2,7], однако для ряда редкоземельных германатов отсутствуют экспериментальные данные по фононным спектрам и упругим постоянным. Редкоземельные германаты имеют потенциальное применение в качестве сцинтилляторов [8], иттриевый германат Y₂Ge₂O₇ используется как матрица для допирования редкоземельными ионами [9,10]. ИК- и КР-спектры Y2Ge2O7 были измерены в работе [11], однако низкочастотная область спектра (до 200 cm⁻¹), в которой лежат моды с максимальным участием иона иттрия, не была исследована. Таким образом, отсутствует экспериментальная информация о модах германатов, в которых максимально участие редкоземельного иона. Из 48 ИК-активных мод в работе [11] были определены только 17, из 81 КР-моды — только 20. Измерения в [11] были проведены на поликристаллическом образце, из эксперимента не были определены типы мод. Таким образом, имеющиеся экспериментальные данные по ИК- и КР-спектрам иттриевого германата нуждаются в дополнении и интерпретации. Экспериментальных данных для других представителей ряда (R = Tb-Lu) нет. Особенности структуры Y2Ge2O7 ранее обсуждались в [12]. Авторы работы [12] отмечают, что иттриевый германат кристаллизуется в пространственной группе Р43212, составляющей энантиоморфную пару с группой $P4_{1}2_{1}2$, в которой кристаллизуется весь ряд R = Tb-Lu. Таким образом, кристаллическая структура иттриевого германата подобна зеркальному отражению структуры редкоземельных германатов R_2 Ge₂O₇ (R =Tb-Lu).

Представляется актуальным исследовать в рамках ab initio подхода фононный спектр редкоземельных германатов R_2 Ge₂O₇ (R =Tb-Lu, Y) с тетрагональной структурой. В настоящей работе в рамках единого ab initio подхода исследована кристаллическая структура, фононный спектр и упругие свойства ряда германатов R_2 Ge₂O₇ (R = Tb-Lu, Y).

1. Методы расчета

Расчеты проводились в рамках теории функционала плотности и МО ЛКАО подхода (молекулярные орбитали как линейные комбинации атомных орбиталей). Был использован гибридный функционал РВЕО [13], учитывающий вклад нелокального обмена (в формализме Хартри-Фока), а также нединамические корреляции [14]. Для расчетов была использована программа CRYSTAL17 [15], предназначенная для моделирования периодических структур. Отметим, что ранее в рамках такого же подхода был проведен расчет фононного спектра германатов со структурой пирохлора [16].

Для описания Ge и O использовались полноэлектронные базисные наборы [17,18]. Для описания внутренних электронных оболочек редкоземельных ионов Tb-Lu, а также Y, были использованы псевдопотенциалы [19,20]. На примере Gd₂Ge₂O₇ со структурой пирохлора были проведены тестовые расчеты с двумя псевдопотециалами: ECP53MWB-1 [19], замещающим внутренние оболочки по 4f-оболочку включительно и ECP28MWB_SEG [21], замещающим внутренние оболочки только по 3d-, и оставляющим 4f-оболочку в валентном остатке, т.е. в этом случае она входит в

Таблица 1. Постоянная решетки Gd₂Ge₂O₇

Параметры	Расчет (ЕСР53)	Расчет (ЕСР28)	Эксперимент [22]
a, Å	10.053	9.991	9.999
Gd–O1, Å	2.505	2.482	2.535
Gd-O2, Å	2.177	2.163	2.165
ho	0.869	0.871	0.854

Таблица 2. Расчет кристаллической структуры тетрагонального Er₂Ge₂O₇ с разной частотой сетки

Сетка	По	стоянная решетки, Å	Энергия ССП, Хартри
$2 \times 2 \times 2$	a c	6.84380243 12.43678912	-19027.960230
$4 \times 4 \times 4$	a c	6.84377960 12.43704974	-19027.960928
$6 \times 6 \times 6$	a c	6.84378081 12.43705748	-19027.960928
$8 \times 8 \times 8$	a c	6.84378073 12.43707140	-19027.960928

валентный базисный набор и описывается непосредственно. Сравнение результатов, а также экспериментальные данные [22] приведены в табл. 1. Величина $\rho = (Gd-O2/Gd-O1)$ характеризует степень искажения октаэдра, в центре которого находится редкоземельный ион, а в вершинах — ионы кислорода. Воспроизведение этой величины может служить показателем адекватности используемых базисных наборов.

Использование "короткого" псевдопотенциала, т. е. описание 4f-оболочки явно, посредством базисного набора, несколько улучшает воспроизведение постоянной решетки, однако сильно увеличивает затраты машинного времени, что существенно при моделировании низкосимметричных структур, рассматриваемых нами.

В настоящей работе для описания внутренних оболочек редкоземельных ионов были использованы квазирелятивистские псевдопотенциалы ЕСРпМWB (ЕСР — "effective core potential", WB — "quasi-relativistic", n число внутренних электронов, замещаемых на псевдопотенциал) [19,23]. Для Тb n = 54, для Dy n = 55, и т.д. Таким образом, внутренние оболочки редкоземельного иона, включая 4f, были заменены на псевдопотенциал. Для описания внешних оболочек, 5s²5p⁶, участвующих в химической связи, были использованы валентные базисные наборы "ЕСРпМWB-I" [23,24,25], содержащие радиальные функции s-, p- и d-типа. Для иттрия был использован псевдопотенциал ECP28MWB с соответствующим базисным набором. Псевдопотенциалы и валентные базисные наборы доступны на сайте Stuttgart Group [26]. Гауссовы примитивы с показателями экспонент менее, чем 0.1, были удалены из валентных

базисных наборов, что характерно для периодических расчетов.

Последовательность расчетов была следующей. Сначала проводилась оптимизация кристаллической структуры: определялись постоянные решетки и координаты ионов в ячейке. Для полученной кристаллической структуры, соответствующей минимуму энергии, выполнялся расчет фононного спектра (в Г-точке) или расчет упругих постоянных.

Интегрирование по зоне Бриллюэна проводилось по схеме Монхорста-Пака с сеткой k-точек, равной $4 \times 4 \times 4$. Такая сетка была выбрана на основе тестовых расчетов, сделанных на примере германата эрбия с тетрагональной структурой $Er_2Ge_2O_7$ (табл. 2).

Отметим при этом, что энергия самосогласованного поля рассчитывалась с точностью 10^{-6} Хартри. (Точность расчета двухэлектронных интегралов была не менее 10^{-7} Хартри.) Как видно из расчетов, сетка $4 \times 4 \times 4$ является вполне достаточной. При более частой сетке значения энергии самосогласованного поля (ССП) сохраняются в пределах шестого знака после запятой. Постоянные решетки при более частой сетке меняются в пятом знаке после запятой. Такую точность расчета можно считать вполне приемлемой, поскольку характерное для подобных ab initio расчетов различие постоянных решетки с экспериментом находится в пределах 0.1 Å.

2. Кристаллическая структура

Редкоземельные германаты R_2 Ge₂O₇ (R =Tb-Lu) имеют тетрагональную кристаллическую структуру, пространственная группа $P4_12_12$ (92). Элементарная ячейка (рис. 1) содержит Z = 4 формульные единицы и 44 атома. Ион R находится в окружении 7 атомов O,

Рис. 1. Элементарная ячейка R_2 Ge₂O₇. Тетрагональная структура, пр. гр. $P4_12_12$ (92).

Рис. 2. Ионы *R* и Ge со своим окружением.

			Tb
			Dy
			Ho
			I II Er
			I Tm
			I Yb
			I Lu
			Y
)	100 200	300 400 500 600	700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000 Frequency, cm $^{-1}$

1

Рис. 3. Частоты фононных мод R_2 Ge₂O₇ в Г-точке.

Ge — в окружении 4 атомов О (рис. 2 и 3). Расчеты кристаллической структуры приведены в табл. 3-6.

Для Er₂Ge₂O₇ из рентгеноструктурного анализа были определены координаты ионов в ячейке. В табл. 4 результаты расчета приведены в сравнении с экспериментом.

Расчеты кристаллической структуры хорошо согласуются с имеющимися экспериментальными данными. Постоянные решетки и длины связей в ряду Tb–Lu уменьшаются, что соответствует лантаноидному сжатию. Длина связи R–O уменьшается на 0.06–0.09 Å от Tb к Lu. При этом, длина связи Ge–O (O = O2, O3, O4) уменьшается на 0.008–0.027 Å, а Ge–O1 уменьшается на 0.08 Å. Таким образом, замена P3 иона слабо влияет на связи Ge–O (O = O2, O3, O4), связь Ge–O1 изменяется так же, как и связь R–O. Ион O1, в свою очередь, связывает центры тетраэдров GeO₄ и не является ближайшим соседом P3-иона.

3. Колебательный спектр

Германаты с тетрагональной структурой R_2 Ge₂O₇ (R = Tb-Lu, Y) характеризуются следующими фононными модами в Г точке:

$$\Gamma = 16A_1(R) + 17A_2(IR) + 17B_1(R) + 16B_2(R)$$

+ 33E(R, IR),

где "*R*" — "рамановские", "IR" — ИК-моды. Две моды трансляционные — одна А₂ и одна Е (Е — двукрат-

Физика твердого тела, 2021, том 63, вып. 6

но вырожденная). Результаты расчета фононных мод в Г-точке, их типы, ИК- и КР-интенсивности приведены в табл. 7 и 8. Изменение частот в ряду Tb-Lu приведено на рис. 3.

Сравнение результатов расчета с единственными имеющимися экспериментальными данными — для $Y_2Ge_2O_7$ — показывает хорошее согласие расчета с экспериментом (рис. 4 и 5). Интенсивность КР-мод рассчитана для длины волны возбуждающего излучения 488 nm и T = 300 K, что соответствует эксперименту. Для моделирования спектра были использованы лоренцианы с полушириной 7 сm⁻¹. В работе [11] из эксперимента было выявлено 20 КР и 17 ИК-мод, из которых КР-мода на частоте 790 сm⁻¹ определена путем аппроксимации. Типы мод определены не были. Расчеты дополняют экспериментальные данные [11], в которых

Рис. 4. Сравнение результатов расчета КР-спектра Y₂Ge₂O₇ с экспериментом. Сплошная линия — расчет, штриховая — эксперимент [10].

Рис. 5. Сравнение результатов расчета ИК-спектра Y₂Ge₂O₇ с экспериментом. Сплошная линия — расчет, штриховая — эксперимент [10].

Рис. 6. Смещения ионов в фононных модах для Y₂Ge₂O₇.

отсутствует низкочастотная область спектра. Именно в этой области наиболее активное участие в колебаниях принимает ион иттрия (P3 ион в случае R = Tb-Lu). Типы мод, обозначенные на рис. 4 и 5, получены из расчета.

Из анализа векторов смещений, полученных из ab initio pacчета, была определена степень участия ионов в каждой моде. Смещения и
онов в каждом колебании для $Y_2Ge_2O_7$ и $Er_2Ge_2O_7$
представлены на рис. 6 и 7.

Согласно расчетам, наибольшее участие иона Y и Ge проявляется на частотах 67 сm⁻¹ (A₂-мода) и 88 сm⁻¹ (Е-мода) соответственно. Наибольшее участие ионов кислорода предсказано в следующих модах: Е-мода с частотой 255 сm⁻¹ (O1), Е -мода с частотой 216 сm⁻¹

Рис. 7. Смещения ионов в фононных модах для Er₂Ge₂O₇.

(О2 и О3), А2 мода с частотой 134 ст^1 (О4). Активное участие иона Y проявляется в модах с частотами до $\sim 300\,cm^{-1}$, иона Ge — до $\sim 500\,cm^{-1}$. Ион O активно участвует во всех модах.

В наиболее интенсивной ИК моде (698 ст⁻¹, Е-мода) преимущественно участвуют ионы О1 и О2.

В КР-спектре наиболее интенсивной является A_1 мода с частотой 857 сm⁻¹, в которой проявляется сильное участие ионов ОЗ и О4. Во второй по интенсивности КР-моде с частотой 455 сm⁻¹ (также A_1) сильнее всего участвует ион О4. Высокочастотная область ($\sim 700-900 \, \rm cm^{-1}$) как ИК-, так и КР-спектра, обус-

R		Расчет	Эксперимент	Δ
Tb	a	6.9167	6.8554	0.0613
	c	12.5787	12.4634 [7]	0.1153
Dy	a	6.8917	6.8269	0.0648
	c	12.5302	12.4289 [27]	0.1013
Но	a	6.8675	6.8068	0.0589
	c	12.4836	12.3812 [27]	0.1024
Er	a	6.8438	6.7849	0.0589
	c	12.4371	12.3380 [28]	0.0991
Tm	a	6.8232	6.7645	0.0587
	c	12.3953	12.2930 [29]	0.1023
Yb	a	6.8011	6.7426	0.0585
	c	12.3496	12.2604 [7]	0.0892
Lu	a	6.7845	6.7278	0.0567
	c	12.3140	12.2246 [7]	0.0894
Y*	a	6.8196	6.8022	0.0174
	c	12.3955	12.3759 [12]	0.0196

Таблица 3. Постоянные решетки R_2 Ge₂O₇ (R = Tb-Lu, Y), Å

Примечание. * Расчет для иттриевого германата проведен в энантиоморфной группе *P*4₃2₁2, что соответствует экспериментальным данным.

Ион		Позиция	Расчет	Эксперимент [30]
	x		0.8757	0.8756
Er	у	8a	0.3521	0.3527
	z		0.1349	0.1355
	x		0.9015	0.9004
Ge	у	8a	0.1526	0.1521
	z		0.6193	0.6196
	x		0.8061	0.055
01	у	4a	0.1939	0.1945
	z		0.7500	0.7500
	x		0.0786	0.0764
O2	у	8a	-0.0301	-0.0331
	z		0.6226	0.6236
	x		0.0647	0.0638
O3	у	8a	0.3377	0.3355
	z		0.5717	0.5751
	x		0.6850	0.6833
04	у	8a	0.1452	0.1449
	z		0.5454	0.5427

Таблица 4. Координаты ионов Er₂Ge₂O₇, отн. ед.

Таблица 5. Межионные расстояния, сравнение с экспериментом, Å

Ион			Er		Tm	Y		
		Расчет	Эксперимент [30]	Расчет	Эксперимент [4]	Расчет	Эксперимент [12]	
R-O	O2 O4 O4' O3 O2' O3'	2.2310 2.2613 2.2878 2.3002 2.3719 2.4066	2.195 2.216 2.266 2.278 2.371 2.421	2.2224 2.2509 2.2756 2.2901 2.3613 2.3924	2.197 2.231 2.252 2.273 2.345 2.362	7 2.2139 2.211 1 2.2499 2.245 2 2.2762 2.279 3 2.2953 2.284 5 2.3800 2.373 2 2.3901 2.386		
	O3"	2.5511	2.516	2.5418	2.540	2.5446	2.552	
Ge–O	02 04 01 03	1.7420 1.7442 1.7743 1.7894	1.733 1.751 1.756 1.754	1.7420 1.7441 1.7729 1.7890	1.740 1.732 1.751 1.769	1.7394 1.7407 1.7744 1.7850	1.737 1.733 1.769 1.780	

Таблица 6. Межионные расстояния R_2 Ge₂O₇ (R =Tb-Lu, Y), Å. Расчет

Ио	Н	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
R–O	O2	2.2619	2.2513	2.2412	2.2310	2.2224	2.2135	2.2068	2.2139
	O4	2.2977	2.2853	2.2729	2.2613	2.2509	2.2392	2.2307	2.2499
	O4'	2.3298	2.3151	2.3018	2.2878	2.2756	2.2628	2.2528	2.2762
	O3	2.3355	2.3231	2.3111	2.3002	2.2901	2.2788	2.2707	2.2953
	O2'	2.4079	2.3957	2.3836	2.3719	2.3613	2.3507	2.3417	2.3800
	O3'	2.4555	2.4385	2.4231	2.4066	2.3924	2.3779	2.3660	2.3901
	O3"	2.5856	2.5739	2.5621	2.5511	2.5418	2.5313	2.5243	2.5446
Ge–O	O2	1.7425	1.7423	1.7419	1.7420	1.7420	1.7417	1.7417	1.7394
	O4	1.7449	1.7447	1.7445	1.7442	1.7441	1.7437	1.7436	1.7407
	O1	1.7786	1.7771	1.7756	1.7743	1.7729	1.7716	1.7705	1.7744
	O3	1.7907	1.7902	1.7900	1.7894	1.7890	1.7884	1.7880	1.7850

Таблица 7 (продолжение).

чина смещения уменьшается. Ион германия имеет наи-

Таб	лица	а 7. Фононные моды	$Y_2Ge_2O_7$	Таблица 7 (прод			а 7 (продолжение).
Частота, сm ⁻¹	Тип	Интенсивность ИК, km/mol	Интенсивность КР, отн. ед.	Частота, cm ⁻¹	Тип	Интенсивность ИК, km/mol	Интенсивность КР, отн. ед.
67	A_2	5	_	388	B_2	_	21
68	\mathbf{B}_1	_	0	391	Ē	3	192
79	A_1	_	22	392	A_2	1527	_
81	B ₂	_	17	408	Ē	891	0.92
88	Ē	43	0.02	421	A ₂	33	_
109	Ē	10	73	430	E	108	0.16
111	Bı	_	9	435	A ₁	_	154
126	B_2	_	6	453	B	_	54
127	E	3	16	454	B	_	13
129	A_1	_	1.07	455	A_1	_	422
134	A_2	35	_	460	E	536	32
138	Ē	68	37	461	A ₂	1496	_
140	B1	_	9	477	E	407	11
142	A_2	160	_	487	B	_	111
145	$\tilde{B_1}$	_	14	494	E	288	11
153	Ē	201	14	506	B2	_	0.46
155.5	Е	16	0.06	530	A ₁	_	236
155.7	A_1	_	113	540	E	1701	0.79
160	A_2	282	_	546	B2	_	44
165.5	Ē	8	21	690	A_1	_	2
166.3	A_1	_	38	697.5	E	6544	11
180	B ₂	_	104	697.7	B	_	2
190.2	A ₂	17	_	722	B_2	_	71
190.4	E	365	0.93	724.9	E	16	0.82
190.8	B1	_	15	725	A ₂	1497	_
197	\mathbf{B}_{2}	_	58	757	B ₁	_	130
203	$\tilde{A_2}$	1224	_	773	A_2	1148	_
208	Ē	339	1.28	781	E	0.36	17
215.6	Е	126	0.18	789	A ₁	_	195
216	B1	_	17	801	B ₂	_	38
217.6	\mathbf{B}_2	_	58	809	Ē	1145	9
218	\mathbf{B}_{1}	_	13	818	Е	295	10
220	A_1	_	67	836	B_2	_	19
239	Е	682	176	838	A_2	91	_
240	A_1	_	33	841	B_1	_	167
242	B_1	_	0.06	857	A_1	_	1000
255	E	102	29	858	Ē	1695	6
258	B_2	_	58	896	A_2	966	_
260	A_2	276	_	903	B_1	_	15
266	A_1	_	61	916	Е	45	10
269	Е	349	42		1	1	1
270	Е	318	87				
273	B_1	—	3				
282	E	2190	12.36	ловлена преим	муще	ственным участие	м иона кислорода.
288	B_2	—	124	В высокочаст	отно	й E-моле (916 cm	1 ⁻¹) наиболее ак-
292	A_1	—	46	TUBHO VUOCTEN	иет I	он О4 олнако и	нтенсивность этой
302	Е	1048	35	мощь мала	01 1	юп ол, однико п	
304	B_1	—	104	моды мала.			
306	A_2	27	_	В редкоземе	льнь	іх германатах актин	вное участие редко-
314	B_2	-	0.02	земельных ион	юв п	роявляется в низко	частотных модах с
323	Е	627	0.85	частотами до	~ 20	0 cm ⁻¹ , Ge — до ~	~ 400 cm ⁻¹ . Кисло-
330	A_1	-	104	род участвует	BO I	всех модах. Частот	ы наиболее интен-
355	Е	413	19	сивных мод ув	елич	иваются в ряду от	Ть к Lu в пределах
357	A_2	1697	—	$11{\rm cm}^{-1}$. Наиб	болы	цее участие РЗ-ио	на в ряду Tb-Lu
366	B_2	-	0.34	происхолит в	низко	участотных молах	а также на частоте
367	B_1	-	287	$103 - 107 \text{ cm}^{-1}$	(E-1	иола). С пантаноми	ным сжатием вели-
384	A_1	-	3	105 107011	(1)		

8*

_

Таблица 8 ((продолжение).	
-------------	----------------	--

	1	[
TT	т	Интенсивность ИК,	Интенсивность КР
Частота, cm	Тип	km/mol	отн. ед.
56	Δ.	5	
58	R.	5	0.78
50 67 1	D1 D	—	0.78
07.1	D2	—	20
67.2	A_1	-	4
78	E	26	3
92	B_1	—	2
93	E	0.96	71
101	A_1	-	8
106	E	0.26	88
112	Е	9	13
116	B ₂	_	37
117	B ₁	_	40
119	A_2	165	_
120	Δ.	-	72
120		105	12
133	A ₂	105	- 10
134		5	18
141./	E	212	2
142.8	B_1	—	0.2
146	E	92	9
151	A_2	142	_
155	B_2	_	19
161	A_1	_	47
165	E	279	6
166	B1	_	0.05
171	A	52	_
173	R ₂	52	68
175	D2 E	740	00
100		/40	0
190	B ₂	-	50
191	A ₂	1274	-
192	B_1	—	31
195	A_1	—	74
201	E	28	0.12
215	B_1	_	8
226	B_1	-	0.12
227	Е	717	58
229	B ₂	_	9
230	A ₂	19	_
233	A 1	_	42
233	F	100	67
243		222	1.49
247		255	146 50
252	A ₁	- 71	59
261.37	E	/1	43
261.38	B_1	—	21
262	B_2	-	249
274	E	28	42
281	E	1905	15
290	A_2	37	_
293	A_1	-	71
300	B_1	_	69
308	B_2	_	0.18
318	Ē	864	1
330	Ā.	_	76
3/0		1683	
350	F	250	- 16
332	л П	555	10
203	D ₂	_	0.03
30/	B 1	_	303
3/8	A_1	-	0.26
385	A_2	1536	—

Таблица 8. Фононные моды Er₂Ge₂O₇

T	Ŧ	Интенсивность ИК,	Интенсивность КР,
Hactota, cm	тип	km/mol	отн. ед.
387.8	B_2	_	31
387.9	Ē	11	184
409	Е	953	1
430	A_2	131	_
430.4	E	53	0.03
435	A_1	_	198
447	B_2	_	12
451	A_1	_	416
453	B_1	_	80
455	Е	327	37
456	A_2	1039	_
477	E	760	7
481	B_1	_	118
488	Е	496	16
507	B_2	_	3
528	A_1	_	236
534	Е	1509	1
543	B_2	_	42
679	A_1	_	2
687	B_1	_	3
688	Е	6284	11
713	B_2	_	77
715	Е	24	1
716	A_2	1382	_
748	B_1	_	136
765	A_2	1148	_
773	E	0.02	15
782	A_1	_	200
793	B_2	_	37
800	Е	1161	8
809	Е	379	8
826	B_2	—	20
829	A_2	98	_
833	B_1	_	165
848	A_1	—	1000
849	Е	1551	6
895	A_2	1087	—
902	B_1	—	16
915	Е	50	12

большее смещение на частоте $138-144 \text{ cm}^{-1}$ (B₁-мода). Ионы кислорода участвуют во всех модах. Наибольшее участие ионов О по ряду предсказано в следующих модах: A_2 -мода с частотами 130–136 сm⁻¹ (O1), А2-мода с частотами 190-195 ст⁻¹ (О2), Е-мода с частотами 239-247 ст⁻¹ в ряду Dy-Lu и А2-мода с частотой $344 \,\mathrm{cm}^{-1}$ у Tb (O3), Е мода с частотами $163-167 \,\mathrm{cm}^{-1}$ (O4). В высокочастотной области спектра также проявляется сильное участие ионов кислорода.

4. Упругие постоянные

Результаты расчета упругих постоянных, объемного модуля и модуля сдвига (по Хиллу), а также твердость

R	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
C ₁₁	251	257	261	266	270	275	278	258
C ₁₂	93	92	91	91	90	90	90	79
C ₁₃	79	80	81	83	84	85	86	76
C ₃₃	268	271	274	277	279	281	284	271
C44	37	39	41	43	44	46	48	44
C ₆₆	52	54	56	57	58	60	61	59
В	141	143	145	147	148	150	152	139
G	56	58	60	62	63	65	67	63
H_V	5.50	5.80	6.08	6.35	6.60	6.86	7.05	7.02

Таблица 9. Упругие постоянные, объемный модуль и модуль сдвига, твердость R_2 Ge₂O₇ (R = Tb-Lu, Y), GPa

по Виккерсу, приведены в табл. 9. Твердость H_V была оценена с использованием формулы (1) из работы [31], где она успешно описывала ряд из ~ 40 соединений, с ионной и ковалентной связью. Данная формула, как отмечают авторы [31], дает наилучшее согласие с экспериментом при твердости больше 5 GPa. В формуле (1) B — объемный модуль, G — модуль сдвига.

$$H_V = 0.92 \left(\frac{G}{B}\right)^{1.137} G^{0.708}.$$
 (1)

Согласно расчетам, величины всех упругих постоянных в ряду Tb-Lu с лантаноидным сжатием увеличиваются за исключением C_{12} — она уменьшается. Значение твердости H_V , рассчитанное по формуле (1), возрастает.

5. Заключение

В рамках теории функционала плотности и МО ЛКАО подхода рассчитана кристаллическая структура, фононный спектр в Г-точке и упругие свойства ряда тетрагональных германатов R_2 Ge₂O₇ (R =Tb-Lu, Y). Определены частоты и типы фундаментальных колебаний, интенсивности ИК- и КР-мод. Из анализа векторов смещений, полученных из ab initio расчета, определена степень участия ионов в каждой моде. Дополнены результаты измерений ИК- и КР-спектров иттриевого германата Y₂Ge₂O₇, определены типы мод, что делает возможным в дальнейшем использовать их для интерпретации спектров изоструктурных германатов.

Финансирование работы

Работа выполнена при поддержке Министерства образования и науки РФ (проект № FEUZ-2020-0054).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- G. Bocquillon, C. Chateau, J. Loriers. The Rare Earths in Modern Science and Technology 209 (1980).
- [2] E. Morosan, J.A. Fleitman, Q. Huang, J.W. Lynn, Y. Chen, X. Ke, M.L. Dahlberg, P. Schiffer, C.R. Craley, R.J. Cava. Phys. Rev. B 77, 22, 224423 (2008).
- [3] Q. Li, S. Zhang, W. Lin, W. Li, Y. Li, Z. Mu, F. Wu. Spectrochimica Acta A 228, 117755 (2020).
- [4] K. Stadnicka, A.M. Glazer, M. Koralewski, B.M. Wanklyn.
 J. Phys.: Condens. Matter 2, 22, 4795 (1990).
- [5] I. Yaeger, R. Shuker, B.M. Wanklyn. Phys. Status Solidi B 104, 2, 621 (1981).
- [6] Л.Н. Демьянец. Германаты редкоземельных элементов. Наука, М. (1980). 152 с.
- [7] L.T. Denisova, Y.F. Kargin, N.V. Belousova, L.A. Irtyugo, V.M. Denisov, V.V. Beletskii. Inorganic Mater. 55, 9, 952 (2019).
- [8] S. Kurosawa, T. Shishido, T. Sugawara, K. Yubuta, P. Jan, A. Suzuki, Y. Yokota, Y. Shoji, K. Kamada, A. Yoshikawa. J. Crystal Growth **393**, 142 (2014).
- [9] K. Das, D. Ghosh, B.M. Wanklyn. J. Physics: Condens. Matter 11, 7, 1745 (1999).
- [10] F. Zhao, P. Guo, G. Li, F. Liao, S. Tian, X. Jing. Mater. Res. Bull. 38, 6, 931 (2003).
- [11] R. Saez-Puche, M. Bijkerk, F. Fernández, E.J. Baran, I.L. Botto. J. Alloys Comp. 184, 1, 25 (1992).
- [12] G.J. Redhammer, G. Roth, G. Amthauer. Acta Crystallographica C 63, 10, i93 (2007).
- [13] C. Adamo, V. Toward. J. Chem. Phys. 110, 6158 (1999).
- [14] А.В. Арбузников. Журн. структур. химии 48, S7, 5 (2007).
- [15] R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich, Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. Wiley Interdisciplinary Reviews: Comput. Mol. Sci. 8, 4, e1360 (2018).
- [16] V.A. Chernyshev, N.M. Avram. AIP Conference Proceedings. AIP Publishing LLC 2218, 1, 040004 (2020).
- [17] G. Sophia, P. Baranek, C. Sarrazin, M. Rerat, R. Dovesi. https://www.crystal.unito.it/Basis_Sets/germanium.html (2014).
- [18] F. Corá. Mol. Phys. 103, 18, 2483 (2005).
- [19] M. Dolg, H. Stoll, A. Savin, H. Preuss. Theor. Chim. Acta 75, 3, 173 (1989).
- [20] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss. Theor. Chim. Acta 77, 2, 123 (1990).
- [21] X. Cao, M. Dolg. J. Mol. Structure: theochem 581, 1-3, 139 (2002).
- [22] X. Li, Y.Q. Cai, Q. Cui, C.J. Lin, Z.L. Dun, K. Matsubayashi, Y. Uwatoko, Y. Sato, T. Kawae, S.J. Lv, C.Q. Jin, J.-S. Zhou, J.B. Goodenough, H.D. Zhou, J.-G. Cheng. Phys. Rev. B 94, 21, 214429 (2016).
- [23] M. Dolg, H. Stoll, H. Preuss. Theor. Chim. Acta 85, 6, 441 (1993).
- [24] J. Yang, M. Dolg. Theor. Chem. Accounts 113, 4, 212 (2005).
- [25] A. Weigand, X. Cao, J. Yang, M. Dolg. Theor. Chem. Accounts 126, 3-4, 117 (2010).
- [26] http://www.tc.uni-koeln.de/PP/clickpse.en.html

- [27] L.T. Denisova, L.A. Irtyugo, Y.F. Kargin, N.V. Belousova, V.V. Beletskii, V.M. Denisov. Inorg. Mater. 54, 4, 361 (2018).
- [28] L.T. Denisova, L.A. Irtyugo, V.V. Beletskii, N.V. Belousova, V.M. Denisov. Phys. Solid State 61, 4, 537 (2019).
- [29] L.T. Denisova, L.A. Irtyugo, N.V. Belousova, V.V. Beletskii, V.M. Denisov. Rus. J. Phys. Chem. A 93, 3, 598 (2019).
- [30] Y.I. Smolin. Kristallografiya 15, 1, 47 (1970).
- [31] Y. Tian, B. Xu, Z. Zhao. Int. J. Ref. Met. Hard Mater. 33, 93 (2012).

Редактор Т.Н. Василевская