## 19,10,11

# Электронные и теплофизические свойства газовых гидратов: результаты моделирования из первых принципов

© М.Б. Юнусов<sup>1</sup>, Р.М. Хуснутдинов<sup>1,2</sup>, А.В. Мокшин<sup>1,2</sup>

 <sup>1</sup> Казанский (Приволжский) федеральный университет, Казань, Россия
 <sup>2</sup> Удмуртский федеральный исследовательский центр УрО РАН, Ижевск, Россия
 E-mail: mukhammadbek@mail.ru

Поступила в Редакцию 23 сентября 2020 г. В окончательной редакции 2 октября 2020 г. Принята к публикации 2 октября 2020 г.

> Представлены результаты *ab initio* молекулярно-динамического исследования электронных и теплофизических свойств гидрата метана с кубической структурой КС-І. Найдено хорошее согласие результатов моделирования для теплоемкости при постоянном объеме и плотности с экспериментальными данными. На основе анализа плотности электронных состояний определены температурные зависимости электронных свойств гидрата метана, включая уровень энергии Ферми, ширину и границы запрещенной зоны. Для пустого каркаса гидрата (водный клатратный каркас) рассчитаны спектры энергии электронов *E*(**k**) вдоль направлений М-Х, Х-Г, Г-М и Г-R. Установлено, что наличие молекул CH<sub>4</sub> в водном клатрате приводит к увеличению энергии Ферми гидрата с 2.4 до 3.0 eV.

Ключевые слова: ab initio вычисления, плотность электронных состояний.

DOI: 10.21883/FTT.2021.02.50485.203

## 1. Введение

Природные гидраты являются одной из форм существования газа в недрах Земли и перспективным источником углеводородного газа [1]. Гидраты природных газов или газовые гидраты — это нестехиометрические соединения, включения в которых молекулы газа (молекулы-гостя) заключены в полостях трехмерной решетки из молекул воды (каркас хозяина). Устойчивость водных клатратных каркасов, которые являются термодинамически менее стабильными, чем лед или жидкая вода при тех же условиях, обеспечивается за счет ван-дер-ваальсовых взаимодействий гость-хозяин [1-8]. Так, стабилизация структуры газового гидрата обеспечивается за счет отталкивания водного каркаса от внутренних молекул газа. В работе [9] с помощью квантово-механического моделирования в рамках обобщенно градиентного приближения детально исследовались структурная устойчивость и электронные свойства различных газовых гидратов (СО2, СО, СН<sub>4</sub> и H<sub>2</sub>). Авторами было показано, что заполнение водного клатратного каркаса газом (CO<sub>2</sub>, CO, CH<sub>4</sub> и Н2) повышает стабильность структуры гидрата. Было установлено, что гидрат диоксида углерода является наиболее стабильным по сравнению с другими газовыми гидратами, энергия связи которого составила -2.36 eV. Наименее стабильным оказался гидрат водорода с энергией связи -0.36 eV. Энергия связи гидрата метана составила -0.58 eV.

Структурные типы наиболее часто встречающихся газовых гидратов — это кубические структуры I и II,

а также гексагональная структура III, обозначаемые как КС-І, КС-ІІ и ГС-ІІІ, соответственно [2]. Гидрат метана преимущественно кристаллизуется в кубическую структуру, известную как тип КС-I, в которой как большие кластеры воды (с диаметром 5.86 Å), так и малые кластеры воды (с диаметром  $\sim 5.10$  Å) могут улавливать молекулу метана, диаметр которой  $\sim 4.36$  Å [10,11]. Такая система обычно образуется, когда метан и вода вступают в контакт при температуре окружающей среды, т.е.  $T \sim 300 \,\text{K}$  и умеренном давлении,  $p \ge 0.6 \,\text{MPa}$  [12]. В настоящее время структурные особенности и теплофизические свойства газовых гидратов вызывают широкий интерес у исследователей. Это обусловлено, во-первых, возможностью использования гидратов природного газа в качестве нового источника углеводородного топлива. Согласно полученным оценкам, запасы газа в гидратах составляют  $\sim 2 \cdot 10^{16} \, {
m m}^3$ , что на порядки превосходит запасы обычного природного газа [1,2]. Во-вторых, в газовой отрасли остро стоит проблема гидратообразования в стволах скважин и газопроводах.

Цель настоящей работы заключается в *ab initio* исследовании электронных и теплофизических свойств газовых гидратов с характерной кубической структурой КС-I.

#### 2. Детали вычислений

Крупномасштабные молекулярно-динамические исследования из первых принципов гидрата метана с кубической структурой КС-І были выполнены в программном комплексе VASP [13,14]. На основе результатов рентгеноструктурного анализа Штакельберга и



**Рис. 1.** (Цветной онлайн) Ячейка гидрата метана структуры КС-I в трех проекциях: красным, синим и зеленым цветами отмечены атомы углерода, кислорода и водорода соответственно.

Мюллера [15], Полинга и Марша [16], а также алгоритма оптимизации положений атомов водорода с помощью правил Бернала-Фаулера, и с учетом равенства нулю полного дипольного момента была сгенерирована кристаллическая структура клатратного гидрата КС-І. Гидрат метана образован через внедрение молекул CH4 в свободные полости каркаса водного клатрата. Моделируемая система имела размер  $12 \times 12 \times 12$  Å, которая включала 8 молекул метана и состояла из 178 ионов атомов водорода, углерода и кислорода. На рис. 1 представлена ячейка гидрата метана со структурой КС-І в трех проекциях. Моделирование выполнялось в изотермически-изохорическом (NVT)-ансамбле для температурной области T = [200; 300] К с шагом по температуре  $\Delta T = 20$  К. Для установления состояния термодинамического равновесия был применен термостат Нозе-Гувера. Во избежание нежелательных поверхностных явлений и эффекта конечномерной системы на ячейку моделирования по всем направлениям были наложены периодические граничные условия. Базисный набор состоял из плоских волн; электрон-ионное взаимодействие осуществлялось с помощью ультрамягких сглаженных псевдопотенциалов; обменно-корреляционная энергия была рассчитана в рамках обобщенноградиентного приближения [13,14].

# 3. Результаты и обсуждение

Для проверки корректности результатов моделирования была рассчитана массовая плотность кристаллического гидрата метана. Полученное значение для исследуемой системы составило  $\rho = 918.4 \text{ kg/m}^3$ , что находится в хорошем согласии с экспериментальным значением  $\rho = 910.0 \text{ kg/m}^3$  [17]. Была рассчитана температурная зависимость полной энергии системы для диапазона T = [200; 300] K, которая, как оказалось, хорошо аппроксимируется линейной зависимостью вида

$$E(T) = 3.748 \cdot 10^{-21}T + 1.374 \cdot 10^{-16} \,(\mathrm{J}). \tag{1}$$

Физика твердого тела, 2021, том 63, вып. 2

Средняя теплоемкость при постоянном объеме рассчитывалась по формуле

$$C_V = \frac{1}{m} \frac{dQ}{dT} = \frac{1}{m} \left( \frac{dE}{dT} + p \frac{dV}{dT} - \mu \frac{dN}{dT} \right) = \frac{1}{m} \frac{dE}{dT}.$$
 (2)

Полученное значение теплоемкости составило  $C_{\nu} = 2362.5 \text{ J/(kg} \cdot \text{K})$ , что хорошо согласуется с экспериментальными данными  $C_{\nu} = 2160 \pm 100 \text{ J/(kg} \cdot \text{K})$  [18] и 2306 J/(kg · K) [19]. Для исследуемой системы была рассчитана плотность электронных состояний N(E) с температурами из диапазона T = [200; 300] K с шагом  $\Delta T = 20 \text{ K}$ . Плотность электронных состояний и энергетические зоны для газового гидрата с кубической структурой КС-I при T = 200 K представлена на рис. 2. Рассчитанные зависимости N(E) находятся в хорошем качественном согласии с результатами квантово-механических расчетов для различных газовых гидратов (CO<sub>2</sub>,



**Рис. 2.** (Цветной онлайн) Плотность электронных состояний и энергетические зоны для гидрата метана с кубической структурой КС-I при T = 200 К.



Рис. 3. (Цветной онлайн) Плотность электронных состояний и спектр энергии электронов  $E(\mathbf{k})$  вдоль направлений: a) М-Х; b) Х-Г; c) Г-М; d) Г-R. Ось абсциес для зависимости  $E(\mathbf{k})$  масштабирована на величину  $a^{-1}$ , где a — параметр решетки (a = 12 Å).

СО, СН<sub>4</sub> и H<sub>2</sub>)<sup>1</sup> [9]. Для определения границ запрещенной зоны была выполнена процедура подгонки формы контуров линий спектра гауссовыми функциями. Аппроксимация пиков плотности электронных состояний, прилегающих к запрещенной зоне, позволила найти приближенное значение энергии верхней границы валентной зоны ( $E_{G \text{ max}}$ ) и нижней границы зоны проводимости ( $E_{G \text{ min}}$ ). Положение уровня Ферми определялось как

$$E_F = \frac{E_{G\max} + E_{G\min}}{2} + \frac{3}{4} k_B T \ln\left(\frac{m_p}{m_n}\right), \qquad (3)$$

где  $m_p$  и  $m_n$  — эффективные массы дырок и электронов [20]. Вследствие малости второго слагаемого в (3), при расчете положений энергии уровня Ферми данный вклад не учитывался. Полученные значения для ширины  $\Delta E_G$  и границ запрещенной зоны ( $E_{G \max}, E_{G \min}$ ), а также энергии уровня Ферми  $E_F$  для гидрата метана с кубической структурой КС-I представлены в таблице.

Как видно из таблицы, значение энергии уровня Ферми с высокой точностью находится посередине запрещенной зоны. Полученные значения ширины щели  $\Delta E_G$  между нижней границей зоны проводимости и верхней границей валентной зоны находятся в хорошем согласии с результатами квантово-механических расчетов для гидрата метана с кубической структурой КС-I

 $<sup>^1</sup>$ В работе [9] уровень энергии Ферми смещен влево по горизонтальной оси, т.е.  $E_F=0\,{\rm eV}.$ 

Температурные зависимости ширины  $\Delta E_G$  и границ запрещенной зоны ( $E_{G \max}, E_{G \min}$ ), а также энергии Ферми  $E_F$  для гидрата метана с кубической структурой КС-I

| Т, К | $E_{G \max}$ , eV | $E_{G\min}$ , eV | $E_F$ , eV | $\Delta E_G$ , eV |
|------|-------------------|------------------|------------|-------------------|
| 200  | 4.895             | 1.257            | 3.076      | 3.638             |
| 220  | 4.897             | 1.091            | 3.039      | 3.896             |
| 240  | 4.979             | 1.066            | 3.023      | 3.912             |
| 260  | 5.090             | 1.471            | 3.281      | 3.620             |
| 280  | 5.148             | 1.332            | 3.240      | 3.816             |
| 300  | 5.310             | 1.302            | 3.306      | 4.009             |

при трех различных конфигурациях [21], обозначаемых как сI, сII и сIII. Значения  $\Delta E_G$  для гидрата метана с конфигурациями сI, сII, сIII составляли, соответственно, 5.27, 5.23 и 3.81 eV.

Кроме того, для исследуемой системы обнаружено повышение энергии верхней и нижней границы запрещенной зоны с ростом температуры. В диапазоне температур 200–300 К проведена линейная аппроксимация значений энергии Ферми. При повышении температуры нижняя граница зоны проводимости поднимается со средней скоростью  $dE_{G \text{ max}}/dT = 0.0053 \text{ eV/K}$ . Верхняя граница валентной зоны поднимается со средней скоростью  $dE_{G \text{ min}}/dT = 0.0035 \text{ eV/K}$ . При этом энергия Ферми повышается со скоростью  $dE_F/dT = 0.0044 \text{ eV/K}$ . Разница в скорость се пирины. Средняя скорость ее расширения составила  $dE_G/dT = 0.0018 \text{ eV/K}$ .

Для каркаса гидрата КС-I с пустыми молекулярными полостями была рассчитана энергетическая зонная структура, которая представляет собой зависимость энергий электронов от волнового вектора  $E(\mathbf{k})$  и которая дает представление о характере изменения энергии электрона при движении вдоль какого-либо направления в пространстве волновых векторов. Поскольку энергия электрона в кристалле является периодической функцией от k, то при исследовании энергетического спектра электрона достаточно ограничиться рассмотрением волнового вектора **k** из диапазона  $-\pi/a < k < \pi/a$ , т. е. рассмотрением лишь первой зоны Бриллюэна. Как правило, в качестве выделенных направлений волнового вектора рассматриваются линии, соединяющие точки высокой симметрии. Гидрат КС-І характеризуется кубической решеткой, для которой зона Бриллюэна имеет кубическую форму. На рис. 3 представлена плотность электронных состояний и спектр энергии электронов  $E(\mathbf{k})$ для каркаса гидрата КС-I с пустыми молекулярными полостями вдоль направлений: М-Х; Х-Г; Г-М и Г-R. Здесь центр зоны Бриллюэна обозначается символом Г, центр грани — Х, центр ребра — М и вершина — R.

На рис. 4 представлена энергетическая зонная структура кристалла гидрата с кубической структурой КС-I с пустыми молекулярными полостями. Как видно из рисунка, электроны нижних энергетических уровней  $(-20 \div -17 \text{ eV})$  и валентной зоны  $(-8 \div 0 \text{ eV})$  с большой точностью имеют прямую зависимость  $E(\mathbf{k})$ .



**Рис. 4.** (Цветной онлайн) Энергетическая зонная структура кристалла гидрата с кубической структурой КС-I с пустыми молекулярными полостями (*a*). Зона проводимости отдельно представлена на части (*b*).

Спектр  $E(\mathbf{k})$  в области энергий 5–10 eV, что соответствует зоне проводимости, имеет локальные максимумы и минимумы в точках Г, М, Х и R. Верхняя и нижняя границы зоны проводимости имеют максимумы в точке R и минимумы в точке Г. Ширина запрещенной зоны в кристалле гидрата КС-I имеет ширину  $\Delta E_G \approx 5.0$  eV. Энергия Ферми находится на уровне  $E_F \approx 2.4$  eV, что меньше значения для гидрата КС-I с включениями в полости молекул метана ( $E_F \approx 3.0$  eV).

#### 4. Заключение и выводы

В настоящей работе представлены результаты крупномасштабного *ab initio* моделирования гидрата метана с кубической структурой КС-I для широкой области значений температур. Обнаружено хорошее согласие результатов моделирования для плотности и теплоемкости при постоянном объеме с экспериментальными данными [17–19]. На основе анализа плотности электронных состояний определены температурные зависимости электронных свойств гидрата метана: уровень энергии Ферми, ширина и границы запрещенной зоны. Установлено, что с увеличением температуры наблюдаются повышения нижней границы зоны проводимости со средней скоростью  $dE_{G \max}/dT = 0.0053 \text{ eV/K}$ , верхней границы валентной зоны со средней скоростью  $dE_{G\min}/dT = 0.0035 \text{ eV/K}$ . В то же время, скорость повышения уровня энергия Ферми составило  $dE_F/dT = 0.0044 \text{ eV/K}$ . Рассчитан спектр энергии электронов  $E(\mathbf{k})$  вдоль направлений М-Х, Х-Г, Г-М и Г-R для кристалла гидрата с кубической структурой КС-I с пустыми молекулярными полостями. Установлено, что наличие молекул метана приводит к увеличению энергии Ферми гидрата с 2.4 до 3.0 eV.

#### Финансирование работы

Работа поддержана Российским научным фондом (проект № 19-12-00022). Крупномасштабные молекулярнодинамические расчеты выполнены с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ им. М.В. Ломоносова и на вычислительном кластере Казанского (Приволжского) федерального университета.

### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

# Список литературы

- [1] E.D. Sloan, C.A. Koh. Clathrate Hydrates of Natural Gases. 3rd rev. ed. CRC Press, Taylor & Francis USA (2007).
- [2] N.J. English, J.M.D. MacElroy. Chem. Eng. Sci. 121, 133 (2015).
- [3] R.M. Khusnutdinoff, A.V. Mokshin. J. Non-Cryst. Solids 357, 1677 (2011).
- [4] R.M. Khusnutdinoff, A.V. Mokshin. Physica A 391, 2842 (2012).
- [5] Р.М. Хуснутдинов. Коллоид. журн. 75, 792 (2013).
- [6] R.M. Khusnutdinoff, A.V. Mokshin. J. Cryst. Growth 524, 125182 (2019).
- [7] Р.М. Хуснутдинов, А.В. Мокшин. Письма в ЖЭТФ 110, 551 (2019).
- [8] R.M. Khusnutdinoff, A.V. Mokshin. ΦΤΤ **62**, 775 (2020).
- [9] P. Guo, Y.-L. Qiu, L.-L. Li, Q. Luo, J.-F. Zhao, Y.-K. Pan. Chin. Phys. B 27, 043103 (2018).
- [10] I.-M. Chou, A. Sharma, R.C. Burruss, J. Shu, H.-K. Mao, R.J. Hemley, A.F. Goncharov, L.A. Stern, S.H. Kirby. Proc. Natl. Acad. Sci. USA 97, 13484-7 (2000).
- [11] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, J.R.L. Smith, H. Inomata. Energy Convers. Manag. 46, 1680-91 (2005).
- [12] M.E. Casco, J. Silvestre-Albero, A.J. Ramirez-Cuesta, F. Rey, J.L. Jorda, A. Bansode, A. Urakawa, I. Peral, M. Martínez-Escandell, K. Kaneko, F. Rodríguez-Reinoso. Nature Commun. 6, 6432 (2015).
- [13] G. Kresse, J. Hafner. Phys. Rev. B 47, 558 (1993).
- [14] G. Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996).
- [15] M. Stackelberg, H.R. Müller. Z. Elktrochem. 58, 25 (1954).

- [16] L. Pauling, R.E. Marsh. Proc. Natl. Acad. Sci. USA 38, 112 (1952).
- [17] Ю.Ф. Макогон. Геология и полезные ископаемые Мирового океана. № 2, 5 (2010).
- [18] W.F. Waite, L.A. Stern, S.H. Kirby, W.J. Winters, D.H. Mason. Geophys. J. Int. 169, 767 (2007).
- [19] В.И. Истомин, В.С. Якушев. Газовые гидраты в природных условиях. Недра, М. (1992).
- [20] Н. Ашкрофт, Н. Мермин. Физика твердого тела (в двух томах). Мир, М. (1979).
- [21] Z. Wang, L. Yang, R. Deng, Z. Yang. arXiv: 1902.10914v1 (2019).

Редактор Ю.Э. Китаев