13

Влияние поэтапного постимплантационного отжига на состав и структуру поверхностных слоев кремния, имплантированного ионами щелочных металлов

© Б.Е. Умирзаков¹, З.А. Исаханов², Г.Х. Аллаёрова¹, Р.М. Ёркулов²

¹ Ташкентский государственный технический университет, Ташкент, Узбекистан ² Институт ионно-плазменных и лазерных технологий АН Узбекистана, Ташкент, Узбекистан E-mail: be.umirzakov@gmail.com

Поступило в Редакцию 3 августа 2020 г. В окончательной редакции 17 сентября 2020 г. Принято к публикации 17 сентября 2020 г.

Изучена динамика изменения кристаллической структуры, элементного и химического состава поверхностных слоев Si, имплантированного ионами Na⁺, Rb⁺ и Cs⁺, при поэтапном отжиге при различных температурных режимах. Показано, что в случае ионов Na⁺ после прогрева при температуре T = 900 K на поверхности образуется пленка NaSi₂, при T = 1000 K — монослойное покрытие NaSi₂, а при T = 1100 K поверхность и приповерхностные слои Si полностью очищаются от атомов легирующего элемента, кислорода и углерода.

Ключевые слова: ионная имплантация, силицид металла, эпитаксиальные слои, нанопленки, отжиг, дифракция быстрых электронов, монослойные покрытия, доза ионов.

DOI: 10.21883/PJTF.2021.01.50451.18494

При создании наноразмерных двух- и многослойных гетероструктур, обеспечивающих необходимые комбинации материалов для получения базовых элементов современной нано-, микро- и оптоэлектроники, широко используются методы молекулярной и твердофазной эпитаксии [1-6], а также метод низкоэнергетической $(E_0 \le 5 \,\text{keV})$ ионной имплантации в сочетании с отжигом [7-12]. Среди этих методов только метод ионной имплантации позволяет получать однородные сплошные пленки с толщиной $h \le 40-50$ Å. Для получения таких структур основными требованиями являются подготовка атомно-чистой поверхности подложки и обеспечение высокой чистоты напыляемых (имплантируемых) веществ. Все эти процессы выполняются в условиях сверхвысокого вакуума ($P \le 10^{-8}$ Pa). При очистке монокристаллов Si очень важно найти надежный способ минимизировать присутствие на поверхности атомов кислорода и углерода. В работе [13] определены оптимальные режимы ионно-плазменной и химико-термической очистки поверхности кремния, которые позволяют уменьшить концентрации С и О до нуля (в пределах чувствительности оже-спектрометра ~ 0.1 at.%).

Низкоэнергетические ионы, имплантируемые на небольшие глубины, на ранней стадии эпитаксиального роста пленки создают поверхностные дефекты, действующие в дальнейшем как центры кристаллического зародышеобразования. Энергия ионов стимулирует протекание химических реакций на поверхности, в частности образование тонких переходных слоев [14–18]. В определенных условиях ионная бомбардировка способствует ионно-стимулированной десорбции атомов С, О и других загрязнений с поверхности. Однако до сих пор нет достоверных данных по изучению динамики изменения морфологии, состава и структуры ионно-имплантированного Si при поэтапном отжиге в широком интервале температур.

Настоящая работа посвящена изучению изменения состава и структуры поверхностных слоев Si(111), имплантированного ионами щелочных металлов, в процессе отжига при различных температурных режимах.

В качестве объектов исследования были выбраны монокристаллические образцы Si(111) *п*-типа диаметром 10 mm и толщиной 0.5 mm. Имплантация ионов, прогрев и все исследования проводились на одной и той же экспериментальной установке при вакууме не хуже ($P = 10^{-7}$ Pa). Энергия ионов варьировалась в пределах от 1 до 5 keV, а их доза $D \approx 10^{14} - 10^{17} \, \mathrm{cm}^{-2}$. Источниками ионов служили стандартные хлоридные соли соответствующих щелочных элементов с чистотой ~ 99.99%. Перед ионной имплантацией источники ионов очищались длительным нагревом. После очистки источника в процессе образования паров щелочного элемента концентрация О на поверхности Si не изменялась. Для исследования состава и структуры был использован комплекс методов: электронная ожеспектроскопия (ЭОС), дифракция быстрых и медленных электронов (ДБЭ и ДМЭ соответственно) и вторичная ионная масс-спектрометрия (ВИМС). Растровые электронно-микроскопические (РЭМ) изображения были получены на стандартной установке ISM-6490 с разрешением 5-6 nm, а ДБЭ-картины — на установке ЭМР-2. Образование химической связи между атомами матрицы и имплантированного элемента оценивалось по изменению формы и положения оже-пиков типа XVV,

E_0 , eV	$a \cdot 10^{17}$, cm ²							
	Li ⁺	Na ⁺	K^+	Rb^+	Cs^+			
500	6.0	6.8	21.3	36.5	49.0			
600	5.5	6.54	20.1	38.8	50.2			
700	5.6	6.8	20.2	43.2	53.1			
800	6.8	8.18	26.2	44.2	54.5			
900	8.9	9.8	30.1	43.8	57.6			
1000	9.0	10.36	34.1	52.6	62.5			
1100	7.08	9.27	35.6	53.5	62.0			
1600	6.95	9.37	33.1	—	61.5			

Таблица 1. Зависимость параметра a для разных типов ионов от их энергии E_0

Примечание. Прочерк — измерение не проводилось.

а концентрации атомов Si, примесей и легирующих элементов — по изменению интенсивности высокоэнергетических пиков. Профили распределения атомов по глубине определялись методом ЭОС в сочетании с послойным травлением ионами аргона. Для сравнения были исследованы структура поверхности Si с монослойным покрытием $MeSi_2$, полученная при напылении Me на Si с последующим отжигом. При образовании монослойного покрытия $MeSi_2$ работа выхода $e\phi$ поверхности Si уменьшается до минимума. Работа выхода из поверхности контролировалась методом контактной разности потенциалов. Методика эксперимента подробно описана в [15].

В процессе ионной имплантации происходит разупорядочение приповерхностного слоя и внедрение атомов легирующего элемента. Степень разупорядочения поверхности с большой точностью можно определить по картинам ДМЭ. Изменение дифракционной интенсивности будет определяться суммой двух эффектов: нарушения порядка атомного расположения и изменения состава поверхности. Для учета суммарного эффекта удобно контролировать изменение дефектности поверхности как функции отношения интенсивностей дифракционного рефлекса и упругого фона [15]. Измеряемыми величинами являются ток рефлекса и ток фона, которые пропорциональны соответственно первой степени площади, занятой порядком, и площади, занятой беспорядком. Поэтому зависимость изменения отношения токов рефлекса (I_r) и фона (I_b) от дозы облучения, согласно [15], имеет вид

$$I_r/I_b = (I_{r0}/I_{b0}) \exp(-aD),$$

где I_{r0}/I_{b0} — значение отношения токов рефлекса и фона до облучения; a — средняя площадь нарушения, приходящаяся на один ион; D — доза облучения. В табл. 1 приведены экспериментальные значения a для разных типов ионов в зависимости от их энергии E_0 . Видно, что значение a в зависимости от энергии ионов меняется немонотонно (с максимумом при ~ 1000 eV и минимумом при 650-700 eV). С ростом массы ионов

Рис. 1. Влияние имплантации ионов Na⁺ и последующего отжига на интенсивность и положение $L_{23}VV$ оже-пика Si. 1 — чистый Si(111), 2 — Si, имплантированный ионами Na⁺ с $E_0 = 1 \text{ keV}$ при $D = 8 \cdot 10^{16} \text{ cm}^{-2}$, 3 — после прогрева ионно-имплантированного кремния при T = 900 K в течение 30 min. Оже-спектры получены при энергии первичных электронов $E_p = 2500 \text{ eV}$.

значение *a* увеличивается. Одновременно можно было сравнивать значения *a*, измеренные по деградации только дифракционной интенсивности, которые были более чем на 1.5 порядка выше.

На рис. 1 приведены оже-спектры в интервале энергий E = 85-100 eV (оже-линия $L_{23}VV$ кремния) для чистого Si и Si, имплантированного ионами Na⁺ с $E_0 = 1 \text{ keV}$ при $D = 6 \cdot 10^{16} \text{ cm}^{-2}$, до и после отжига при $T \approx 900 \text{ K}$ в течение 30 min. Видно, что после ионной имплантации интенсивность пика Si резко уменьшается и появляются новые пики, характерные для NaSi (E = 96-97 eV) и NaSi₂ (E = 94-95 eV). После прогрева при $T \approx 900 \text{ K}$ пики, соответствующие NaSi и Si, исчезают, а пик NaSi₂ увеличивается до максимума.

На рис. 2 приведены зависимости интенсивности оже-пиков О (506 eV) и Na (992 eV) от глубины d для хорошо очищенного Si(111), а также после имплантации ионами Na⁺ с энергией $E_0 = 1$ keV при $D = D_{sat} = 8 \cdot 10^{16}$ cm⁻², где D_{sat} — доза насыщения. Проведенные на основе анализа оже-спектров расчеты показали, что концентрация О на поверхности чистого Si составляет 1.5 at.%. С ростом d концентрация О

Ион	E_0 , keV	$D, {\rm cm}^{-2}$	Нанопленка MeSi ₂		Монослой <i>Me</i> Si ₂		TV
			T_E, \mathbf{K}	<i>h</i> , Å	T_M, \mathbf{K}	$e\varphi$, eV	I_{cr}, \mathbf{K}
Na ⁺	0.5	$6\cdot 10^{16}$	900	30-35	1000	2.1	1100
	1.0	$8\cdot 10^{16}$	950	35-40	1000	2.1	1100
Rb^+	0.5	$4\cdot 10^{16}$	850	_	950	1.95	1050
	1.0	$6\cdot 10^{16}$	900	25-30	1000	2.0	1100
Cs^+	0.5	$3\cdot 10^{16}$	700	_	800	1.8	900
	1.0	$5\cdot 10^{16}$	700	20-25	_	_	900

Таблица 2. Температура формирования нанопленок силицидов $MeSi_2$, температура образования монослоя $MeSi_2$ и температура полной очистки поверхности Si

Примечание. Прочерк — измерение не проводилось.

Рис. 2. Оже-профили распределения атомов по глубине: 1 — кислорода в чистом Si(111), 2 — кислорода в Si(111), имплантированном ионами Na⁺ с $E_0 = 1$ keV при $D = 6 \cdot 10^{16}$ cm⁻², 3 — натрия в ионно-легированном кремнии.

монотонно уменьшается и начиная с $d = 80 - 100 \,\text{\AA}$ практически не меняется, устанавливаясь на уровне ~ 0.5 at.% (кривая 1 на рис. 2). В случае ионноимплантированного Si в сильнолегированной области $(d \simeq 0-35 \,\text{\AA})$ атомы кислорода практически не обнаруживаются, но они накапливаются в области резкого спада натрия (кривые 2 и 3 на рис. 2). По-видимому, при ионной бомбардировке часть атомов кислорода испаряется с поверхности, а другая часть диффундирует в глубь образца до границы раздела ионно-легированный слой-кремний (кривая 2 на рис. 2). После отжига при $T \approx 900 \,\mathrm{K}$ поверхностная концентрация Na составляет \sim 30–35 at.%, Si \sim 65–70 at.% и все атомы Na образуют химическую связь с атомами Si. Концентрация этих атомов практически не меняется до глубины 30-35 at.%. И в этих слоях формируется пленка NaSi2 с хорошей стехиометрией. При этом не происходит заметного

изменения профиля распределения атомов О. Отжиг этой системы при $T \approx 1000 \, \mathrm{K}$ приводит к уменьшению толщины пленки NaSi2 до одного монослоя, а отжиг при *T* = 1100 К — к полному испарению с поверхностных слоев атомов Na и его соединения с кремнием и кислородом (в пределах чувствительности оже-спектрометра). Результаты ВИМС показали, что при этом на поверхности и в приповерхностной области до глубины 60-80 Å имеется очень малое количество О, концентрация которого не превышает 0.1 at.%, а оценочные значения концентрации углерода составляют ~ 0.02 at.%. При $d \ge 100-150$ Å, как в случае неимплантированного Si, концентрация кислорода практически не меняется и устанавливается на уровне $\sim 0.3-0.5$ at.%. В табл. 2 приведены температура образования ТЕ эпитаксиальных слоев $MeSi_2$, толщина h этих слоев, температура образования монослоя T_M силицида с соответствующей $e \varphi_{\min}$ и температура полной очистки T_{cr} для Si, имплантированного ионами Na^+ , Rb^+ и Cs^+ с энергиями 0.5 и 1.0 keV при $D = D_{sat}$. Видно, что толщина пленок $MeSi_2$, сформированных при одинаковых энергиях, в случае Na⁺ значительно больше, чем в случаях Rb⁺ и Cs⁺. Это объясняется тем, что при $E_0 = \text{const}$ с уменьшением диаметра атомов щелочного элемента глубина их проникновения и доза насыщения увеличиваются, а температура образования силицидной пленки уменьшается. Критическая температура очистки Т_{сг} поверхности и толщины очищенных слоев зависели от типа и энергии ионов. Для всех силицидов щелочных металлов температура полной очистки равна 1100 К. Такую высокую степень очистки невозможно было получить при отжиге неимплантированного Si до $T \approx 1400 - 1500 \,\mathrm{K}$ даже в сочетании с ионным травлением. Высокая чистота поверхности Si при выдержке в вакууме $P = 10^{-7}$ Ра сохраняется в течение 10-15 min, а в вакууме $P = 10^{-9} \text{ Pa}^{-1}$ в течение 1.5-2h.

На рис. 3, *а* приведены РЭМ-изображения и ДБЭкартина (верхняя вставка) для пленки RbSi₂, полученные после прогрева при T = 900 К кремния, имплантированного ионами Rb⁺ с $E_0 = 1$ keV при дозе $D = 6 \cdot 10^{16}$ cm⁻². Там же приведена ДМЭ-картина (нижняя вставка), полученная после прогрева этой систе-

Рис. 3. *а* — РЭМ-изображение поверхности пленки RbSi₂/Si(111) толщиной 35–40 Å. На верхней вставке — ДБЭ-картина пленки RbSi₂, полученная при энергии электронного пучка 15 keV, на нижней — ДМЭ-картина Si(111) с монослойным покрытием RbSi₂: рефлексы с большими диаметрами относятся к Rb, рефлексы с маленькими диаметрами — к дефектам несоответствия. *b* — РЭМ-изображения и ДМЭ-картина (на вставке) поверхности системы RbSi₂/Si(111), полученная после прогрева при T = 1100 K. ДМЭ-картины получены при $E_p = 54$ eV.

мы при T = 1000 К. Из рис. 3, *а* видно, что поверхность пленки RbSi₂ является относительно гладкой и пленка росла эпитаксиально (верхняя вставка), а поверхность Si с монослойным покрытием RbSi₂ имеет структуру 2 × 2 (нижняя вставка). Последнее полностью совпадает со структурой 2 × 2 RbSi₂, полученной нами ранее [15] при низкотемпературном осаждении слоев из ионных пучков с низкой энергией ($E_0 \approx 500 \text{ eV}$) и дозой ($D \approx 10^5 \text{ cm}^{-2}$). Дальнейшие наши исследования показали, что все силициды щелочных металлов типа $MeSi_2$ растут эпитаксиально, тем не менее их поверхность имеет различные структуры. Например, поверхность монослойного покрытия LiSi₂ имеет структуру 3 × 3, а NiSi₂ — 1 × 1.

После прогрева при T = 1100 К независимо от типа силицидной пленки наблюдается ее полное испарение, а также испарение атомов кислорода и углерода. Поверхность Si становится однородной и гладкой (рис. 3, *b*) и восстанавливается структура 1×1 , характерная для чистого кремния (рис. 3, *b*, вставка).

Таким образом, в работе впервые исследована динамика изменения состава и структуры поверхностных слоев ионно-имплантированного кремния при отжиге в различных температурных режимах. Показано, что в зависимости от температуры происходят следующие изменения: полная кристаллизация ионно-легированных слоев Si и образование силицидов типа MeSi₂, формирование монослойного покрытия MeSi₂, максимальная очистка поверхности и приповерхностных слоев Si.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Л. Ченг, К. Плог, Молекулярно-лучевая эпитаксия и гетероструктуры, под ред. Ж.И. Алфёрова, Ю.В. Шмарцева (Мир, М., 1989).
- [2] В.В. Золотарев, А.Ю. Лешко, А.В. Лютецкий, Д.Н. Николаев, Н.А. Пихтин, А.А. Подоскин, С.О. Слипченко, З.Н. Соколова, В.В. Шамахов, И.Н. Арсентьев, Л.С. Вавилова, К.В. Бахвалов, И.С. Тарасов, ФТП, 47 (1), 124 (2013). http://journals.ioffe.ru/articles/4885
- [3] М.А. Путято, Н.А. Валишева, М.О. Петрушков, В.В. Преображенский, Б.Р. Семягин, Е.А. Емельянов, А.В. Васев, А.Ф. Скочков, Г.И. Юрко, И.И. Нестеренко, ЖТФ, 89 (7), 1071 (2019). DOI: 10.21883/JTF.2019.07.47802.438-18 [Пер. версия: 10.1134/S106378421907020X].
- [4] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Prog. Photovolt.: Res. Appl., 25 (1), 3 (2017). https://doi.org/10.1002/pip.2855
- [5] P.R.C. Kent, A. Zunger, Phys. Rev. B, 64 (11), 115208 (2001). https://doi.org/10.1103/PhysRevB.64.115208
- [6] В.И. Рудаков, Ю.И. Денисенко, В.В. Наумов, С.Г. Симакин, Письма в ЖТФ, 37 (3), 36 (2011). http://journals.ioffe.ru/articles/12465
- S.B. Donaev, F. Djurabekova, D.A. Tashmukhamedova,
 B.E. Umirzakov, Phys. Status Solidi C, 12 (1-2), 89 (2015). https://doi.org/10.1002/pssc.201400156

- B.E. Umirzakov, T.S. Pugacheva, A.T. Tashatov,
 D.A. Tashmukhamedova, Nucl. Instrum. Meth. Phys. Res. B, 166-167, 572 (2000).
 https://doi.org/10.1016/S0168-583X(99)01151-9
- [9] З.А. Исаханов, З.Э. Мухтаров, Б.Е. Умирзаков, М.К. Рузибаева, ЖТФ, 81 (4), 117 (2011). [Пер версия: https://doi.org/10.1134/S1063784211040177].
- [10] Y.S. Ergashov, B.E. Umirzakov, G.Kh. Allayarova, Mater. Sci. Appl., 9 (12), 965 (2018). https://doi.org/10.4236/msa.2018.912069
- [11] Х.Х. Болтаев, Д.А. Ташмухамедова, Б.Е. Умирзаков, Поверхность. Рентгеновские, синхротронные и нейтронные исследования, № 4, 24 (2014). [Пер. версия: https://doi.org/10.1134/S1027451014010108].
- [12] С.Б. Донаев, Письма в ЖТФ, 46 (16), 16 (2020).
 DOI: 10.21883/PJTF.2020.16.49847.18293 [Пер. версия: 10.1134/S1063785020080192].
- [13] А.Г. Озеров, А.А. Алтухов, В.В. Иванов, Е.А. Титова, Техника средства связи, сер. ТПО, № 1, 111 (1987).
- [14] L. Pelaz, L.A. Marques, J. Barbolla, J. Appl. Phys., 96 (11), 5947 (2004). https://doi.org/10.1063/1.1808484
- [15] Б.Е. Умирзаков, С.Ж. Ниматов, Д.С. Руми, Структура и свойства многослойных нанопленочных систем, созданных на основе кремния (Infinity Group, Ташкент, 2013).
- [16] J. Matsuo, T. Aoki, T. Seki, in 2007 Int. Workshop on junction technology (Kyoto, 2007), p. 53–54.
 DOI: 10.1109/iwjt.2007.4279945
- [17] С.Ж. Ниматов, Б.Е. Умирзаков, Ф.Я. Худайкулов, Д.С. Руми, ЖТФ, **89** (10), 1611 (2019).
 DOI: 10.21883/JTF.2019.10.48181.414-18 [Пер. версия: 10.1134/S1063784219100153].
- [18] Б.Е. Умирзаков, Д.А. Ташмухамедова, Г.Х. Аллаярова, Ж.Ш. Содикжанов, Письма в ЖТФ, 45 (7), 49 (2019). DOI: 10.21883/PJTF.2019.07.47539.17650 [Пер. версия: 10.1134/S1063785019040175].