10.3

12 марта

Высокочастотный резонансный магнитоэлектрический эффект в структуре FeCoSiB—AIN на диэлектрической подложке

© Д.А. Бурдин¹, Р. Hayes², Н.А. Экономов¹, Д.В. Чашин¹, Ю.К. Фетисов¹

¹ МИРЭА — Российский технологический университет, Москва, Россия

² Institute for Materials Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany E-mail: phantastic@mail.ru

Поступило в Редакцию 15 октября 2020 г. В окончательной редакции 24 ноября 2020 г. Принято к публикации 24 ноября 2020 г.

> Обнаружен высокочастотный магнитоэлектрический эффект в планарной структуре, содержащей ферромагнитный слой из FeCoSiB и пьезоэлектрический слой из AlN, изготовленные методом магнетронного напыления на подложке из боросиликатного стекла. Структуру возбуждали магнитным полем на частоте толщинной акустической моды колебаний 32.4 MHz и регистрировали генерируемое пьезослоем электрическое напряжение. Коэффициент магнитоэлектрического преобразования на частоте второй толщинной моды составляет $\alpha_E \approx 6$ V/A при постоянном магнитном поле смещения 120 A/m, соответствующем максимуму пьезомагнитного коэффициента ферромагнитного слоя.

> Ключевые слова: высокочастотный магнитоэлектрический эффект, магнитострикция, пьезоэффект, композитная структура.

DOI: 10.21883/PJTF.2021.05.50675.18586

Магнитоэлектрические (МЭ) эффекты, т.е. взаимное преобразование электрических и магнитных полей в мультиферроидных материалах, широко исследуются для создания различных устройств информационной техники и микроэлектроники, таких как датчики магнитных полей, устройства обработки радиосигналов, элементы магнитной памяти, переключаемые электрическим по-[1]. В композитных гетероструктурах, содержалем щих ферромагнитные (ФМ) и пьезоэлектрические (ПЭ) слои, МЭ-эффекты возникают в результате комбинации магнитострикции ФМ-слоя и пьезоэлектричества в ПЭслое посредством передачи деформации через границу раздела. При этом на частотах, совпадающих с частотами акустических резонансов структуры, эффективность преобразования полей возрастает на два-три порядка из-за резкого увеличения деформаций [2].

МЭ-эффекты наблюдались в основном либо в диапазоне низких частот $\sim 10^2 - 10^5 \, {
m Hz}$ при возбуждении изгибных или планарных акустических колебаний структур [3], либо в диапазоне частот $\sim 1 - 10 \, \mathrm{GHz}$ при возбуждении ферромагнитного резонанса в ФМ-слое структуры [4]. МЭ-эффекты в промежуточном высокочастотном диапазоне 0.3-30 MHz остаются до сих пор практически неисследованными. Опубликовано всего несколько работ, где теоретически исследовались характеристики высокочастотных МЭ-эффектов в композитных структурах [5] и наблюдались резонансные эффекты в планарной структуре железоиттриевый гранат-лангатат на частоте 4.2 MHz [6] и в структуре нитрид алюминия-аморфный ферромагнетик на частоте 60.5 MHz [7]. Возможности исследования высокочастотных МЭ-эффектов осложнены падением эффективности МЭ-преобразования с уменьшением размеров композитных резонаторов [8] на планарных акустических колебаниях и сложностями изготовления резонаторов малых размеров.

В настоящей работе обнаружен и исследован резонансный МЭ-эффект на толщинной моде акустических колебаний в пленочной структуре FeCoSiB—AlN, изготовленной на диэлектрической подложке. Применение толщинной моды колебаний вместо планарной позволило использовать пленочную структуру достаточно больших размеров в плоскости. Кратко описаны исследуемая структура, методики измерений и характеристики высокочастотного МЭ-эффекта.

Использованная структура схематически изображена на рис. 1. Основой структуры является пластина из боросиликатного стекла длиной 23 mm, шириной 3 mm и толщиной $a = 150 \,\mu$ m. На верхней стороне пластины методом магнетронного напыления изготовлен слой из пьезоэлектрического AlN толщиной $a_p = 2 \mu m$, а на нижней стороне — слой из аморфного ферромагнетика FeCoSiB толщиной $a_m = 2 \,\mu m$ [9]. Роль электродов пьезоэлектрического слоя выполняют подслой из Pt толщиной 0.1 µm и верхний слой из Au/Cr толщиной 0.1 µm. Пластина закреплена на одном конце на массивном основании, так что длина свободной части составляет L = 20 mm. Структура помещена в постоянное магнитное поле смещения H = 0 - 1.6 kA/m, созданное катушками Гельмгольца и направленное вдоль ее длинной оси. Возбуждающее переменное магнитное поле $h\cos(2\pi f t)$ с частотой f = 1 kHz-40 MHz и амплитудой до $h = 80 \,\text{A/m}$, направленное параллельно H, создавалось с помощью низкоиндуктивной катушки с попе-

Рис. 1. Схематическое изображение структуры FeCoSiB-AlN.

Рис. 2. Зависимость МЭ-напряжения u от частоты f возбуждающего магнитного поля при H = 120 А/m.

речными размерами $5 \times 9 \,\mathrm{mm}$, длиной 22 mm и числом витков N = 80, охватывающей свободную часть структуры. Активное сопротивление и индуктивность катушки равнялись соответственно $R = 1.92 \Omega$ и $L = 14.27 \,\mu$ H. МЭ-эффект регистрировался с помощью панорамного измерителя цепей Agilent 5061В. Для этого катушка подключалась к передающему порту измерителя цепей, а напряжение и с электродов AlN-слоя подавалось на приемный порт измерителя. Регистрировались частотные зависимости коэффициента передачи S₂₁ структуры при возбуждающем напряжении менее 1 V и различных значениях поля *H* в диапазоне частот 1 kHz-40 MHz. Затем по коэффициенту передачи находилась амплитуда и генерируемого МЭ-напряжения. Постоянное поле измерялось тесламетром LakeShore 421 с точностью 0.1 А/т. Полевая зависимость $\mu(H)$ магнитной проницаемости структуры определялась по полевой зависимости индуктивности катушки с помощью RLC-измерителя АКТАКОМ-3026 на частоте 10 kHz.

На рис. 2 показана зависимость амплитуды генерируемого структурой МЭ-напряжения и от частоты

f возбуждающего магнитного поля при постоянном поле смещения H = 120 A/m. В области низких частот 0.1–0.2 MHz на зависимости виден пик с частотой $f_1 \approx 155.7$ kHz, высотой $u_1 \approx 173$ mV и добротностью $Q_1 \approx 1300$, соответствующий возбуждению планарных колебаний структуры. В области высоких частот 32.4–32.6 MHz на фоне сигнала прямой электромагнитной наводки виден второй пик с центральной частотой $f_2 \approx 32.45$ MHz, высотой $u_2 \approx 0.25$ mV и добротностью $Q_2 \approx 800$.

Для идентификации пиков напряжения на рис. 2 оценим частоты акустических резонансов исследованной структуры. Используем известные формулы для частот низших мод планарных и толщинных колебаний закрепленной на одном конце балки

$$f_1 = (k_1/2L)\sqrt{Y/\rho}, \qquad f_2 = (k_2/2a)\sqrt{Y/\rho},$$
 (1)

где коэффициенты могут принимать значения $k_1 = 1$, 3, 5 и $k_2 = 1$, 2. Толщины ФМ- и ПЭ-слоев учитывать не будем, поскольку они много меньше толщины диэлектрической подложки и слабо влияют на частоты колебаний. Подставляя в выражения (1) значения модуля Юнга и плотности боросиликатного стекла $Y \approx 7 \cdot 10^{10}$ N/m², $\rho \approx 2.23 \cdot 10^3$ kg/m³, длину и толщину подложки, получаем частоты $f_1 \approx 140$ kHz и $f_2 \approx 36$ MHz. Из сравнения измеренных и рассчитанных частот следует, что низкочастотный пик на рис. 2 соответствует возбуждению низшей моды планарных колебаний по длине структуры $(k_1 = 1)$, а высокочастотный пик — возбуждению второй моды $(k_2 = 2)$ колебаний по толщине структуры.

МЭ-коэффициенты для обоих пиков оценим по формуле $\alpha_E = e/h = u/(ha_p)$, где e — амплитуда электрического поля, генерируемого структурой под действием магнитного поля h. Поле h находили по току, протекающему через катушку. Для этого последовательно с катушкой включили безвыводное сопротивление величиной $R_0 = 1 \Omega$ с индуктивностью $L_0 = 27 \,\mathrm{nH}$ и измерили амплитуду напряжения V на сопротивлении на частотах обоих пиков. Рассчитав амплитуду тока как $I = V / \sqrt{R_0^2 + (2\pi f L_0)^2}$, по формуле для поля длинного соленойда h = IN, где N — число витков на единицу длины, находим амплитуды полей: $h_1 \approx 73 \,\text{A/m}$ на частоте 155.7 kHz и $h_2 \approx 20$ A/m на частоте 32.4 MHz. Окончательная оценка с использованием данных рис. 2 дает МЭ-коэффициент $\alpha_{E1} \approx 1200 \text{ V/A}$ на частоте f_1 планарных колебаний структуры и $\alpha_{E2} \approx 6 \, \text{V/A}$ на частоте f₂ толщинных колебаний структуры.

Для подтверждения МЭ-природы высокочастотного пика была измерена зависимость напряжения u_2 от постоянного поля H, показанная на рис. 3. Видно, что u_2 сначала примерно линейно растет с увеличением H, достигает максимума в поле $H_m \approx 120$ A/m, а затем асимптотически стремится к нулю по мере насыщения ФМ-слоя структуры. Именно такая полевая зависимость напряжения характерна для линейных МЭ-эффектов в планарных структурах [3]. Напряжение максимально в

Рис. 3. Зависимость МЭ-напряжения u_2 и нормированной магнитной проницаемости μ_r от постоянного магнитного поля *H*.

поле H_m , соответствующем максимуму пьезомагнитного коэффициента $q(H) = \partial \lambda / \partial H$ ФМ-слоя структуры, где $\lambda(H)$ — полевая зависимость магнитострикции. Чтобы убедиться, что изменение магнитной проницаемости μ при увеличении H не влияет на величину u_2 , была измерена полевая зависимость нормированной магнитной проницаемости $\mu_r(H) = \mu(H)/\mu_{max}$ ФМ-слоя структуры (μ_{max} — максимальная величина магнитной проницаемости), приведенная на том же рис. 3. Видно, что проницаемость максимальна в полях H = 0-20 А/m, а затем резко падает уже в поле $H \approx 80$ А/m. Значительное отличие характерных полей максимума для $u_2(H)$ и $\mu_r(H)$ еще раз подтверждает МЭ-природу высокочастотного пика.

В заключение отметим, что акустические колебания по толщине структуры возбуждаются из-за изменения толщины ФМ-слоя, обусловленного магнитострикционной деформацией слоя в плоскости. Коэффициент Пуассона, определяющий связь деформации ФМ-слоя в плоскости и изменение его толщины, для FeCoSiB составляет $\gamma \approx 0.3$, что приводит к соответствующему уменьшению МЭ-коэффициента для высокочастотного эффекта. Уменьшению МЭ-коэффициента способствует также демпфирующее воздействие подложки [10]. Можно надеяться, что выбор оптимальной толщины слоев композитной структуры позволит повысить эффективность преобразования полей при высокочастотном МЭ-эффекте.

Финансирование работы

Работа поддержана Российским фондом фундаментальных исследований (грант 20-07-00811).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

- C. Tu, Z. Chu, B. Spetzler, P. Hayes, C.-Z. Dong, X.-F. Liang, H.-H. Chen, Y.-Y. He, Y.-Y. Wei, H. Lin, Y.-H. Lin, J. McCord, F. Faupel, E. Quandt, N.-X. Sun, Materials, **12**, 2259 (2019). doi.org/10.3390/ma12142259.
- [2] M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Phys. Rev. B, 68, 132408 (2003). doi.org/10.1103/PhysRevB.68.132408
- [3] C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys., **103**, 031101 (2008). doi.org/10.1063/1.2836410
- [4] G. Srinivasan, Y.K. Fetisov, Ferroelectrics, 342, 65 (2006). doi.org/10.1080/00150190600946195
- [5] V.M. Petrov, A.F. Saplev, O.I. Matushev, J. Phys.: Conf. Ser., 1352, 012037 (2019).
- [6] M.I. Bichurin, R.V. Petrov, V.M. Petrov, Appl. Phys. Lett., 103, 092902 (2013). doi.org/10.1063/1.4819477
- [7] T. Nan, H. Lin, Y. Gao, A. Matyushov, G. Yu, H. Chen, N. Sun, S. Wei, Z. Wang, M. Li, X. Wang, A. Belkessam, R. Guo, B. Chen, J. Zhou, Z. Qian, Y. Hui, M. Rinaldi, M.E. McConey, B.M. Howe, Z. Hu, J.G. Jones, G.J. Brown, N.X. Sun, Nature Commun., 8, 296 (2017). doi.org/10.1038/s41467-017-00343-8
- [8] F.A. Fedulov, D.V. Chashin, L.Y. Fetisov, A.M. Kharlamova, Y.K. Fetisov, IEEE Sensors Lett., 4, 2501104 (2020).
 DOI: 10.1109/LSENS.2020.3021757
- P. Hayes, V. Schell, S. Salzer, D. Burdin, E. Yarar, A. Piorra, R. Knochel, Y.K. Fetisov, E. Quandt, J. Phys. D: Appl. Phys., 51, 354002 (2018). doi.org/10.1088/1361-6463/aad456
- [10] Д.А. Филиппов, Т.О. Фирсова, Вестн. Новгород. ун-та, 55, 47 (2010).