03,04,19

Теплоемкость и термодинамические функции GdGaTi₂O₇ в области 320–1000 К

© Л.Т. Денисова¹, М.С. Молокеев^{1,2}, Л.Г. Чумилина¹, В.В. Рябов³, В.М. Денисов¹

 ¹ Сибирский федеральный университет, Красноярск, Россия
² Институт физики им. А.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия
³ Институт металлургии УрО РАН, Екатеринбург, Россия
E-mail: Idenisova@sfu-kras.ru

Поступила в Редакцию 16 декабря 2020 г.

В окончательной редакции 16 декабря 2020 г. Принята к публикации 18 декабря 2020 г.

Твердофазным синтезом из исходных оксидов Gd₂O₃, Ga₂O₃ и TiO₂ обжигом на воздухе при температурах 1273 и 1573 К получен титанат GdGaTi₂O₇. Методом рентгеновской дифракции уточнена его кристаллическая структура. Высокотемпературная теплоемкость (320–1000 K) этого соединения измерена методом дифференциальной сканирующей калориметрии. На основании экспериментальной зависимости $C_p = f(T)$ рассчитаны его основные термодинамические функции.

Ключевые слова: титанаты редкоземельных элементов, твердофазный синтез, высокотемпературная теплоемкость, термодинамические функции.

DOI: 10.21883/FTT.2021.04.50711.261

1. Введение

Интерес исследователей и практиков к титанатам редкоземельных элементов с общей формулой R₂Ti₂O₇ (R = La - Lu) связан как с интересными их физическими свойствами, так и с перспективами их практического использования в различных областях науки и техники [1-3]. Возможности применения подобных материалов существенно возрастают при изменениях их физикохимических свойств за счет допирования [3], изоморфного замещения $(R'_{x}R''_{1-x})_{2}$ Ті $_{2}$ О $_{7}$ [4], а так же частичной замены редкоземельных элементов на другие металлы с образованием соединений RMTi₂O₇ [5]. Последние титанаты являются наименее исследованными. Так, например, в работе [5] сообщено о получении целого ряда соединений $RMTi_2O_7$ (R = Sm - Lu, Y); M = Ga, Fe). В то же время данные об их свойствах и кристаллической структуре не приведены (представлены данные только о структуре одного соединения GdGaTi₂O₇). Диаграммы состояния систем R₂O₃-M₂O₃-TiO₂ полностью до настоящего времени не построены. Для уточнения фазовых равновесий в таких системах методами термодинамического моделирования необходимы данные о термодинамических свойствах сосуществующих фаз. Такие данные для титанатов RMTi₂O7 в литературе отсутствуют.

В настоящей работе представлены результаты синтеза, исследования структуры и термодинамических свойств титаната GdGaTi₂O₇.

2. Синтез образцов и техника эксперимента

Замещенный титанат GdGaTi2O7 получен твердофазным методом из исходных оксидов Gd₂O₃, Ga₂O₃ и TiO₂. Их предварительно прокаливали на воздухе при 1173 К. Стехиометрическую смесь гомогенизировали в агатовой ступке и прессовали в таблетки. Их последовательно обжигали на воздухе при 1273 K (10 h) и три раза по 5 h при температуре 1573 К. С целью достижения полноты протекания твердофазной реакции образцы после каждого обжига перетирали и снова прессовали. Контроль фазового состава полученных образцов проводили методом рентгеновской дифракции. Порошковые рентгенограммы GdGaTi₂O₇ сняты при комнатной температуре на дифрактометре D8 ADVANCE фирмы Bruker, используя линейный детектор VANTEC и CuK_{α} -излучение. В ходе эксперимента использовалась щель первичного пучка 0.6 mm в диапазоне углов $2\theta = 11 - 100^{\circ}$. Шаг сканирования равен 0.016° и оставался постоянным на всем интервале углов, время экспонирования на каждом шаге 2 с. Все рефлексы на рентгенограммах были проиндицированы ромбической ячейкой Pcnb. Уточнение Ритвельда реализовано при помощи программы TOPAS 4.2 [6]. Результаты уточнения приведены в табл. 1 и на рис. 1.

В табл. 1 для сравнения приведены и данные работы [5]. Можно видеть, что полученные результаты удовлетворительно согласуются между собой. Некоторое различие этих данных, по-видимому, связано с тем, что

Рис. 1. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограммы образца GdGaTi₂O₇ после уточнения методом минимизации производной разности. Штрихами показаны расчетные положения пиков.

в работе [5] использовались монокристаллы, а в нашем случае — поликристаллические образцы.

Теплоемкость титаната GdGaTi₂O₇ измеряли методом дифференциальной сканирующей калориметрии с использованием термоанализатора STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной ранее [7,8]. Доверительный интервал экспериментов не превышал 5%.

3. Экспериментальные результаты

Координаты атомов и тепловые параметры полученного титаната приведены в табл. 2, а основные длины связей — в табл. 3.

На рис. 2 показано влияние температуры на молярную теплоемкость титаната GdGaTi₂O₇. С ростом температуры от 320 до 1000 К значения C_p закономерно увеличи-

Таблица 1. Основные параметры эксперимента и результаты уточнения

Параметры	Настоящая работа	[5]
Пр.гр.	Pcnb	Pcnb
a, Á	9.7844(2)	9.7804(3)
<i>b</i> , Å	13.6078(3)	13.605(1)
<i>c</i> , Å	7.43032(18)	7.4186(2)
<i>V</i> , Å ³	989.30(4)	987.16(1)
d, g/cm ³	5.84	5.848
$R_{wp}, \%$	2.28	
$R_{p}, \%$	1.75	
$R_B, \%$	0.52	
χ^2	1.40	

Примечание. a, b, c, β — параметры ячейки; V — объем ячейки; d — рассчитанная плотность факторы недостоверности: R_{wp} — весовой профильный, R_p — профильный, R_B — интегральный; χ^2 — качество подгонки.

Таблица 2. Координаты атомов и изотропные тепловые параметры (B_{iso}) структуры GdGaTi₂O₇

Атом	x	у	z	B_{iso}	O_{cc}
Gd	0.2378(3)	0.1345(2)	2) 0.0123(5) 0.61(19)		1
Ti1	0.2638(8)	0.3858(6)	0.5011(15)	1.2(3)	0.870(23)
Ga1	0.2638(8)	0.3858(6)	0.5011(15)	1.2(3)	0.130(23)
Ti2	0.5	0.25	0.2520(17)	1.0(5)	0.409(73)
Ga2	0.5	0.25	0.2520(17)	1.0(5)	0.591(73)
Ti3	0.004(17)	0.4906(7)	0.2732(14)	1.0(4)	0.925(43)
Ga3	0.0048(17)	0.4906(7)	0.2732(14)	1.0(4)	0.075(43)
Ga	0	0.25	0.3536(14)	1.8(4)	0.78
Gai	0.126(6)	0.280(5)	0.335(6)	1.8(4)	0.11
01	0.1614(16)	0.3966(18)	0.223(3)	1.0(3)	1
02	0.411(2)	0.115(2)	0.261(4)	1.0(3)	1
03	0.109(3)	0.1518(14)	0.261(4)	1.0(3)	1
04	0.373(3)	0.284(3)	0.439(4)	1.0(3)	1
05	0/376(3)	0.282(2)	0.055(4)	1.0(3)	1
06	0.377(3)	0.487(2)	0.408(4)	1.0(3)	1
07	0.376(3)	0.490(2)	0.038(4)	1.0(3)	1

Таблица 3. Основные длины связей $({\rm \AA})$ в структуре GdGaTi_2O_7

Длина связи	Значение	Длина связи	Значение	
Gd-O2	2.52(3)	Ga-O1	2.03(2)	
$Gd-O2^i$	2.38(3)	Ga3–O2 ^v	1.90(3)	
Gd-O3	2.25(3)	Ga3–O3 ^{vi}	2.24(2)	
$Gd-O3^{i}$	2.41(3)	Ga3-O6 ^{vii}	1.86(3)	
$Gd-O4^{i}$	2.38(3)	Ga3–O7 ^{iv}	2.29(4)	
Gd-O5	2.44(3)	Ga3–O7 ^{vii}	1.90(4)	
Gd-O6 ⁱⁱ	2.35(3)	Ga-O3	1.84(2)	
Gd–O7 ⁱⁱⁱ	2.42(3)	Ga-O5 ^{iv}	1.97(3)	
(Ti1/Ga1)-O1	2.30(3)	Gai-O1	1.82(6)	
(Ti1/Ga1)-O1 ^{iv}	1.81(3)	Gai-O3	1.84(6)	
(Ti1/Ga1)-O4	1.81(3)	Gai–O5 ^{iv}	1.64(5)	
(Ti1/Ga1)-O5 ^{iv}	2.01(3)	(Ti3/Ga3)-O1	2.03(2)	
(Ti1/Ga1)-O6	1.92(3)	(Ti3/Ga3)-O2 ^v	1.90(3)	
(Ti1/Ga1)-O7 ^{iv}	1.99(3)	(Ti3/Ga3)-O3 ^{vi}	2.24(2)	
(Ti2/Ga2) - O2	2.03(3)	(Ti3/Ga3)-O6 ^{vii}	1.86(3)	
(Ti2/Ga2)-O4	1.92(3)	(Ti3/Ga3)-O7 ^{iv}	2.29(4)	
Ti2/Ga2)-O5	1.93(3)	(Ti3/Ga3)-O7 ^{vii}	1.90(4)	

Примечание. Элементы симметрии: (i) i) — x + 1/2, y, z - 1/2; (ii) — x + 1/2, y - 1/2, -z + 1/2; (iii) — x, y - 1/2, -z; (iv) — x + 1/2, y, z + 1/2; (v) — x + 1/2, y + 1/2, -z + 1/2; (vi) — x, -y + 1/2, z; (vii) — x - 1/2, -y + 1, -z + 1/2.

ваются. Отсутствие на кривой $C_p = f(T)$ разного рода экстремумов, по-видимому, может свидетельствовать об отсутствии в данном интервале температур полиморфных превращений у GdGaTi₂O₇. Экспериментальные данные по теплоемкости исследованного титаната хорошо описываются уравнением Майера-Келли [9]:

$$C_p = a + bT - cT^{-2},$$
 (1)

<i>Т</i> , К	$C_p, \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}$	$H^{\circ}(T) - H^{\circ}(320 \mathrm{K}),$ kJ · mol ⁻¹	$S^{\circ}(T) - S^{\circ}(320 \mathrm{K}),$ J · K ⁻¹ · mol ⁻¹	$-\Delta G/T^*$, J · K ⁻¹ · mol ⁻¹
320	227.4	_	_	_
350	235.2	6.94	20.74	0.90
400	244.7	18.96	52.80	5.41
450	251.4	31.37	82.03	12.33
500	256.5	44.07	108.8	20.65
550	260.4	57.00	133.4	29.80
600	263.6	70.10	156.2	39.40
650	266.3	83.35	177.4	49.21
700	268.6	96.72	197.3	59.09
750	270.5	110.2	215.9	68.93
800	272.3	123.8	233.4	78.66
850	273.9	137.4	249.9	88.25
900	275.4	151.2	265.6	97.68
950	276.8	165.0	280.6	106.9
1000	278.1	178.8	294.8	115.9

Таблица 4. Термодинамические свойства GdGaTi₂O₇

Примечание. * — $(\Delta G^{\circ}/T) = (H^{\circ}(T) - H^{\circ}(320 \text{ K}))/T - (S^{\circ}(T) - S^{\circ}(320 \text{ K})).$

Таблица 5. Сравнение экспериментальных значений теплоемкости GdGaTi₂O₇ с рассчитанными величинами по различным моделям

С _{р,298} (эксп)	НК	Δ, %	ИМК	Δ, %	Кел	Δ, %	ГВ	Δ, %
220.3	209.9	-4.7	217.3	-1.4	228.2	+3.6	228.2	+3.6

которое для анализируемого соединения имеет следующий вид:

$$C_p = (266.7 \pm 0.50) + (15.91 \pm 0.50) \cdot 10^{-3}T$$
$$- (45.39 \pm 0.48)10^5 T^{-2}. \tag{2}$$

Коэффициент корреляции для уравнения (2) равен 0.9992, а максимальное отклонение от сглаживающей кривой — 0.54%.

Наличие температурной зависимости теплоемкости $GdGaTi_2O_7$ в виде уравнения (2) позволяет по известным термодинамическим соотношениям рассчитать его основные термодинамические функции. Эти результаты приведены в табл. 4.

Сравнить полученные нами данные по теплоемкости GdGaTi₂O₇ с результатами других авторов не представлялось возможным вследствие их отсутствия. Поэтому на рис. 2 приведены значения теплоемкости титаната Gd₂Ti₂O₇ [10]. Отметим, что частичное замещение Gd на Ga приводит к уменьшению теплоемкости во всем исследованном интервале температур. Кроме того, сопоставить значения $C_{p,298}$ можно с рассчитанными величинами по различным модельным представлениям: аддитивным методом Неймана—Коппа (HK) [11], инкрементным методом Кумока (ИМК) [12], с использованием таблиц

Рис. 2. Экспериментальные (1) и рассчитанные по методу Эрдоса и Черны (2) и модельным представлениям групповых вкладов (3) зависимости $C_p = f(T)$ для GdGaTi₂O₇ (*a*) и Gd₂Ti₂O₇ (*b*).

Келлога (Кел) [13] и групповых вкладов (ГВ) [14]. Эти результаты приведены в табл. 5. Из нее следует, что лучшее согласие с экспериментом (уравнение (2)) дает метод Кумока. Необходимые для расчетов значения теплоемкостей бинарных оксидов Gd₂O₃, Ga₂O₃ и TiO₂ при T = 298 К брали из литературы [11].

Для оценки температурной зависимости теплоемкости может быть использован метод групповых вкладов [14] (рис. 2). Для GdGaTi₂O₇ рассчитанные значения C_p от 320 до 600 К совпадают с экспериментальными величинами. При T > 600 К различие между ними увеличивается с ростом температуры. Для Gd₂Ti₂O₇ рассчитанные значения C_p меньше экспериментальных величин, но с ростом температуры это различие уменьшается. При анализе прогнозирования температурной зависимости теплоемкости оксидных соединений методом групповых вкладов авторами работы [15] установлено, что он дает разумные значения C_p при 298 K, тогда как при других температурах могут наблюдаться различия с экспериментальными данными. Это отмечено и самими авторами метода групповых вкладов [14].

Расчет температурной зависимости теплоемкости $GdGaTi_2O_7$ нами проведен методом Эрдоса и Черны [16,17] по уравнению

$$C_p = a + kbT - k^{-2}cT^{-2}, (3)$$

где k — коэффициент подобия, равный отношению температур эталона и исследуемого вещества, при которых их теплоемкости равны. В качестве эталона взят титанат Gd₂Ti₂O₇ (данные по его высокотемпературной теплоемкости приведены в работе [10]). Значения теплоемкости Gd₂Ti₂O₇ и GdGaTi₂O₇ равны при 650 и 800 К (k = 0.8125). Полученные результаты показаны на рис. 2. Видно, что в этом случае наблюдается лучшее согласие с экспериментальными данными по сравнению с методом групповых вкладов.

Благодарности

Авторы выражают благодарность Красноярскому региональному центру коллективного пользования ФИЦ КНЦ СО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Л.Н. Комиссарова, В.М. Шацкий., Г.Я. Пушкина, Л.Г. Щербакова, Л.Т. Мамсурова, Г.Е. Суханова. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. Наука, М. (1984). 235 с.
- [2] М.Ф. Васильева, А.К. Герасюк, А.И. Гоев, В.В. Потелов, Б.Н. Сеник, А.Б. Сухачев, Б.М. Жигарновский, В.В. Кириленко, А.В. Нозрачев. Прикладная физика 5, 91 (2007).

- [3] C. Li, H. Xiang, J. Chen, L. Fang. Ceram. Int. 42, 11453 (2016).
- [4] C. Chen, Z. Gao, H. Yan, M. Reece. J. Am. Ceram. Soc. 99, 2, 523 (2016).
- [5] Е.А. Генкина, В.И. Андрианов, Е.Л. Белоконева, Б.В. Милль, Б.А. Максимов, Р.А. Тамазян. Кристаллография 36, 9, 1408 (1991).
- [6] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany (2008).
- [7] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [8] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы. 53, *1*, 71 (2017).
- [9] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 5, 3243 (1932).
- [10] Л.Т. Денисова, Л.Г. Чумилина, В.В. Рябов, Ю.Ф. Каргин, Н.В. Белоусова, В.М. Денисов. Неорган. материалы. 55, 5, 516 (2019).
- [11] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, P. Abrman. Thermochim. Acta. 395, 27 (2003).
- [12] В.Н. Кумок. Прямые о обратные задачи химической термодинамики. Наука, Новосибирск (1987). С. 108–123.
- [13] О. Кубашевский., С.Б. Олкокк. Металлургическая термохимия. Металлургия, М. (1982). 392 с.
- [14] A.T.M.G. Mostafa, J. M. Eakman, M.M. Montoya, S.L. Yarbro. Ind. Eng. Chem. Res. 35, 343 (1996).
- [15] J. Leiner, D. Sedmidubský, P. Chuchvalec. Ceramics-Silikáty 46, 1, 29 (2002).
- [16] А.Г. Морачевский, И.Б. Сладков, Е.Г. Фирсова. Термодинамические расчеты в химии и металлургии. Лань, СПб (2018). 208 с.
- [17] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативн. банк данных ACTPA. OWN). УрО РАН, Екатеринбург (1997). 230 с.

Редактор К.В. Емцев