## 06.5;05.3

# Электронно-пучковая кристаллизация тонких пленок аморфного субоксида кремния

© Е.А. Баранов<sup>1</sup>, В.О. Константинов<sup>1</sup>, В.Г. Щукин<sup>1</sup>, А.О. Замчий<sup>1,2</sup>, И.Е. Меркулова<sup>1,2</sup>, Н.А. Лунёв<sup>1,2</sup>, В.А. Володин<sup>2,3</sup>

<sup>1</sup>Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск, Россия

<sup>2</sup> Новосибирский государственный университет, Новосибирск, Россия

<sup>3</sup> Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия E-mail: itpbaranov@gmail.com

Поступило в Редакцию 24 сентября 2020 г. В окончательной редакции 30 ноября 2020 г. Принято к публикации 6 декабря 2020 г.

Впервые получен поликристаллический кремний (poly-Si) в результате воздействия электронного пучка на пленки аморфного гидрогенизированного субоксида кремния со стехиометрическим коэффициентом 0.5 (*a*-SiO<sub>0.5</sub>:H) и толщиной 580 nm. Ускоряющее напряжение электронного пучка составляло 2000 V, а ток пучка — 100 mA. Получены спектры комбинационного рассеяния света пленок кремния после отжига в зависимости от времени воздействия электронного пучка на исходный материал. Показано, что в результате отжига формируется поликристаллический кремний, напряжения в котором в зависимости от времени воздействия до растяжения.

Ключевые слова: тонкие пленки субоксида кремния, электронно-пучковый отжиг, поликристаллический кремний.

DOI: 10.21883/PJTF.2021.06.50754.18560

Тонкие пленки поликристаллического кремния (poly-Si) широко используются в дисплеях с активной матрицей [1] и, кроме того, имеют хорошие перспективы применения в современных солнечных элементах [2] и тонкопленочных транзисторах на гибких подложках [3]. Отметим, что все эти приложения используют синтез поликристаллического кремния при низкой температуре, поскольку в качестве подложек применяются такие материалы, как стекло и пластик. Наиболее распространенным способом получения тонких пленок poly-Si на низкотемпературных подложках является кристаллизация пленок аморфного кремния (a-Si). Среди методов кристаллизации, которые используют прямое воздействие на исходную пленку кремния, можно выделить лазерный отжиг (laser annealing) [3], импульсный фотонный отжиг (flash lamp annealing) [4], отжиг термоплазменной струей (thermal plasma jet) [5], электронно-пучковую кристаллизацию (electron beam crystallization) [6,7].

В настоящей работе получен поликристаллический кремний в результате электронно-пучкового отжига тонких пленок аморфного гидрогенизированного субоксида кремния (*a*-SiO<sub>x</sub>:H). Проведено исследование влияния времени экспозиции электронного пучка на напряжения в поликристаллическом кремнии.

Для проведения экспериментов по электронно-пучковому отжигу были получены образцы с тонкими пленками аморфного гидрогенизированного субоксида кремния на кварцевых (марка КУ-1, толщина 1 mm) и кремниевых (пластина монокристаллического кремния КЭФ4.5, ориентация  $\langle 100 \rangle$ , толщина 420 nm) подложках размером  $12 \times 18$  mm. Тонкие пленки *a*-SiO<sub>x</sub>:Н были

получены методом плазмохимического осаждения смеси  $SiH_4-O_2$  из газовой фазы с использованием широкоапертурного источника с индуктивным высокочастотным возбуждением (13.56 MHz). Мощность высокочастотного излучения и температура подложки в процессе синтеза составляли 50 W и 150°C соответственно.

Отжиг пленок a-SiO<sub>x</sub>:Н осуществлялся в вакуумной камере с давлением  $10^{-6}$  mbar. С помощью электронной пушки на основе разряда с полым катодом генерировался электронный пучок [8]. Ускоряющее напряжение электронного пучка составляло 2000 V, ток пучка 100 mA. Подложкодержатель с установленным на нем образцом размещался перпендикулярно электронному пучку. Время воздействия регулировалось включением-выключением электронной пушки. Плотность тока на поверхности образца составила 15 mA/cm<sup>2</sup>.

На изображении поперечного разреза исходного образца (рис. 1), сделанном на растровом электронном микроскопе (РЭМ) JEOL JSM-6700F, хорошо видна пленка a-SiO<sub>x</sub>:H, толщина которой составила 580 nm. Наблюдается характерная столбчатая структура пленки, обусловленная высокой концентрацией водорода. Столбцы с большим количеством вертикальных пустот начинаются от подложки и проходят вдоль всей пленки в направлении ее роста. Проведенные с помощью рентгеновской спектроскопии с дисперсией по энергии (EDS) измерения атомной концентрации кремния и кислорода в исходных пленках показали, что стехиометрический коэффициент (отношение атомной концентрации кислорода к атомной концентрации кремния в пленке) этих пленок равен 0.52.



**Рис. 1.** РЭМ-изображение поперечного сечения тонкой пленки *a*-SiO<sub>x</sub>:Н на пластине монокристаллического кремния.

Для исходных пленок *a*-SiO<sub>x</sub>:Н были получены спектры пропускания в ИК-диапазоне (FTIR) на приборе Scimitar FTS 2000. На спектрах FTIR присутствуют полосы, соответствующие колебаниям атомных связей Si-H и O-Si-O в пленке. Для определения концентрации водорода в пленках использовалось интегральное поглощение полосы на частоте 640 сm<sup>-1</sup>, которое соответствует веерному и маятниковому колебаниям связей Si-H [9]. Для полученных пленок концентрация водорода составила 20 at.%.

Спектры комбинационного рассеяния света (КРС) были получены при комнатной температуре в обратной геометрии рассеяния с использованием спектрометра T64000 фирмы Horiba Jobin Yvon. Возбуждение КРС осуществлялось на длине волны 514.5 nm, и лазерный луч фокусировался в пучок диаметром менее  $5 \mu$ m. Для предотвращения локального нагрева образцов и сдвига частот фононов вследствие ангармонизма мощность возбуждающего лазерного излучения выбиралась в диапазоне, в котором дальнейшее уменьшение мощности не приводило к изменению положения пика poly-Si.

Спектры КРС исходных пленок a-SiO<sub>x</sub>:Н воспроизводят эффективную плотность колебательных состояний связей Si–Si и характерны для аморфной структуры материала (см. вставку на рис. 2). Спектры комбинационного рассеяния света пленок субоксида кремния, полученные в зависимости от времени электроннопучкового отжига, представлены на рис. 2. На спектрах присутствует характерный пик поликристаллического кремния, что свидетельствует о том, что в результате электронно-пучкового отжига прошел процесс кристаллизации аморфного субоксида кремния с образованием poly-Si для времени воздействия электронного пучка 60, 180 и 600 s (доза облучения 0.9, 2.7 и 9 C/cm<sup>2</sup> соответственно). Положение пика для времени отжига 60 s составило 518.4 сm<sup>-1</sup>, ширина на полувысоте 6.1 сm<sup>-1</sup> согласно спектру, показанному на рис. 2. Для времени отжига 180 s положение пика poly-Si составило 519.7 сm<sup>-1</sup>, ширина на полувысоте 7.1 сm<sup>-1</sup>. С увеличением времени отжига до 600 s положение пика сместилось до значения 524.5 сm<sup>-1</sup> при ширине на полувысоте 6.5 сm<sup>-1</sup> (рис. 2). Следует отметить, что для пучка электронов с ускоряющим напряжением 1000 V и током 100 mA даже при времени отжига 600 s формирования poly-Si не произошло, а воздействие пучка электронов с ускоряющим напряжением 3000 V и аналогичным током привело к испарению тонкой пленки *a*-SiO<sub>x</sub>:Н за 60 s [10].

Спектры КРС монокристаллического кремния (c-Si) содержат узкий пик при 520.6 сm<sup>-1</sup> вследствие того, что в кристалле сохраняется квазиимпульс и в рассеянии активны только длинноволновые оптические фононы. В случае механических напряжений, возникающих из-за дефектов или несоответствия коэффициента термического расширения между подложкой и пленкой, пик от оптических фононов смещается [11] от положения 520.6 сm<sup>-1</sup>. Сжимающее напряжение приводит к сдвигу спектров комбинационного рассеяния выше 520.6 сm<sup>-1</sup>, в то время как растягивающее напряжение приводит к сдвигу к сдвигу спектров комбинационного рассеяния ниже 520.6 сm<sup>-1</sup>.

Используя значение смещения пика poly-Si, можно оценить значение напряжения согласно уравнению [12,13]:

$$\sigma[\text{MPa}] = -250(\omega - \omega_0)[\text{cm}^{-1}],$$

где  $\omega_0$  — положения пика *c*-Si без напряжений, а  $\omega$  — положения пика напряженного poly-Si. Значения напряжения в poly-Si, полученные из спектров КРС, в зависимости от времени воздействия электронного пучка



**Рис. 2.** Спектры КРС образцов, полученных в результате отжига электронным пучком с ускоряющим напряжением 2000 V и током 100 mA, для времени воздействия 60 (1), 180 (2) и 600 s (3). На вставке приведен спектр КРС исходного образца.

28



**Рис. 3.** Значения напряжения в пленках поликремния, полученные исходя из положения пиков КРС, в зависимости от времени воздействия электронного пучка.

показаны на рис. 3. Погрешность измерения составила порядка 170 MPa. Видно, что с увеличением времени воздействия напряжения в poly-Si изменяются от сжатия до растяжения и хорошо описываются линейной аппроксимацией.

Таким образом, в результате воздействия электронного пучка на пленки аморфного гидрогенизированного субоксида кремния впервые получен поликристаллический кремний (poly-Si). С помощью метода комбинационного рассеяния света для пленок кремния после отжига было показано, что напряжение в poly-Si изменяется в зависимости от времени экспозиции электронного пучка.

## Благодарности

Авторы выражают благодарность ЦКП "ВТАН" НГУ за предоставленное оборудование для регистрации спектров КРС.

#### Финансирование работы

Исследование выполнено при финансовой поддержке гранта Президента РФ (МК-638.2019.8) (синтез и диагностика пленок субоксида кремния) и Российского фонда фундаментальных исследований в рамках научного проекта № 19-08-00848 (электронно-пучковый отжиг).

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

### Список литературы

 L. Wang, L. Sun, D. Han, Y. Wang, M. Chan, S. Zhang, J. Display Technol., **10** (4), 317 (2014). DOI: 10.1109/JDT.2014.2301554

- [2] A. Rohatgi, K. Zhu, J. Tong, D.H. Kim, E. Reichmanis,
  B. Rounsaville, V. Prakash, Y.W. Ok, IEEE J. Photovolt., 10 (2), 417 (2020). DOI: 10.1109/JPHOTOV.2019.2963564
- Y. Do, D.Y. Jeong, S. Lee, S. Kang, S. Jang, J. Jang, Adv. Eng. Mater., 22 (5), 1901430 (2020).
   DOI: 10.1002/adem.201901430
- [4] K. Kurata, K. Ohdaira, Jpn. J. Appl. Phys., 58 (SB), SBBF10 (2019). DOI: 10.7567/1347-4065/aafb51
- [5] R. Nakashima, R. Shin, H. Hanafusa, S. Higashi, Jpn. J. Appl. Phys., 56 (6S2), 06HE05 (2017).
   DOI: 10.7567/JJAP.56.06HE05
- [6] D. Amkreutz, J. Haschke, S. Kühnapfel, P. Sonntag, B. Rech, IEEE J. Photovolt., 4 (6), 1496 (2014).
   DOI: 10.1109/JPHOTOV.2014.2358799
- [7] S.W. Lee, J.S. Kang, K.C. Park, J. Korean Phys. Soc., 68 (4), 528 (2016). DOI: 10.3938/jkps.68.52
- [8] В.Г. Щукин, В.О. Константинов, В.С. Морозов, ЖТФ, 88
  (6), 914 (2018). DOI: 10.21883/JTF.2018.06.46025.2544
- [9] A.O. Zamchiy, E.A. Baranov, I.E. Merkulova, S.Y. Khmel, E.A. Maximovskiy, J. Non-Cryst. Solids, **518**, 43 (2019). DOI: 10.1016/j.jnoncrysol.2019.05.015
- J. Kennedy, J. Leveneur, F. Fang, A. Markwitz, Nucl. Instrum. Meth. Phys. Res. B, **332**, 421 (2014).
   DOI: 10.1016/j.nimb.2014.02.110
- [11] C.W. Byun, S.W. Son, Y.W. Lee, H.M. Kang, S.A. Park,
  W.C. Lim, T. Li, S.K. Joo, J. Electrochem. Soc., 159 (4), J115 (2012). DOI: 10.1149/2.078204jes
- J.H. Park, H.Y. Kim, K.H. Seok, H.J. Chae, S.K. Lee, Y.H. Lee, Z. Kiaee, S.K. Joo, RSC Adv., 5 (69), 55909 (2015). DOI: 10.1039/C5RA09194B
- [13] V.V. Bolotov, M.D. Efremov, V.A. Volodin, Thin Solid Films, 248 (2), 212 (1994). DOI: 10.1016/0040-6090(94)90013-2