04.1

Исследование индуктивно-связанной плазмы пониженного давления СF₃Br методами зонда Ленгмюра и оптической эмиссионной спектроскопии

© В.О. Кузьменко, А.В. Мяконьких¶

Физико-технологический институт им. К.А. Валиева РАН, Москва, Россия ¶ E-mail: miakonkikh@ftian.ru

Поступило в Редакцию 12 октября 2020 г. В окончательной редакции 14 октября 2020 г. Принято к публикации 14 октября 2020 г.

> Проведены измерения параметров индуктивно-связанной плазмы пониженного давления газа CF₃Br методами зонда Ленгмюра и актинометрии. Определены электронная температура и концентрации электронов и положительных ионов, а также радикалов фтора и брома. Предложено объяснение наблюдавшейся ранее значительной деградации диэлектриков со сверхнизкой проницаемостью при травлении в исследуемой плазме.

> Ключевые слова: низкотемпературная неравновесная плазма, оптическая эмиссионная спектроскопия, зонд Ленгмюра, бромсодержащая плазма, индуктивно-связанная плазма.

DOI: 10.21883/PJTF.2021.02.50548.18578

Плазма фторбромуглеродов (CF₃Br и др.) находила широкое применение для глубокого анизотропного травления кремния в диодных реакторах. Детальное исследование емкостного разряда показало, что молекула CF₃Br при диссоциации теряет преимущественно радикал брома [1], чем объясняется незначительное содержание атомарного фтора в плазме и отсутствие спонтанного травления кремния, позволяющее получить высокую степень анизотропии. Одним из современных приложений плазмы CF₃Br является плазменное травление пористых диэлектриков с ультранизкой диэлектрической проницаемостью [2], применяемых в системах металлизации ультрабольших интегральных схем. Главное требование к таким процессам — снижение деградации пористого диэлектрика, происходящей за счет замещения неполярных связей Si-CH₃ полярными под действием атомарного фтора. Тем не менее детальное сравнительное исследование криогенного травления пористого диэлектрика SiOCH в индуктивно-связанных плазмах CF₃Br и CF₄ показало бо́льшую степень деградации пористых диэлектриков после травления в плазме CF₃Br, не связанную с образованием бромсодержащих продуктов в диэлектрике [3,4]. Объяснение этих закономерностей может быть получено в результате измерения концентрации радикалов фтора и брома в индуктивносвязанной плазме CF₃Br.

В настоящей работе плазма CF₃Br исследована в установке плазмохимического травления с реактором, рассчитанным на обработку пластин диаметром до 150 mm. Камера и подложкодержатель изготовлены из нержавеющей стали, ввод мощности осуществляется через кварцевое окно, чертежи камеры приведены в [5]. Внутренний диаметр камеры 300 mm, расстояние от подложкодержателя до кварцевого окна 150 mm. Индуктивно-связанная плазма возбуждалась при помощи высокочастотного генератора (13.56 MHz), подключенного к трехвитковому плоскому индуктору с применением устройства согласования. Откачка камеры осуществлялась турбомолекулярным насосом с производительностью в исследуемом диапазоне рабочих давлений порядка 500 l/s, в системе применен безмасляный форвакуумный насос. Вложенная мощность во всех экспериментах составляла 500 W.

Исследования параметров плазмы методом зонда Ленгмюра проводились с помощью системы ESPion (Hiden Analytical) с встроенной частотной компенсацией в диапазоне давлений 10–22 mTorr. Использовался цилиндрический вольфрамовый зонд диаметром 0.15 mm и длиной 10 mm. Параметры плазмы были получены из анализа вольт-амперных характеристик зонда с помощью теории ограниченного орбитального движения (OML) [6]. Были определены концентрации электронов и положительных ионов, а также электронная температура в максвелловском приближении.

Концентрация радикалов фтора и брома определялась методом оптической актинометрии (или относительных интенсивностей) [7]. Суть метода сводится к тому, что измеряется отношение интенсивностей излучения двух типов частиц, концентрация одного из которых (актинометра) может быть легко определена. В качестве актинометра был выбран аргон, парциальное давление которого составляло 10% от полного давления плазмообразующей смеси. Давление контролировалось емкостным датчиком типа баратрон, состав плазмообразующей смеси — по показаниям массовых расходомеров. Отсутствие химических реакций с участием аргона позволяет определить его концентрацию. Оптические эмиссионные спектры были получены при помощи акустооптического спектрометра "Кварц-2000" в диапазоне 300—855 nm с разрешением 0.12 nm. Концентрации фтора и брома определялись по следующим линиям: F — 685.6 и 703.7 nm, Br — 700.5 nm, Ar — 750.4 nm. Пары F (685.6 nm)/Ar (750.4 nm) и Br (700.5 nm)/Ar (750.4 nm) использовались и ранее для измерений в подобной плазме [1]. Вычисления были проведены с использованием актинометрического соотношения $[X] = [A]C_A^X I_X/I_A$ [7], где [X], [A] концентрация атомов X (X = F, Br) и актинометра (A) соответственно; I_X , I_A — интенсивности линий X и A; C_A^X — актинометрический коэффициент. При исследуемых значениях давления вкладом процессов тушения в заселенность состояний можно пренебречь, поэтому актинометрические коэффициенты рассчитывались по следующей формуле:

$$C_A^X = \frac{\sum_k A_{ik}^X}{A_{ij}^X} \frac{\lambda_{ij}^X}{\lambda_{nm}^A} \frac{k_e^A}{k_e^X},\tag{1}$$

где λ_{ij}^X , λ_{nm}^A — длины волн исследуемых линий атома Xи актинометра A; A_{ij}^{X} — коэффициент Эйнштейна для перехода, отвечающего выбранной линии атома $X; A_{ik}^X$ коэффициенты Эйнштейна для переходов между состояниями тонкой структуры атома X, отвечающей выбран-ному переходу; k_e^X , k_e^A — скорости возбуждения электронным ударом верхнего уровня выбранных переходов атомов Х и А соответственно. Зависимости скорости возбуждения верхних уровней от электронной температуры могут быть определены для значений электронных температур, измеренных зондовым методом по формуле $k_e^X = 2\pi \sqrt{2/[m_e(\pi kT_e)^3]} \int_{E_{th}}^{\infty} \sigma_e(\varepsilon) \exp(-\varepsilon/kT_e)\varepsilon d\varepsilon$ в максвелловском приближении. Здесь $\sigma_e(\varepsilon)$ — сечение возбуждения электронным ударом верхнего уровня выбранных переходов атомов как функция энергии налетающего электрона. Значения $k_e^{\text{Ar}}(T_e)$ и $k_e^{\text{F}(703.7 \text{ nm})}(T_e)$ были взяты из работы [7], а $k_e^{\text{F}(685.6 \text{ nm})}(T_e)$ и $k_e^{\text{Br}}(T_e)$ были вычислены по сечениям, рассчитанным нами в борновском приближении [8]. Были выбраны пары F (685.6 nm)/Ar (750.4 nm), Br (700.5 nm)/Ar (750.4 nm) и F (703.7 nm)/Ar (750.4 nm). То обстоятельство, что скорости возбуждения электронным ударом линий F (685.6 nm) и Br (700.5 nm) удалось вычислить с применением общего подхода, позволяет рассчитывать на более точные результаты, полученные с помощью этой актинометрической пары.

Результаты исследования плазмы CF_3Br с помощью зонда Ленгмюра приведены на рис. 1. Электронная температура демонстрирует характерную зависимость с ростом давления: снижается от 2 до 1.5 eV. Концентрации положительных ионов и электронов при увеличении давления уменьшаются, при этом наблюдается значительная электроотрицательность плазмы (превышение концентрацией положительных ионов концентрации электронов за счет образования отрицательных ионов при прилипании электронов).

Рис. 1. Концентрации заряженных частиц (1 - ионов, 2 - электронов) и электронная температура $T_e(3)$ в зависимости от давления в камере.

Рис. 2. Обзорный спектр индуктивно-связанной плазмы CF₃Br/Ar при давлении 17 mTorr и мощности 500 W.

Был измерен оптический эмиссионный спектр в плазме CF₃Br/Ar (90%/10%). На рис. 2 представлена часть наблюдаемого спектра плазмы при давлении 17 mTorr. В приведенном диапазоне присутствуют изолированные линии атомарного брома и фтора, для которых может быть выполнена актинометрия. Совпадающие линии аргона и брома с длиной волны \sim 751 nm были исключены из рассмотрения. Для корректного определения интенсивностей линий и учета фона их форма аппроксимировалась суммой гауссовской кривой и константы. Также при определении интенсивности линии Ar (750 nm) корректно учитывалось ее наложение на соседнюю линию (751 nm).

Рассчитанные зависимости концентрации атомов F и Br от давления приведены на рис. 3. Для расчета использовалось актинометрическое соотношение, значе-

Рис. 3. Концентрации нейтральных частиц в зависимости давления камере. атомарный от в 1 бром: Br (700.5 nm)/Ar (750.4 nm), 2 атомарный фтор: (750.4 nm), 3 F (703.7 nm)/Ar ____ атомарный фтор: F (685.6 nm)/Ar (750.4 nm), 4 — молекулы CF₃Br.

ния коэффициентов Эйнштейна взяты из [9]. Значения электронных температур были взяты из результатов зондовых измерений. Концентрация молекул была оценена из уравнения состояния идеального газа, отношение концентрации атомарных частиц к концентрации молекул приводит к оценке степени диссоциации ~ 0.1. Концентрации радикалов фтора и брома растут с увеличением давления. Концентрация атомов фтора, определенная по линии 685.6 nm, в 2 раза больше при всех значениях давления, чем определенная по линии 703.7 nm. Это может быть вызвано различиями в определении сечения возбуждения, что соотносится с погрешностью метода актинометрии [1], а также неучтенными процессами возбуждения и девозбуждения верхнего состояния. Можно заключить, что предпочтительными актинометрическими парами являются F (685.6 nm)/Ar (750.4 nm) и Br (700.5 nm)/Ar (750.4 nm), так как методика определения концентраций оказывается полностью одинаковой, что позволяет проводить адекватное сравнение между полученными значениями. Концентрация фтора больше, чем брома, почти на порядок, что может быть связано с расходованием атомарного брома в плазме с образованием устойчивых при низкой электронной температуре молекулярных частиц. Концентрация ионов меньше, чем концентрация молекул, на три порядка, что соответствует низкой степени ионизации, которая уменьшается с увеличением давления. Полученный результат отличается от результатов измерений в емкостно-связанной плазме пониженного давления, известных из литературы [1].

Таким образом, в работе была проведена диагностика индуктивно-связанной плазмы CF₃Br, найдены концентрации атомарных частиц, представляющие интерес для понимания анализа закономерностей низкоповреждающего травления диэлектриков с низкой диэлектрической проницаемостью. Обнаружено, что в отличие от емкостного разряда индуктивно-связанный разряд в диапазоне давлений 10-22 mTorr характеризуется более высокой степенью диссоциации и большей концентрацией атомарного фтора (~ 10^{13} cm⁻³) при сравнимой концентрации брома (~ 10^{12} cm⁻³). Этим объясняется наблюдаемая в экспериментах [3,4] значительная деградация пористых диэлектрических пленок при травлении в CF₃Br.

Финансирование работы

Работа выполнена в рамках государственного задания Физико-технологического института им. К.А. Валиева РАН по теме № 0066-2019-0004 и частично поддержана Российским фондом фундаментальных исследований (грант № 18-29-27025).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S.V. Avtaeva, D.K. Otorbaev, J. Phys. D: Appl. Phys., 26 (12), 2148 (1993). DOI: 10.1088/0022-3727/26/12/009
- D.V. Lopaev, Yu.A. Mankelevich, T.V. Rakhimova,
 A.I. Zotovich, S.M. Zyryanov, M.R. Baklanov, J. Phys. D:
 Appl. Phys., **50** (48), 485202 (2017).
 DOI: 10.1088/1361-6463/aa92a7
- [3] A. Rezvanov, A.V. Miakonkikh, A.S. Vishnevskiy,
 K.V. Rudenko, M.R. Baklanov, J. Vac. Sci. Technol. B, 35 (2), 021204 (2017). DOI: 10.1116/1.4975646
- [4] A.V. Miakonkikh, I. Clemente, A.S. Vishnevskiy, K.V. Rudenko, M.R. Baklanov, Proc. SPIE, **10224**, 1022420 (2017). DOI: 10.1117/12.2267113
- [5] К.В. Руденко, А.В. Мяконьких, А.А. Орликовский, Микроэлектроника, **36** (3), 206 (2007).
- [6] F.F. Chen, Plasma Sources Sci. Technol., 18 (3), 035012 (2009).
 DOI: 10.1088/0963-0252/18/3/035012
- [7] D.V. Lopaev, A.V. Volynets, S.M. Zyryanov, A.I. Zotovich, A.T. Rakhimov, J. Phys. D: Appl. Phys., 50 (7), 075202 (2017). DOI: 10.1088/1361-6463/50/7/075202
- [8] I.I. Sobel'man, L.A. Vainshtein, E.A. Yukov, *Excitation of atoms and broadening of spectral lines* (Physica-Verlag, Heidelberg, 1995), p. 1–58.
- [9] V.V. Kazakov, V.G. Kazakov, V.S. Kovalev, O.I. Meshkov, A.S. Yatsenko, Phys. Scripta, **92** (10), 105002 (2017). DOI: 10.1088/1402-4896/aa822e