07;09

Солнечные элементы на основе сложных оксидов

© С.С. Козлов¹, Л.Л. Ларина¹, А.Б. Никольская¹, О.В. Альмяшева², О.В. Проскурина³, О.И. Шевалеевский^{1,¶}

¹ Институт биохимической физики им. Н.М. Эмануэля РАН, Москва, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия

³ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

[¶] E-mail: shevale2006@yahoo.com

Поступило в Редакцию 3 декабря 2020 г. В окончательной редакции 10 декабря 2020 г. Принято к публикации 10 декабря 2020 г.

Представлены результаты разработки новых неорганических перовскитных солнечных элементов с фотоактивным слоем на основе ортоферрита висмута (BiFeO₃) со структурой перовскита и фотоэлектродом на основе оксида циркония (ZrO₂). Исследовано поведение оптических и фотовольтаических характеристик перовскитных солнечных элементов в условиях как стандартного (AM1.5G), так и изменяемого в пределах 20–1000 W/m² освещения. Показана высокая долговременная стабильность параметров полученных перовскитных солнечных элементов в воздушной атмосфере при повышенной влажности.

Ключевые слова: перовскит, солнечный элемент, ортоферрит висмута, оксид циркония, допирование.

DOI: 10.21883/PJTF.2021.06.50758.18643

В последние годы развитие работ, связанных с совершенствованием перовскитных солнечных элементов (ПСЭ), относится к доминирующим направлениям исследований в области солнечной фотовольтаики [1]. ПСЭ на основе органо-неорганических соединений со структурой перовскита демонстрируют в стандартных условиях освещения AM1.5G эффективность преобразования энергии, превышающую 26% [2], что сравнимо с эффективностью традиционных фотопреобразователей на основе кристаллического кремния. На данный момент основной проблемой, препятствующей широкому внедрению ПСЭ, является низкая стабильность используемого в ПСЭ фотоактивного органо-неорганического перовскитного материала вида CH₃NH₃PbI₃ [3]. При контакте с воздушной атмосферой, влагой, при нагреве и ультрафиолетовом освещении в структуре CH₃NH₃PbI₃ наблюдается значительная деструкция, приводящая к существенному снижению ее фотофизических характеристик [4]. Различные попытки улучшить стабильность ПСЭ на основе CH₃NH₃PbI₃ [5] пока не привели к значимым результатам. Многообещающим подходом стало направление, связанное с поиском и использованием в качестве фотоактивного слоя новых видов стабильных перовскитных материалов на основе неорганических соединений [6]. К наиболее перспективным для этой цели следует отнести полупроводниковые материалы на основе сложных оксидов со структурой перовскита, преимуществом которых является отсутствие в структуре токсичных элементов и галогенидов, а также высокая стабильность структурных параметров, которые не подвержены влиянию таких внешних факторов, как состав атмосферы, температурные эффекты и освещение [7]. Было показано, что для конструирования фотопреобразователей могут быть успешно использованы полупроводниковые перовскиты на основе таких оксидов, как KNiO₃ и BiFeO₃ [8,9].

В настоящей работе представлены результаты разработки новых видов неорганических ПСЭ (НПСЭ) с фотоактивными слоями на основе нелегированного и легированного титаном ортоферрита висмута BiFeO₃ (BFO) и фотоэлектродом на основе оксида циркония (ZrO₂). Получены данные по фотовольтаическим характеристикам НПСЭ как при стандартном освещении AM1.5G, так и в условиях изменяемого в пределах 20–1000 W/m² освещения. Проведены исследования временной стабильности параметров приготовленных НПСЭ в условиях высокой влажности (~ 70%).

Наночастицы перовскитоподобного ортоферрита висмута, BFO, с размером частиц ~ 20 nm были синтезированы путем разложения соосажденных гидроокислов согласно ранее описанной технологии [10,11]. Были получены как недопированные образы BFO, так и образцы, допированные 3 at.% диоксида титана BFO(Ti). Фазовый состав синтезированных частиц определялся методом рентгеноструктурного анализа. Полученные дифрактограммы обоих видов образцов показали наличие рефлексов фазы BiFeO₃ (PDF 14-181). Показано, что параметры элементарных ячеек образцов соответствуют литературным данным [12].

Конструирование перовскитных фотопреобразователей типа НПСЭ проводилось по аналогии с разработанной ранее схемой и подробно описано в наших работах [13,14]. Для изготовления фотоэлектродов были использованы наночастицы ZrO₂, полученные дегидратацией совместно осажденных гидроксидов в гидротермальных условиях. Фотоэлектроды на основе наноструктурированного слоя ZrO₂ толщиной около 200 nm были сформированы на стеклянных подложках

Рис. 1. Структурная схема (a) и энергетическая диаграмма (b) НПСЭ на основе ортоферрита висмута.

с проводящим покрытием FTO (fluorine-doped tin oxide) методом спин-коутинга (spin-coating). Далее на поверхность фотоэлектрода последовательно наносились слои на основе наночастиц неорганического перовскита BFO или BFO(Ti) и дырочного проводника Spiro-MeOTAD (C₈₁H₆₈N₄O₈). Формирование НПСЭ завершалось нанесением токопроводящих золотых контактов толщиной около 50 nm методом напыления в вакууме. Все образцы готовились в условиях воздушной атмосферы при естественной влажности (40%). В результате были приготовлены две серии фотопреобразователей типа НПСЭ со структурой стекло/FTO/ZrO₂/BFO(Ti)/Spiro-МеОТАD/Аu. Для первой серии НПСЭ использовались фотоактивные слои недопированного BFO, для второй — слои допированного титаном BFO(Ti). На рис. 1, а представлена структурная схема сконструированных НПСЭ. Энергетическая структура НПСЭ и относительное расположение зон показано на рис. 1, b. Особенностью конструкции приготовленных НПСЭ является использование в качестве фотоэлектродов наноструктурированных слоев на основе ZrO2 с очень широкой запрещенной зоной (~6 eV). Как было показано ранее, применение подобных электродов позволяет повысить эффективность традиционных ПСЭ за счет минимизации влияния рекомбинационных процессов на границе раздела перовскит-фотоэлектрод [15]. Следует отметить, что положение дна зоны проводимости фотоэлектрода ZrO₂ располагается выше положения дна зоны проводимости фотоактивного перовскитного слоя BFO. В такой энергетической конфигурации процесс переноса фотовозбужденных носителей заряда с фотоактивного слоя на фотоэлектрод может эффективно осуществляться на основе прыжкового механизма за счет высокой концентрации локализованных состояний в запрещенной зоне ZrO₂ [15].

На рис. 2 представлены спектры оптического поглощения наноструктурированных слоев ВFO и BFO(Ti) толщиной ~ 300 nm, которые были получены на специально приготовленных на стеклянных подложках образцах. Энергии запрещенной зоны E_g для BFO и BFO(Ti) вычислялись на основании анализа спектральных зависимостей коэффициента поглощения графической экстраполяцией линейных участков зависимостей (αhv)² от энергии фотона и составили соответственно 2.43 и 2.11 eV.

Измерение фотовольтаических характеристик НПСЭ проводилось как при стандартном освещении AM1.5G (1000 W/m^2) , так в условиях изменения освещенности в диапазоне $10-1000 \text{ W/m}^2$ с использованием имитатора солнечного излучения Abet Technologies Solar Simulator (США) и специальных понижающих освещение фильтров. Наилучшее значение эффективности (*η*) в условиях освещения AM1.5G было получено для НПСЭ на основе допированного образца BFO(Ti) и составило 2.4%. Фотоэлектрические параметры для обоих типов исследованных НПСЭ приведены в таблице. Видно, что в сравнении с недопированным в допированном образце наблюдается рост коэффициента заполнения (FF) на 29% и напряжения холостого хода (V_{oc}) на 45%. Значительное увеличение происходит в величине плотности тока короткого замыкания (J_{sc}) , что может быть объяснено улучшением морфологии перовскитного слоя вследствие допирования и его более высокой кристалличностью, что в конечном счете выражается в сниже-

Рис. 2. Кривые оптического поглощения нелегированного и легированного титаном слоя ортоферрита висмута.

Рис. 3. Изменение эффективности НПСЭ на основе фотоактивного слоя BFO(Ti) в зависимости от интенсивности освещения.

Фотовольтаические параметры НПСЭ на основе ВFO

Состав перовскита	J_{sc} , mA/cm ²	V_{oc}, mV	FF, %	η, %
BiFeO ₃	0.42	510	45.3	0.1
$BiFeO_3$ (3 at.% Ti)	5.65	740	58.4	2.4

нии рекомбинационных потерь и улучшении фотоэлектрических параметров слоя BFO(Ti).

На рис. З представлен график изменения эффективности преобразования для образца НПСЭ на основе BFO(Ti) при изменении интенсивности освещения в диапазоне 20–1000 W/m². Показано, что по мере уменьшения освещенности образца эффективность преобразования растет и при низких значениях освещенности в 1.8 раза превышает начальное значение. Аналогичное поведение наблюдается и в традиционных ПСЭ на основе органо-неорганических систем [16].

В НПСЭ на основе BFO(Ti) было проведено исследование временной стабильности фотовольтаических параметров в естественной воздушной атмосфере в условиях повышенной влажности (~ 70%) в течение 30 дней. Установлено, что основные характеристики, включая эффективность, претерпели незначительное снижение, не превышающее нескольких процентов. Некоторое уменьшение значения коэффициента заполнения FF (с 58.4 до 57.1%), с нашей точки зрения, связано с возможными изменениями на границах раздела слоев ZrO₂/BFO(Ti) и BFO(Ti)/Spiro-MeOTAD. При этом сравнительный анализ структурных характеристик фотоактивного слоя BFO(Ti), проведенный методом рентгенофазового анализа до и после 30-дневного пребывания образцов в условиях повышенной влажности, не выявил значимых изменений, что указывает на отсутствие деградационных процессов в структуре перовскитного материала BFO(Ti).

Таким образом, нами были приготовлены наноструктурированные слои на основе перовскитоподобного недопированного и допированного титаном ортоферрита висмута, BFO и BFO(Ti), и исследованы их структурные и оптические характеристики. На их основе впервые разработаны и изучены НПСЭ со структурой стекло/FTO/ZrO₂/BFO(Ti)/Spiro-MeOTAD/Au. Наилучшая эффективность, которая составила в условиях стандартного освещения АМ1.5G величину 2.4%, была получена для НПСЭ на основе фотоактивного слоя BFO(Ti). Установлено, что при длительной экспозиции в условиях высокой влажности структурные параметры фотоактивного слоя BFO(Ti) и фотовольтаические характеристики НПСЭ на его основе практически не изменяются. Показано также, что по мере уменьшения интенсивности освещения эффективность разработанных НПСЭ значительно возрастает.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 20-69-47124).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- N.-G. Park, Adv. Energy Mater., 10 (13), 1903106 (2019). DOI: 10.1002/aenm.201903106
- [2] A. Rohatgi, K. Zhu, J. Tong, D. Kim, E. Reichmanis, B. Rounsaville, V. Prakash, Y.-W. Ok, IEEE J. Potovolt., 10 (2), 417 (2020). DOI: 10.1109/JPHOTOV.2019.2963564
- [3] J. Schoonman, Chem. Phys. Lett., **619**, 193 (2015). DOI: 10.1016/j.cplett.2014.11.063
- [4] Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, J. Photon. Energy, 6 (2), 022001 (2016). DOI: 10.1117/1.JPE.6.022001
- [5] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Energy Environ. Sci., 9 (6), 1989 (2016). DOI: 10.1039/C5EE03874J
- [6] M.S. Sheikh, D. Ghosh, A. Dutta, S. Bhattacharyya, T.P. Sinha, Mater. Sci. Eng. B, 226, 10 (2017).
 DOI: 10.1016/j.mseb.2017.08.027
- [7] K. Kumari, T. Chakrabarti, A. Jana, D. Bhattachartjee,
 B. Gupta, S.K. Sarkar, Opt. Mater., 84, 681 (2018).
 DOI: 10.1016/j.optmat.2018.07.071
- [8] T. Choi, S. Lee, Y. Choi, V. Kiryukhin, S.W. Cheong, Science, 324, 63 (2009). DOI: 10.1126/science.1168636
- [9] S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, R. Ramesh, Appl. Phys. Lett., **95** (6), 062909 (2009). DOI: 10.1063/1.3204695

- [10] О.В. Проскурина, И.В. Ноговицин, Т.С. Ильина, Д.П. Данилович, Р.Ш. Абиев, В.В. Гусаров, ЖОХ, 88 (10), 1699 (2018). [Пер. версия: 10.1134/S1070363218100183].
- [11] O.V. Proskurina, R.S. Abiev, D.P. Danilovich, V.V. Panchuk, V.G. Semenov, V.N. Nevedomsky, V.V. Gusarov, Chem. Eng. Process. — Process Intensif, **143**, 107598 (2019). DOI: 10.1016/j.cep.2019.107598
- [12] М.И. Морозов, Н.А. Ломанова, В.В. Гусаров, ЖОХ, 73 (11), 1772 (2003).
 - [Пер. версия: 10.1023/В:RUGC.0000018640.30953.70].
- [13] О.И. Шевалеевский, А.Б. Никольская, М.Ф. Вильданова, С.С. Козлов, О.В. Алексеева, А.А. Вишнёв, Л.Л. Ларина, Хим. физика, **37** (8), 36 (2018). DOI: 10.1134/S0207401X18080186
- [14] А.Б. Никольская, С.С. Козлов, М.Ф. Вильданова, О.И. Шевалеевский, ФТП, 53 (4), 550 (2019).
 DOI: 10.21883/FTP.2019.04.47456.9023
- [15] M.F. Vildanova, S.S. Kozlov, A.B. Nikolskaia, O.I. Shevaleevskiy, N.A. Tsvetkov, O.V. Alexeeva, L.L. Larina, Nanosyst.: Phys. Chem. Math., 8 (4), 540 (2017). DOI: 10.17586/2220-8054-2017-8-4-540-545
- [16] J. Lim, H. Kwon, J.W. Lim, H. Kwon, S.H. Kim, Y.J. You, J.S. Goo, D.H. Ko, H.J. Lee, D. Kim, I. Chung, T.G. Kim, D.H. Kim, J.W. Shim, Nano Energy, **75**, 104984 (2020). DOI: 10.1016/j.nanoen.2020.104984