^{01,19} Thermoelectric Properties of Metallic Hexaborides RB_6 (R = La, Pr, Nd, Gd)

© M. Anisimov¹, N. Samarin¹, S. Demishev¹, A. Bogach¹, V. Voronov¹, N. Shitsevalova², A. Levchenko², V. Filipov², V. Glushkov¹

 ¹ Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
² Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine

E-mail: anisimov.m.a@gmail.com

Received: October 29, 2020 Revised: October 29, 2020 Accepted: November 2, 2020

Seebeck coefficient has been studied on the single crystals of metallic hexaborides RB_6 (R = La, Pr, Nd, Gd) at temperatures of 2–300 K. The experiment has shown that the signal is limited by the values $|S| \le 1.5 \,\mu\text{V/K}$ for all tested materials. The data obtained for the systems LaB₆ and GdB₆ were approximated by phonon drag contribution caused by quasi-local (Einstein) mode with characteristic temperatures $\Theta_E(LaB_6) \approx 240 \,\text{K}$ and $\Theta_E(GdB_6) \approx 180 \,\text{K}$. On the contrary, the crystal-line electric field effect induces the inversion between negative and positive types of thermoelectricity, which complicates the simulation of phonon drag in the case of PrB₆ and NdB₆.

Keywords: Seebeck effect, phonon drag, hexaborides, metals.