10

Акустооптические модуляторы с расширенной частотной полосой для волоконно-оптических линий

© В.М. Епихин, А.В. Рябинин

Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений, 141570 Менделеево, Московская обл., Россия e-mail: epikvm@mail.ru

Поступило в Редакцию 30 ноября 2020 г. В окончательной редакции 21 декабря 2020 г. Принято к публикации 23 декабря 2020 г.

Разработан и изготовлен модулятор-частотосдвигатель с одномодовыми волоконными световодами на длину волны излучения 1064 nm. Световой пучок фокусировался в центре звукового столба. Время переключения модулятора $\simeq 18$ ns. Режим работы: импульсный, непрерывный. Общие оптические потери на центральной частоте -3.2 dB. Получено выражение для частотной полосы приема модулятора. Оценки дают хорошее согласие с данными эксперимента $\simeq 40$ MHz. Показано, что использование схемы с фокусированным пучком дает возможность реализовать модулятор с минимальным временем переключения $\simeq 200-300$ MHz.

Ключевые слова: акустооптические модуляторы, одномодовые волоконные световоды, время переключения, частотная полоса модулятора, частотная полоса переключения, частотная полоса согласования излучателя акустической волны, частотная полоса приема, ширина частотной аппаратной функции.

DOI: 10.21883/JTF.2021.06.50874.330-20

Введение

Акустооптические устройства с одномодовыми волоконными световодами активно используются в оптических системах, содержащих волоконные линии, для коммутации оптических каналов связи (дефлекторы); изменения спектрального состава (фильтры), модуляции частоты и интенсивности оптических сигналов (модуляторы-частотосдвигатели) [1–3]. Акустооптические модуляторы-частотосдвигатели с одномодовыми волоконными выводами для краткости далее будем называть волоконными (AOMB).

В [3] сообщается о создании АОМВ с коллимированным световым пучком, малыми оптическими потерями $\sigma < 2 \, \text{dB}$ и полосой рабочих частот $\Delta f \approx \Delta f_r \sim 10 \,\text{MHz}$, где Δf_r — полоса приема, обусловленная уменьшением пространственной апертуры дифрагировавшего пучка с изменением частоты f при его введении в приемный волоконно-оптический световод (ВОС). В качестве развития этих исследований представляют интерес АОМВ с расширенной частотной полосой и малым временем переключения.

Целью настоящей работы являлось создание AOMB со световым пучком, фокусированным в центре звукового столба, и его экспериментальное исследование, а также определение механизма формирования рабочей полосы частот и оценка возможности реализации AOMB с минимальным временем переключения $\tau_{\min} \simeq 2-3$ ns, значение которого ограничено напряжением пробоя излучателя ультразвуковой волны (УЗВ) [3].

1. Время переключения и частотная полоса АОМВ с фокусированным световым пучком

На рис. 1, а показана оптическая схема АОМВ с малым временем переключения. Микрообъектив с фокусирующей асферической линзой (далее для краткости фокусатор) Φ_1 обеспечивает сходящийся гауссов пучок с перетяжкой в центре звукового столба акустооптической ячейки (АОС), причем ось падающего пучка О направлена под углом Брэгга $\theta_{\rm B}$ к фронту УЗВ. Фокусатор Φ_2 , идентичный Φ_1 , предназначен для приема и передачи дифрагировавшего пучка в ВОС с минимальными потерями. Длина звукового столба вдоль светового пучка L не должна превышать рэлеевской длины пучка Z_R [4]: $L \leq Z_R$, тогда диаметр пучка принимается равным диаметру перетяжки 2w. Для получения максимальной интенсивности дифрагировавшего пучка при минимальной мощности УЗВ ширина звукового столба Н в ближней зоне излучателя УЗВ должна быть не меньше диаметра перетяжки 2w: $H \ge 2w$. Быстродействие модулятора характеризуют временем переключения τ , т.е. временем возрастания мощности дифрагировавшего пучка по уровню от 0.1 до 0.9.

Практический интерес представляют АОМВ в режиме Брэгга при $a = \psi_{lgh}/\psi_{snd} \leq 1$, где ψ_{lgh} и ψ_{snd} расходимости пучков света и звука соответственно, когда формируется единственный порядок дифракции, и максимально достижимое значение эффективности дифракции $\gtrsim 0.8$ [5]. В этом случае минимальное время переключения пропорционально времени пересечения

Рис. 1. *а* — оптическая схема АОМВ с фокусировкой светового пучка; *b* — расположение оптических осей O_1 и O_2 и угловых полей дифрагировавшего пучка при значениях частоты управляющего сигнала f_0 и $f_0 + NAV/(M\lambda)$.

перетяжки светового гауссова пучка волновым фронтом УЗВ [5,6]:

$$\tau_{\rm cr} = 0.64(2w/V),$$
 (1)

где V — скорость УЗВ. $\tau \approx \tau_{\rm cr}$ при условии:

$$(\Delta f_m, \Delta f_{af}, \Delta f_r) \gtrsim \Delta f_{\rm cr} \simeq 0.5/\tau_{\rm cr}, \qquad (2)$$

где $\Delta f_{\rm cr}$ — частотная полоса переключения по уровню —3 dB (полоса модулирующих частот [5]), а в скобках перечислены все полосовые характеристики реального АОМВ: Δf_m — частотная полоса согласования излучателя УЗВ с ВЧ-трактом (50 Ω), в пределах которой мощность управляющего сигнала от ВЧ-генератора передается в излучатель УЗВ с потерями \leq 3 dB [6,7]; Δf_{af} — ширина частотной аппаратной функции (полоса частот АО-взаимодействия), обратно пропорциональная длине АО-взаимодействия, в пределах которой эффективность дифракции составляет не менее 0.5 от максимального значения [7,8]; Δf_r — частотная полоса приема, в пределах которой мощность дифрагировавшего светового пучка передается в приемный ВОК с потерями \leq 3 dB [3]. Если неравенство (2) не выполняется, $\tau > \tau_{\rm cr}$. Грубую оценку τ можно сделать по формуле:

$$\tau \approx 0.5/\Delta f$$
, $\Delta f = \min(\Delta f_m, \Delta f_{af}, \Delta f_r, \Delta f_{cr})$, (3)

где Δf — частотная полоса реального АОМВ в режиме формирователя временного фронта интенсивности дифрагировавшего света, поскольку коэффициент передачи системы равен произведению коэффициентов передачи ее составных частей, а длительность фронта импульса τ и полоса частот гармоник Δf , необходимая для его формирования, связаны соотношением $\tau \Delta f \simeq 0.5$ [8].

АОМВ может также использоваться в режиме стационарного частотосдвигателя для получения сдвига частоты дифрагировавшего света в пределах рабочей полосы $\Delta f = (f_0 + \Delta f/2) - (f_0 - \Delta f/2)$ [9]. В этом случае $\Delta f_{\rm cr}$ не является ограничивающим фактором, и справедливо соотношение

$$\Delta f = \min(\Delta f_m, \Delta f_{af}, \Delta f_r). \tag{4}$$

Для классического AOM со свободными световыми пучками отсутствуют элементы с узким угловым полем (кроме самой AOЯ), поэтому Δf_r также не является ограничивающим фактором, и (4) переходит в $\Delta f = \min(\Delta f_m, \Delta f_{af})$.

Таблица 1. Расчетные параметры АОМВ

AOMB	Длина волны λ, nm	Апертура <i>H</i> , µm	Частота f ₀ , MHz	а	τ , ns	$\Delta f_{ m cr}^{ m calc},$ MHz	$\Delta f_r^{ m calc},$ MHz	$\Delta f_{af}^{\text{calc}},$ MHz	$Q/4\pi$	T_M	P^a_M, W
Фотон-6203	1064	120	200	1	18	28	36	95	1.9	0.8	0.65

Рассмотрим более подробно важную характеристику АОМВ — частотную полосу приема Δf_r , поскольку этот параметр часто является определяющим при формировании Δf в (3). На рис. 1, *а* показана упрощенная модель АО-дифракции в АОМВ. Здесь источником дифрагировавшего излучения служит перетяжка падающего пучка диаметром 2w в центре АОЯ, которая является увеличенным изображением перетяжки исходного пучка на торце ВОС фокусатора Φ_1 с диаметром *D*, равным диаметру модового пятна [4,10]. Увеличение оптической системы M = 2w/D. Изображение перетяжки 2wсимметрично переносится на торец приемного ВОС с помощью Φ_2 . Угол расходимости светового пучка (по уровню $1/e^2$) до и после линзы фокусатора равен *NA* и *NA/M* соответственно, где *NA* — эффективная числовая апертура ВОС [10].

При частоте управляющего сигнала f_0 угол φ_0 между нулевым (ось O) и первым (ось O_1) порядками дифракции равен

$$\varphi_0(f_0) = 2\theta_{\rm B} \approx \lambda f / V, \tag{5}$$

а ось O_1 и угловое поле дифрагировавшего пучка совпадают с осью и угловым полем приемного ВОС. При перестройке частоты f от f_0 до $(f_0 + \Delta f/2)$ расположение перетяжек остается прежним, однако угловая структура поля изменяется, и ось пучка O_1 занимает положение O_2 под углом $\Delta \varphi/2$. Связь между Δf и $\Delta \varphi$ получается дифференцированием обеих частей формулы (5), и ее можно записать следующим образом:

$$\Delta \varphi / 2 = \lambda \Delta f / (2V). \tag{6}$$

При угле $\Delta \varphi/2 = NA/M$ угловые поля дифрагировавших пучков с осями O_1 и O_2 будут иметь вид, паказанный на рис. 1, b. Окружности изображают границы углового распределения по уровню интенсивности $1/e^2$. Для элементарных оценок примем: 1) угловые поля ограничены указанными окружностями, а распределение интенсивности пучка в пределах окружности равномерное; 2) угловые поля дифрагировавших пучков и приемного ВОС идентичны; 3) оптическая система идеально съюстирована для $f = f_0$. Тогда доля интенсивности света, переданная в ВОС Φ_2 приблизительно равна отношению заштрихованной площади к площади круга, и она составляет 0.39 ($\simeq -4$ dB) [3]. В результате получаем формулу для частотной полосы приема по указанному уровню:

$$\Delta f_r \simeq 2NAV/(M\lambda). \tag{7}$$

Как и в случае коллимированного пучка, полоса приема пропорциональна V, поэтому целесообразно использовать изотропную дифракцию на продольной УЗВ, где скорость V значительно выше [3]. Итак, механизм формирования полосы приема модулятора заключается в ограничении апертуры дифрагировавшего пучка при вводе его в приемный ВОС. При этом для AOMB с коллиматорами ограничивается линейная апертура, а для AOMB с фокусаторами — угловая апертура.

В качестве примера оценим относительное увеличение полосы k для $\lambda = 1064$ nm при переходе от коллимированного пучка к фокусированному при прочих равных условиях:

$$k = f_{\text{foc}} / f_{\text{col}} = \left(\frac{2NAV}{M\lambda}\right) / \left(\frac{DV}{F\lambda}\right)$$
$$= 2NAF / (MD) = NAF / w.$$

Подставляя NA = 0.11 [10], F = 4 mm [3], w = H/2 = 0.1 - 0.01 mm, получаем $k \approx 4 - 40$. Следовательно, схема с фокусированным пучком дает радикальное расширение полосы приема.

2. Расчетные параметры и конструкция АОМВ

По аналогии с [3] в настоящей работе использовалась изотропная дифракция на продольной УЗВ, распространяющейся по оси Z в кристалле TeO₂ со скоростью V = 4260 m/s. Ширина звукового столба (активная апертура) $H = 120 \,\mu$ m. При H = 2w получаем время переключения $\tau \simeq 18$ ns, что соответствует частотной полосе переключения $\Delta f_{\rm cr} \simeq 28$ MHz. Поскольку для близких значений акустических импедансов материалов АО-кристалла и пьезопреобразователя (ПП) $\Delta f_m \sim f_0$ и может достигать октавы [8], для облегчения согласования ПП с ВЧ-трактом и обеспечения неравенства $\Delta f_m > \Delta f_{\rm cr}$ была выбрана центральная частота $f_0 = 200$ MHz. Длина ПП вдоль пучка света выбиралась из равенства a = 1. В табл. 1 представлены расчетные параметры АОМВ Фотон-6203.

Частотные полосовые характеристики по уровню $-3 \, dB$ вычислялись по формулам: $\Delta f_r^{
m calc} = 1.6 NAV/(M\lambda),$ где $NA{=}0.11,$ M=2w/D==120 μ m/6.2 μ m \simeq 19.4 [10], $\Delta f_{af}^{\text{calc}}$ = 1.77 $V^2 n/(f_0 L\lambda)$ [8], где $n \simeq 2.3$ — показатель преломления TeO₂, вычисленный по формулам Селмейера, экстраполированным в ИК-диапазон [11], Q — параметр Кляйна-Кука [12], *Т_М* — максимально достижимая эффективность дифракции [5], P_M^a — мощность УЗВ, необходимая для получения *T_M* [6].

AOMB	Длина волны λ, nm	Общие оптические потери σ , dB	Контраст модуляции <i>K</i> , dB	$\Delta f_m^{\exp},$ MHz	Δf_{af}^{\exp} , MHz	Δf_r^{\exp} , MHz	P_M^{HF} , W
Фотон-6203	1064 ± 40	-3.2	63	80	97	41	0.95

Таблица 2. Экспериментальные параметры АОМВ

Рис. 2. Фото АОМВ Фотон-6203 с фокусировкой светового пучка.

На рис. 2 представлено фото AOMB Фотон-6202. AOMB состоит из корпуса размерами $95 \times 70 \times 37$ mm, внутри которого находятся AOЯ, устройство согласования импедансов ПП и ВЧ-тракта (50Ω) и асферические линзовые входной и выходной настраиваемые объективы Fiberport PAF2-2C с тремя линейными и тремя угловыми степенями свободы, имеющие оптическими разъемы FC/APC [13]. Объективы служили фокусаторами с изменяемыми расстояниями *a* и *a*'.

3. Экспериментальные результаты и их обсуждение

В табл. 2 приведены результаты экспериментального исследования изготовленного АОМВ Фотон-6203 с фокусированным пучком.

Для длины волны излучения указан спектральный диапазон, в котором коэффициент отражения не превышает 0.2%. Определение σ и K дано в [3], их значения указаны в табл. 2 для $f_0 = 200$ MHz. Полоса согласования ПП Δf_m^{\exp} измерялась по уровню КСВН ≤ 1.3 , что соответствует уровню отраженной ВЧ мощности $\leq 2\%$. Ширина частотной аппаратной функции Δf_{af}^{\exp} измерялась при установленном входном фокусаторе Φ_1 без приемного фокусатора Φ_2 . В этом случае непосредственно за АОЯ устанавливался широкоаппертурный фотоприемник с угловой апертурой $\Delta \alpha \gg 2NA/M \simeq 0.7^{\circ}$. Приемная полоса Δf_r^{\exp} измерялась при установленных

фокусаторах Φ_1 и Φ_2 . P_M^{HF} — мощность управляющего ВЧ-сигнала, при которой значение σ минимально. Источником излучения служил лазер LCS-T-12, а приемником — измеритель мощности РМ20С. Для соединения источника и приемника с АОМВ использовались отрезки ВОС РЗ-980А-FC-1 длиной 1 m.

АОМВ Фотон-6203 был испытан как в импульсном, так и в непрерывном режимах без изменения его параметров. Это согласуется с данными [9], где для АОМ Фотон-3208 с близкими размерами ПП была экспериментально определена максимальная средняя по времени мощность УЗВ без деструкции ПП: $\langle P_M^a \rangle \simeq 1$ W.

Из полученных результатов можно сделать следующие выводы:

1. Неравенство (2), как необходимое и достаточное условие получения расчетного времени переключения $\tau \simeq 18$ ns, в данном случае выполняется.

2. Несмотря на упрощающие допущения, сделанные при выводе формулы (7) для Δf_r , расчетные и экспериментальные данные находятся в хорошем согласии. Это относится к результатам, полученным как в [3], так и в настоящей работе.

3. При использовании АОМВ в качестве стационарного частотосдвигателя его рабочая полоса определяется частотной полосой приема $\Delta f \simeq \Delta f_r \simeq 40$ MHz. На краях этой полосы общие оптические потери составляют $\sigma(f_0 \pm \Delta f/2) \simeq 3 \, \mathrm{dB} + 3.2 \, \mathrm{dB} = 6.2 \, \mathrm{dB}$. Согласно данным табл. 2, значение полосы частот АО-взаимодействия Δf_{af}^{\exp} значительно превышает Δf_r . Следовательно, основная доля потерь на краях рабочей полосы обусловлена потерями ввода дифрагировавшего светового пучка в приемный ВОС.

Возможность реализации АОМВ с минимальным временем переключения

В работе [3] сделаны оценки минимальных значений времени переключения АОМВ τ_{\min} , исходя из максимального значения плотности акустической мощности, ограниченной электрическим пробоем ПП. Интересно рассмотреть возможность практической реализации данных [3] с учетом результатов, полученных в настоящей работе.

В табл. З сведены параметры, вычисленные по формулам (1)-(5), с учетом [3] и исходя из значений пороговой плотности акустической мощности без деструкции ПП в импульсном режиме $\rho_{\rm imp} \approx 360 \cdot 10^6 \, {\rm W/m^2}$.

Таблица 3. Расчетные параметры AOMB с минимальным временем переключения

λ, nm	L, μm	Η, μm	f₀, MHz	$ au_{ m min}, \ m ns$	$\Delta f_{\rm cr},$ MHz	$\Delta f_m,$ MHz	Δf_r , MHz	$\Delta f_{af},$ MHz	P_a, W	т
1064	225	14.6	455	2.2	227	303	300	650	1.2	1.2
1550	323	21.2	313	3.2	156	209	205	451	2.5	2.5

Полоса согласования ПП полагалась равной октаве, т.е. $\Delta f_m = 2f_0/3$. Осуществить такое значение возможно вследствие близости значений акустических импедансов ПП (LiNbO₃y + 36°-среза) и светозвукопровода (TeO₂z-среза): $34.3 \cdot 10^6 \text{ kgm}^{-2} \cdot \text{s}^{-1}$ и $25.2 \cdot 10^6 \text{ kgm}^{-2} \cdot \text{s}^{-1}$ соответственно [8]. В последнем столбце табл. З приведены минимальные значения скважности импульсной последовательности управляющего ВЧ сигнала *m*, при которой средняя по времени мощность $\langle P_a \rangle$ не превышает "безопасного" для теплового режима ПП уровня 1 W.

Из табл. З видно, что неравенство (2) выполняется для обеих длин волн излучения 1064 и 1550 nm. Это позволяет утверждать, что схема с фокусированным пучком дает возможность реализовать АОМВ с τ , близким к предельным значениям τ_{\min} , ограниченным напряжением пробоя используемого ПП.

В [14–17] подробно представлена информация ведущих фирм-производителей об акустооптических приборах с оптоволоконными выводами. Из анализа этих данных следует: 1) отечественные производители отсутствуют; 2) разработанный АОМВ Фотон-6203 не уступает аналогам фирм-лидеров по основным параметрам: времени переключения, частоте модуляции, мощности управляющего ВЧ-сигнала, оптическим потерям и режимам работы; 3) рассмотренные в настоящей работе АОМВ с минимальнным временем переключения $\simeq 2-3$ пѕ не имеют аналогов.

Разработанное устройство может использоваться для увеличения диапазона амплитудной и частотной модуляции лазеров с оптоволоконными выводами; в качестве селектора импульсов в волоконных системах с высокой частотой повторения для увеличение диапазона частоты повторения; при создании транспортируемых оптических и микроволновых стандартов частоты [9] для уменьшения их габаритов; в волоконно-оптических датчиках и дальномерах для увеличения пространственного разрешения [18].

Выводы

1. Рассмотрена и экспериментально исследована схема АОМВ со световым пучком, сфокусированным в центре звукового столба АОЯ. Определены условия, необходимые и достаточные для получения времени переключения, определяемого размером перетяжки светового пучка и скоростью акустической волны. 2. Получено выражение для частотной полосы приема AOMB. Показано, что схема с фокусировкой пучка дает радикальное расширение частотной полосы приема.

3. Изготовлен AOMB с фокусировкой пучка и временем переключения ≈ 18 ns и исследованы его экспериментальные параметры. Расчетное и измеренное значения частотной полосы приема находятся в хорошем согласии.

4. Сделаны оценки параметров АОМВ с минимально возможным временем переключения, определяемым электрическим пробоем пьезопреобразователя. Показано, что схема с фокусированным световым пучком позволяет реализовать модуляторы с временем переключения, близким к минимальным значениям $\tau_{\min} \simeq 2-3$ пs.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] В.Я. Молчанов, Ю.И. Китаев, А.И. Колесников, В.Н. Нарвер, А.З. Розенштейн, Н.П. Солодовников, К.Г. Шаповаленко. *Теория и практика современной* акустооптики (Изд. Дом МИСиС, М., 2015), с. 77.
- [2] С.Н. Антонов. ЖТФ, 89 (2), 274 (2019).
- [3] В.М. Епихин, П.В. Карнаушкин. Квант. электрон., 50 (10), 962 (2020).
- [4] Ю. Айхлер, Г.И. Айхлер. Лазеры. Исполнение, управление, применение (Техносфера, М., 2012), с. 240.
- [5] D. Maydan. IEEE J., **QE-6** (1), 15 (1970).
- [6] Л.Н. Магдич, В.Я. Молчанов. Акустооптические устройства и их применение (Сов. радио, М., 1978), с. 31.
- [7] В.И. Балакший, В.Н. Парыгин, Л.Е. Чирков. Физические основы акустооптики (Радио и связь, М., 1985), с. 45.
- [8] Э. Дьелесан, Д. Руайе. Упругие волны в твердых телах. Применение для обработки сигналов (Наука, М., 1982), с. 338.
- [9] В.М. Епихин, В.Н. Барышев, С.Н. Слюсарев, А.В. Апрелев, И.Ю. Блинов. Квант. электрони., 49 (9), 857 (2019).
- [10] OZ Optics Ltd. [Электронный ресурс] Режим доступа: www.ozoptics.com
- [11] N. Uchida. Phys. Rev. B, 4 (10), 3736 (1971).
- [12] W.R. Klein, D.D. Cook. IEEE Trans., SU-14 (3), 123 (1967).
- [13] Thorlabs, Inc. [Электронный ресурс] Режим доступа: www.thorlabs.com
- [14] Акустооптические модуляторы с оптоволокном [Электронный ресурс] Режим доступа: https://sphotonics.ru/ catalog/sm-aom/
- [15] Isomet Corporation [Электронный ресурс] Режим доступа: https://www.isomet.com
- [16] Brimrose Corporation of America [Электронный ресурс] Режим доступа: https://www.brimrose.com
- [17] G&H [Электронный ресурс] Режим доступа: https://www.gandh.com
- [18] Т.О. Лукашова, О.Е. Наний, С.П. Никитин, В.Н. Трещиков. Квант. электрон., 50 (9), 882 (2020).